```
NOT OKAY TO POST!
```

Amusha Nagor, Homework 26, 12.05.2021

Assignment: "Do Right Now" Problems, pages

P14

$$f(x) = 2x(t) (1-x(t))(2-x(t))(3-x(t))$$

$$f(x) = 2x(1-x)(2-x)(3-x) = 8$$

Equilibrium solutions: {0,1,2,3}

(ii) See attached maple code 1 + 3 are stable because We move away from the point (ex stort @ 0.9 or 11 or 29 or 3.1), we end back up here of 2 are not stable as if he more a little away, he more towards the stable points 1 or 3. We end up w/ horizontal asymptotics

@ 1 or 3 => meaning they are stable

(iii)
$$F'(x) = \frac{2(1-x)(2-x)(3-x)}{2(2-x)(3-x)} - 2x(1-x)(3-x) - 2x(1-x)(2-x)$$

 $F'(0) = 2(1)(2)(3) = 12 \implies \text{negative} \implies \text{unstable}$
 $F'(1) = -2(1)(2) = -4 \implies \text{negative} \implies \text{stable}$

F'(2) = -4(-1)(1) = 4 => Not negative => unstable -6(-2)(-1) = -12 => negative => stoke

. {0,2} are unstable because F'(x) is not negative. {1.3} Stoble because F'(x) is Aegative.

PI5 x(8)=1, y(1)=3

$$\times (n)^{\frac{1}{2}} \times (n^{-1})^{3} + 2y(n^{-1}), \quad y(n)^{\frac{1}{2}} \times (n^{-1})^{2} + 5y(n^{-1})^{2}$$

see maple code for Orb results

Orb 4 hand calculations match up

P16 See Maple code

$$\frac{x(n)}{2+2x(n-1)} = \frac{2+x(n-1)}{2+2x(n-1)+2y(n-1)} + \frac{y(n)}{2+2x(n-1)+2y(n-1)} + \frac{2+x(n-1)+y(n-1)}{1+2x(n-1)+2y(n-1)}$$

Results between SFP + Orb align

PIA Sec Maple code

Numerically can see that these

```
#NOT okay to post
   #Anusha Nagar, Homework 26, 12.5.2021
  read "C://Users/an646/Documents/DMB.txt"
                                  First Written: Nov. 2021
This is DMB.txt, A Maple package to explore Dynamical models in Biology (both discrete and
    continuous)
accompanying the class Dynamical Models in Biology, Rutgers University. Taught by Dr. Z.
    (Doron Zeilbeger)
                      The most current version is available on WWW at:
                   http://sites.math.rutgers.edu/~zeilberg/tokhniot/DMB.txt.
                    Please report all bugs to: DoronZeil at gmail dot com.
                      For general help, and a list of the MAIN functions,
                type "Help();". For specific help type "Help(procedure name);"
                      For a list of the supporting functions type: Help1();
                    For help with any of them type: Help(ProcedureName);
For a list of the functions that give examples of Discrete-time dynamical systems (some famous),
    type: HelpDDM();
                    For help with any of them type: Help(ProcedureName);
For a list of the functions continuous-time dynamical systems (some famous) type: HelpCDM();
                    For help with any of them type: Help(ProcedureName);
                                                                                                  (1)
  TimeSeries([2 \cdot x \cdot (1-x) \cdot (2-x) \cdot (3-x)], [x], [-0.1], 0.01, 10, 1);
```


> $TimeSeries([2 \cdot x \cdot (1-x) \cdot (2-x) \cdot (3-x)], [x], [0.1], 0.01, 10, 1);$

> $TimeSeries([2 \cdot x \cdot (1-x) \cdot (2-x) \cdot (3-x)], [x], [0.9], 0.01, 10, 1);$

 $TimeSeries([2 \cdot x \cdot (1-x) \cdot (2-x) \cdot (3-x)], [x], [1.1], 0.01, 10, 1);$

- > #0 seems unstable and 1 seems stable so far > $TimeSeries([2 \cdot x \cdot (1-x) \cdot (2-x) \cdot (3-x)], [x], [1.9], 0.01, 10, 1);$

> $TimeSeries([2 \cdot x \cdot (1-x) \cdot (2-x) \cdot (3-x)], [x], [2.1], 0.01, 10, 1);$

- > #2 seems unstable (goes to 1 or 3) > TimeSeries($[2 \cdot x \cdot (1-x) \cdot (2-x) \cdot (3-x)]$, [x], [2.9], [2.9], [3.1], [4.2],


```
\rightarrow Help(SFP)
SFP(F,x): Given a transformation F in the list of variables finds all the STABLE fixed point of
     the transformation x->F(x), i.e. the set of solutions of
                     the system \{x[1]=F[1], ..., x[k]=F[k]\} that are stable. Try:
                                       SFP([5/2*x*(1-x)],[x]]);
                 SFP([(1+x+y)/(2+3*x+y), (3+x+2*y)/(5+x+3*y)],[x,y]]);
                                                                                                              (3)
> F := \left[ \frac{(2+x+y)}{2+2\cdot x+2\cdot y}, \frac{(2+x+y)}{1+2\cdot x+2\cdot y} \right]
                               F := \left[ \frac{2+x+y}{2+2x+2y}, \frac{2+x+y}{1+2x+2y} \right]
                                                                                                              (4)
\rightarrow SFP(F, [x, y])
                                  {[0.6953496364, 0.8641637014]}
                                                                                                              (5)
> #Matches up with what we were supposed to get
\rightarrow Orb(F, [x, y], [0.5, 0.4], 1000, 1002);
[0.6953496364, 0.8641637013], [0.6953496362, 0.8641637010], [0.6953496365,
                                                                                                              (6)
     0.8641637015]]
   #Aligns with Orb results as well
    #P17
   #Check whether [-5, 4], and [1,0] are stable
> TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)], [x, y], [-5.1, 4.1],
        0.01, 20, 2);
                           8. × 10<sup>180</sup>
                           6. × 10<sup>180</sup>
                           4. \times 10^{180}
                          2. \times 10^{180}
   TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)], [x, y], [-5.1],
        4.1], 0.01, 20, 1);
```


> TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)], [x, y], [-4.9, 3.9], 0.01, 20, 2);

TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)], [x,y], [x,

- > #Horizontal asymptotes go to [-1,1], showing that [-5, 4] is not stable
- > TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)], [x,y], [1.1, 0.1], 0.01, 20, 1);

> TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)], [x, y], [1.1, 0.1], 0.01, 20, 2);

> TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)], [x, y], [0.9, -0.1], 0.01, 20, 1)

TimeSeries([(1-2*x-3*y)*(2-2*x-3*y), (3-x-2*y)*(1-x-2*y)], [x,y], [0.9, -0.1], 0.01, 20, 2)

> #[1,0] is also unstable because the horizontal asymptotes are still going to [-1, 1]
>