ok to post
anne Somaluar

1. $y^{\prime \prime}-7 y^{\prime}+10 y=0$ has solutions $y_{1}(t)=e^{5 t} \quad$ and $\quad y_{2}(t)=e^{2 t}$.
Let $y(t)=e^{5 t}+e^{2 t}$. Then,

$$
\begin{aligned}
& y^{\prime \prime}-7 y^{\prime}+10 y=25 e^{5 t}+4 e^{2 t}-35 e^{5 t}-14 e^{2 t} \\
& +10 e^{5 t}+10 e^{2 t}=0 \text {. Thus, } \\
& y(t)=e^{5 t}+e^{2 t} \text { is a solution. }
\end{aligned}
$$

2. $y_{1}(t)=t^{2}$

Then, $y_{1}^{\prime}(t)^{2}-4 y_{1}(t)=4 t^{2}-4 t^{2}=0$, so
y_{1} is a solution.
$y_{2}(t)$ is not necessarily a solution
because the differential equation is nonlinear.

$$
y_{2}^{\prime}(t)^{2}-4 y_{2}(t)=(4 t)^{2}-4\left(2 t^{2}\right)=8 t^{2}
$$

$\neq 0$, so y_{2} is not a solution.
3. $a(n)-7 a(n-1)+12 a(n-2)=0$
has solutions $a_{1}(n)=4^{n}$ and $a_{2}(n)=3^{n}$.
Let $a(n)=4^{n}+3^{n}$.
Then $a(n)-7 a(n-1)+12 a(n-2)$

$$
\begin{aligned}
& =4^{n}+3^{n}-7 \cdot 4^{n-1} \cdot 7 \cdot 3^{n-1}+12 \cdot 4^{n-2} \\
& +12 \cdot 3^{n-2}=4^{n-2}(16-28+12)+ \\
& 3^{n-2}(9-21+12)=0
\end{aligned}
$$

Thus, $a(n)=4^{n}+3^{n}$ is a solution.
4. $a(n)=a(n-1)^{2}, \quad n \geq 0$

$$
a_{1}(n)=2^{2^{n}}=\left(2^{2^{n-1}}\right)^{2} \text {, so } \quad a_{1} \text { is } \sim
$$

solution.

$$
a_{2}(n)=3^{2^{n}}=\left(3^{2^{n-1}}\right)^{2} \text {, so } a_{2} \text { is } n
$$ solution.

$a_{3}(n)$ is not necessarily a solution because the recurrence relation is nonlinem.

$$
a_{3}(n)=2^{2^{n}}+3^{2^{n}}
$$

$$
\begin{aligned}
& a_{3}(n-1)^{2}=\left(2^{2^{n-1}}+3^{2^{n-1}}\right)^{2}=2^{2^{n}}+2\left(2^{2^{n-1}}+3^{2^{n-1}}\right) \\
& +3^{2^{n}} \neq a_{3}(n), \text { so }
\end{aligned}
$$

$a_{3}(n)$ is not a solution.
5. Part $(i): C_{1} 3^{n}+C_{2} 4^{n}$ is the general solution because 3 and 4 are the only solutions of the equation $r^{2}-7 r+12=0$, and any linear combination of solutions of a homogeneous linear recurrence is a solution.

Part (iii):

$$
\begin{aligned}
& a(n)-4 a(n-2)=-3 n+8, a(0)=2, a(1)=1 \\
& a_{n}(n)-4 a(n-2)=0 \\
& r^{2}-4=0 \\
& r= \pm 2
\end{aligned}
$$

$$
a_{n}(n)=c_{1} 2^{n}+c_{2}(-2)^{n}
$$

Try $\alpha n+\beta$

$$
\begin{gathered}
2 n+\beta-4_{2}(n-2)+\beta=-3 n+8 \\
-3 \alpha n+2 \beta+8 \alpha=-3 n+8 \\
\alpha=1, \quad \beta=0 \\
a(n)=c_{1} 2^{n}+c_{2}(-2)^{n}+n
\end{gathered}
$$

$$
\begin{aligned}
& a(0)=c_{1}+c_{2}=2 \\
& a(1)=2 c_{1}-2 c_{2}+1=1 \\
& c_{1}, c_{2}=1 \\
& a(n)=2^{n}+(-2)^{n}+n
\end{aligned}
$$

