```
#Charles Griebel Homework 25
#OK to post
```

read `C:/Users/cgrie/Dynam Models Bio/Homeworks/HW24/DMB.txt`

First Written: Nov. 2021

This is DMB.txt, A Maple package to explore Dynamical models in Biology (both discrete and continuous)
accompanying the class Dynamical Models in Biology, Rutgers University. Taught by Dr. Z. (Doron Zeilbeger)

The most current version is available on WWW at: http://sites.math.rutgers.edu/~zeilberg/tokhniot/DMB.txt. Please report all bugs to: DoronZeil at gmail dot com .

For general help, and a list of the MAIN functions, type "Help();". For specific help type "Help(procedure_name);"
\qquad
For a list of the supporting functions type: Help1();
For help with any of them type: Help(ProcedureName);

For a list of the functions that give examples of Discrete-time dynamical systems (some famous), type: HelpDDM();

For help with any of them type: Help(ProcedureName);

For a list of the functions continuous-time dynamical systems (some famous) type: HelpCDM();
For help with any of them type: Help(ProcedureName);

\#P8:
\# (ii)
print(`first 3 terms of orbit`);
Orb ([1/(x+1)],[x],[0.5],0,2);
\# (iii)
print(`1000th term`);
print(`because Orb() starts at 0, 999 is the index instead of 1000`);
Orb ([1/ (x+1)],[x],[0.5],999,999) [1] [1];
first 3 terms of orbit

$$
[[0.5],[0.6666666667],[0.5999999999]]
$$

1000th term
because Orb() starts at 0, 999 is the index instead of 1000

$$
\begin{equation*}
0.6180339887 \tag{2}
\end{equation*}
$$

```
    #P9
    #(ii)
    Orb([x/(1+y+z),y/(1+x+z),z/(1+x+y)],[x,y,z],[1.0,1.0,1.0],0,2);
    #(iii)
    print(`1000th term`);
    Orb ([x/(1+y+z) ,y/(1+x+z) ,z/(1+x+y)],[x,y,z],[1.0,1.0,1.0],999,
    999)[1][1];
    [[1.0, 1.0, 1.0], [0.3333333333, 0.3333333333, 0.3333333333], [0.20000000001, 0.2000000001,
        0.2000000001 ]]
                                    1000th term
                                    0.0005002501157
    #P12
    FP([(5/2)*x* (1-x)],[x]);
        {[0],[\frac{3}{5}]}
    #P11'
    utRHS := [x^2-2*x+2];
    print(`test Equilibrium x(n)=1 by starting at x(0)=1.9`);
    Orb (utRHS,[x],[1.9],1000,1010);
    print(`test Equilibrium x(n)=2 by starting at x(0)=2.1`);
    Orb (utRHS,[x],[2.1],1000,1010);
    print(`at a high term (1001th-1011th digit, the trajectories
    indicate x(n)=1 is the only stable equilibrium solution`);
\[
u t R H S:=\left[x^{2}-2 x+2\right]
\]
test Equilibrium \(x(n)=1\) by starting at \(x(0)=1.9\)
[ [1.000000000], [1.000000000], [1.000000000], [1.000000000], [1.000000000], [1.000000000], [1.000000000], [1.000000000], [1.000000000], [1.000000000], [1.000000000]]
\[
\text { test Equilibrium } x(n)=2 \text { by starting at } x(0)=2.1
\]
[ [Float(undefined) ], [Float(undefined) ], [Float(undefined) ], [Float(undefined) ], [
Float(undefined) ], [Float(undefined) ], [Float(undefined) ], [Float(undefined) ], [
Float(undefined) ], [Float(undefined) ], [Float(undefined) ]]
at a high term (1001th-1011 th digit, the trajectories indicate \(x(n)=1\) is the only stable equilibrium solution
\#P12"'
\#Using numerics, find all the stable equilibrium solutions. utRHS := [(5/2)*x*(1-x)];
print(`for a starting point close to \(3 / 5\), we see \(x(n)=3 / 5\) is
```

