1. Use Maple to solve the following initial value problem differential equations for $2 \leq \mathrm{k} \leq 10$ $y(k)(t)-y(t)=0 ; y(0)=1, y^{\prime}(0)=0, \ldots, y(k-1)(0)=0$. and then find the value (in decimals) of $y(1)$. Do you see a trend?
$y 2=$ dsolve $(\{D(D(y)(t)-y(t)=0, y(0)=1, D(y)(0)=0\}$, numeric $)$
y2(1)[2];
$y 3=$ dsolve $(\{D(D(y)(t)-y(t)=0, y(0)=1, D(y)(0)=, 0, D(D(y))(0)=0\}$, numeric $)$
y3(1)[2];
$y 4=$ dsolve $(\{D(D(y)(t)-y(t)=0, y(0)=1, D(y)(0)=, 0, D(D(y))(0)=0, D(D(D(y)))(0)=0\}$, numeric $)$ y4(1)[2];
2. (a) Prove that $a_{1}(n)=22_{n}$ satisfies the non-linear recurrence equation $a(n)=a(n-1) 2$.

Is the following constant multiple of the sequence $\mathrm{a}_{1}(\mathrm{n})$, given by $\mathrm{a}_{2}(\mathrm{n})=3 \cdot 22_{\mathrm{n}}$, also a solution? Why?
3. Doing it both by hand and via Maple, solve the following recurrence with the given initial conditions
$a(n)=3 a(n-1)-2 a(n-2) ; a(0)=2, a(1)=3$.
rsolve $\left(\left\{a(n)-3^{*} a(n-1)+2^{*} a(n-2)=0, a(0)=2, a(1)=3\right\}, a(n)\right)$;
$2^{\wedge} n+1$
5. Doing it both by hand and via Maple solve the recurrence with the initial conditions $a(n)=a(n-4) ; a(0)=1, a(1)=0, a(2)=0, a(3)=0$.
rsolve $(\{a(n)-a(n-4)=0, a(0)=1, a(1)=0, a(2)=0, a(3)=0\}, a(n))$;
$1 / 4+\left(\left(-I^{\wedge} n\right) / 4\right)+\left(l^{\wedge} n / 4\right)+\left(\left(-l^{\wedge} n\right) / 4\right)$

