Homework 26 Charles Griebell

OK to post

This is DMB.txt, A Maple package to explore Dynamical models in Biology (both discrete and continuous)

accompanying the class Dynamical Models in Biology, Rutgers University. Taught by Dr. Z. (Doron Zeilbeger)

The most current version is available on WWW at: http://sites.math.rutgers.edu/~zeilberg/tokhniot/DMB.txt . Please report all bugs to: DoronZeil at gmail dot com .

For general help, and a list of the MAIN functions, type "Help();". For specific help type "Help(procedure_name);"

For a list of the supporting functions type: Help1(); For help with any of them type: Help(ProcedureName);

For a list of the functions that give examples of Discrete-time dynamical systems (some famous), type: HelpDDM();

For help with any of them type: Help(ProcedureName);

For a list of the functions continuous-time dynamical systems (some famous) type: HelpCDM(); For help with any of them type: Help(ProcedureName);

PROBLEM 14

(1)

For the CONTINUOUS equation x'(t) = 2x(t)(1 - x(t))(2 - x(t))(3 - x(t))The underlying transformation is: f(x) = 2x(1-x)(2-x)(3-x)Which has equilibrium solutions

 $x_0 = 0, x_1 = 1, x_2 = 2, x_3 = 3$ because f(x) = 0 is the necessary condition for an equilibrium in a continuous case

(ii) Use timeSeries to determine which equilibrium is stable

Sol: to do this, choose initial conditions in between the equilibrium solutions

(i)

Question P15 **Orb** ([x^3+2*y,x^2+5*y^2],[x,y],[1.,3.],0,5); [[1.,3.], [7.,46.], [435., 10629.], [8.2334133 × 10⁷, 5.65067430 × 10⁸], [5.581356328 × 10²³, (3) 1.603284911 × 10¹⁸], [1.738678363 × 10⁷¹, 3.115153846 × 10⁴⁷]] Confirmed!

Question P16

$$\begin{bmatrix} > UT := [(2+x+y)/(2+2*x+2*y), (2+x+y)/(1+2*x+2*y)] \\ UT := \begin{bmatrix} \frac{2+x+y}{2+2x+2y}, \frac{2+x+y}{1+2x+2y} \end{bmatrix}$$
(4)

SFP command:

$$\begin{bmatrix} > \text{ sfp}_p16 := \text{ SFP}(UT, [x, y]); \\ sfp_p16 := \{ [0.6953496364, 0.8641637014] \} \end{bmatrix}$$
(5)

The numbers match up with bc.pdf

> sfp_p16[1] [0.6953496364, 0.8641637014] (6)

Orb command:

> Orb(UT,[x,y],[0.6953496364, 0.8641637014],1000,1100);

[0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364],0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364],0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364,0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364],0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013],

(7)

```
[0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015], [0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365, 0.8641637015]]
```

#yes the trajectory indicates that numerically,

P17

For the continuous time dynamical system

 $\begin{aligned} x'(t) &= (1 - 2x(t) - 3y(t)) (2 - 2x(t) - 3y(t)) \\ y'(t) &= (3 - x(t) - 2y(t)) (1 - x(t) - 2y(t)) \end{aligned}$

The underlying transformation is: [(1 - 2x - 3y)(2 - 2x - 3y),(3 - x - 2y)(1 - x - 2y)]

CONVINCE yourself that the equilibrium solutions [-5,4] and [1,0] are unstable

> print (JAC) ;
proc(F, x)
 local i, j;
 if not (type(F, list) and type(x, list) and nops(F) = nops(x)) then
 print(`Bad input`); RETURN(FAIL)
 end if;
 normal([seq([seq(diff(F[i], x[j]), j = 1 ...nops(x))], i = 1 ...nops(F))])
end proc

(8)

> jac := JAC([(1 - 2*x - 3*y) *(2 - 2*x - 3*y), (3 - x - 2*y) (1 - x - 2*y)], [x,y]); jac_54 := subs({x=-5,y=-4},jac); #Since D evaluates to 0 because derivative of a constant term is 0, jac_54 final := Matrix([[-94,-141],[0,0]]); evalf(Eigenvalues(jac_54_final)); #Because one of the eigenvalues is non-negative (the eigenvalue that has a value of 0), the equilibrium [-5,4] is unstable jac := [[-6 + 8x + 12y, -9 + 12x + 18y], [D(x)(1 - x - 2y) + 2D(y)(1 - x - 2y), 2D(x)(1 - x - 2y) + 4D(y)(1 - x - 2y)]] jac_54 := [[-94, -141], [D(-5)(14) + 2D(-4)(14), 2D(-5)(14) + 4D(-4)(14)]] $jac_54_final := \begin{bmatrix} -94 & -141 \\ 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} > jac_10 := subs({x=1, y=0}, jac); \\ \#Thus \\ jac_10 final := Matrix([[2,3], [0,0]]); \\ evalf(Eigenvalues(jac_10_final)); \\ \#We see that the equilibrium solution [1,0] is unstable because at least one of the eigenvalues of its jacobian is nonzero $jac_10 := [[2,3], [D(1)(0) + 2 D(0)(0), 2 D(1)(0) + 4 D(0)(0)]]$
 $jac_10_final := \begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix}$
$$\begin{bmatrix} 0. \\ 2. \end{bmatrix}$$
 (10)$$

 $\left[\begin{array}{c} 0.\\ -94. \end{array}\right]$

> 435^2+5*10629^2

565067430

(11)

Homework Zerini P15: By hand, fond the first fair terms of the orlett, stanting at N=0 of the discrete time aynamical system, if X(0) = 1, y(0) = 30 Contin it with the output of Orb $x(n) = x(n-1)^3 + 2y(n-1)$ $y(n) = x(n-1)^2 + 5y(n-1)^2$ FIRST Termo X(0) = 1, y(0) = 3 SECOND TERM: $X(1) = (1)^{3} + Z(3) = 7$ $y(1) = (1)^2 + 5(3)^2 = 46$ THERD TERM: $x(z) = (7)^3 + 2(46) = 343 + 92 = 435$ $\gamma(2) = (7)^2 + 5(46)^2 = 10629$ FOURTH TERM ? - Nat. $x(3) = (435)^3 + P(10629) = 8.2534433E$ $Y(3) = (435)^2 + 5(10629)^2 = 565067430$