 (4)
 stable equilibrium solution') ;
Orb (utRHS , [x], [0.61],1000,1010);
print(`for a starting point close to 0 , we see $x(n)=0$ is not a stable equilibrium solution'); Orb (utRHS , [x], [-0.01], 1000, 1010) ;

$$
u t R H S:=\left[\frac{5 x(1-x)}{2}\right]
$$

for a starting point close to $3 / 5$, we see $x(n)=3 / 5$ is stable equilibrium solution
[[0.6000000000], [0.6000000000], [0.6000000000], [0.6000000000], [0.6000000000], [0.6000000000], [0.6000000000], [0.6000000000], [0.6000000000], [0.60000000000], [0.6000000000]]
for a starting point close to 0 , we see $x(n)=0$ is not a stable equilibrium solution
[[Float $(-\infty)]$, [Float $(-\infty)]$, [Float $(-\infty)]$, [Float $(-\infty)]$, [Float $(-\infty)]$, [Float $(-\infty)]$, [Float $($ $-\infty)],[\operatorname{Float}(-\infty)],[\operatorname{Float}(-\infty)],[\operatorname{Float}(-\infty)],[\operatorname{Float}(-\infty)]]$

- Dynam Models bro HW25

P1: Chock whether $z=2$ is a solution of the equation

Test:

$$
z^{3}+3 z^{2}-\frac{11}{\psi}+z=0
$$

$2(2)^{3}+3(2)^{2}-11(2)+2=0$

$$
8+12 \frac{\downarrow}{\downarrow} 22+2=0
$$

$20+2-22=0 \Rightarrow z=2$ is a solution.
For $z=3$, we have

$$
\begin{aligned}
& (3)^{3}+3(3)^{2}+33+2 \\
= & 81+27-33+2 \\
= & 83-33+27 \\
= & 50+27
\end{aligned}
$$

= 77 which implies $z=3$ is not a solution of

$$
z^{3}+3 z^{2}-11 z+2=0
$$

Dynam Models Bio HWW 25
$P 2$: Check, whether $z=\pi$ is a solution of the equation $\sin (z)=0$ $\sin (\pi)=0$ is correct $b / 0 \sin$
and tan angle of π radials indicates that the length of the side opposite to the angle is 0 .
is $z=\frac{\pi}{2}$ a solution to $\sin (\pi)=0$

$$
\text { NO! } \quad \sin \left(\frac{\pi}{2}\right)=1 \neq 0
$$

P3: check whither $z=\frac{\pi}{3}$ is a solution to

$$
\sin ^{2}(z)+\cos ^{2}(z)=1
$$

yes, $z=\frac{\pi}{3}$ is a solution b / c of pythagorean identity $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$
$z=\frac{\pi}{5}$ is also a solution for the came reason

P4: The set of all solutions of the equation

$$
\sin ^{2}(z)+\cos ^{2}(z)=1
$$

Solution set: $z=\mathbb{R}$

Dynam Models Bro REVIEW MW 25
P5: For the function $x(t)=t^{4}$ find its of rotc of of chge, and the rato of change of rete of change when time $t=2$
Rate of change $=\left.\frac{d}{d t} t^{4}\right|_{t=2}$
at $t=z$

$$
=\left.4 t^{3}\right|_{t=2}
$$

Rate of change of

$$
=24
$$ rate of change at $t=2$

$$
\begin{aligned}
& =\left.\frac{d}{d t} 4 t^{3}\right|_{t=2} \\
& =\left.12 t^{2}\right|_{t=2} \\
& =24
\end{aligned}
$$

P6. Check Whether
$x=1, x=2, x=3, x=-1$ are the fixed points of the function

$$
f(x)=(x-1)(x-2)(x-3)+x, x=-1
$$

for

$$
\begin{array}{ccc}
x=1: & 1=0+1 \Rightarrow x=1 \text { is a fixed } \\
x=20 & 2=0+2 \Rightarrow x=2 \text { is a fixed point } \\
x=3: & 3=0+3 \Rightarrow x=3 \text { is a fixed point } \\
x=-1: & -1 \neq-2(-3)(-4)+(-1)=-25 \\
& \text { WHICH MEANS } \\
& x=-1 \text { is not a fixed point for } f
\end{array}
$$

Dynam Models Bio Review the 25 P7: Chook what her the point $(x, y)=(0,-1)$ is a fixed point of the transformation a fixed point of
tined $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ define by

$$
f(x, y)=(x+y+1, x-y-2)
$$

substituting $x=0$ and $y=-\frac{1}{\text { ide ts }}$ into the above transformation yields

$$
\begin{aligned}
f(0,-1) & =(0+(-1)+1,0-(-1)-2) \\
& =(0,-1)
\end{aligned}
$$

Which implies $(0,-1) \bar{f}(x, y)$ is a fixed point of \bar{f}_{0}
Is $(x, y)=(1,1)$ also a fixed point?

$$
\begin{aligned}
f(1,1) & =(1+1+1,1-1-2) \\
& =(3,-2)
\end{aligned}
$$

Because
$(x, y) \neq f(x, y)$ when

$$
\left.\left.\begin{array}{l}
(x, y) \neq f(x, y) \\
x=1 \\
1
\end{array}\right) \text { and } y=1, y\right)=(1,1)
$$

is not a fixed point.

Dypmir models Bro the 25
$P Q$: For the function $f=\frac{1}{x+1}$
(i) By hand, find first 3 tams of orbit starting at $x(0)=0.5$

$$
\begin{aligned}
& x(0)=0.5, x(1)=\frac{1}{0.5+1}=\frac{2}{3} \\
& x(2)=\frac{1}{\left(\frac{2}{3}\right)+1}=\frac{1}{\frac{2}{3}+\frac{3}{3}}=\frac{1}{\left(\frac{5}{3}\right)}=\frac{3}{5}
\end{aligned}
$$

(ii) Write down the maple line to get the same answer

$$
\operatorname{Orb}([1 /(x+1)],[x],[0.5], 0,2)
$$

(iii) Using maple write the orb command to in d the looth term of the orbit. What is it?

$$
0.6180339887
$$

Dynamic Models Bio HW 25 pg: For the transformation

$$
\begin{aligned}
& \text { Pa: For the transformation } \\
& f(x, y, z)=(x /(1+y+z), y /(1+x+z), z /(1+x+y))
\end{aligned}
$$

By hand, find the first, three terms of the orbit starting. at $[1.0,1.0,1.0]$ First term: $[1.0,1.0,1.0]$
second term:

$$
f\left((1.0,1.0,1.0)=\left(\frac{1,0}{3.0}, \frac{1.0}{3.0}, \frac{1.0}{3.0}\right]\right.
$$

Third team:

$$
\begin{aligned}
f\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) & =\left[\left(\frac{\left(\frac{1}{3}\right)}{1+\frac{1}{3}+\frac{1}{3}}, \frac{\left(\frac{1}{3}\right)}{1+\frac{1}{3}+\frac{1}{3}}\right) \frac{\left(\frac{1}{3}\right)}{1+\frac{1}{3}+\frac{1}{3}}\right] \\
& =\left[\begin{array}{ll}
\left.\frac{1}{3\left(\frac{5}{3}\right)}, \frac{1}{3\left(\frac{5}{3}\right)}, \frac{1}{3\left(\frac{5}{3}\right)}\right]
\end{array}\right] \\
& =\left[\begin{array}{ll}
\left.\frac{1.0}{5.0}\right) & \frac{1}{5.0} \frac{1.0}{5,0}
\end{array}\right]
\end{aligned}
$$

Dynam Models Bro HW 25 P11: Find all the equlibarim solutions of the first-order discrete tone dyncenical system

$$
x(n)=x(n-1)^{2}-2 x(n-1)+2
$$

Solution: The underlying transformation is:

$$
f(x)=x^{2}-2 x+2
$$

Io get x he fixed points of the transformation, Find the solutions to

$$
f(x)=x
$$

As follows:
Let $x=x^{2}-2 x+2$
Which is a quadratic equation with factored form

$$
(x-2)(x-1)=0 \Rightarrow x=1 \text { and } x=2 \text { are }
$$

both fixed points

Therefore, $x=1$ and $x=2$ being fixed points of the underlying transformation implies
$x(n)=1$ is an equilibrium solution
$x(n)=2$ is an equilibrium solution

Dynam Modeds Bro thw 2^{25} P 1z.itind all the equtilionm solwhees systan finct-order discorst thme dypmond

$$
x(n)=\frac{5}{2} x(n-1)(1-x(n-1))
$$

Equilitrivm solutions are

$$
\begin{aligned}
& x(n) \text { =lioh and } x(n)=\frac{3}{5} \\
& \text { for afllitions }
\end{aligned}
$$

P13 More generelly fint all
oquiliariva

$$
x(n)=k x(n-1)(1-x(n-1))
$$

When $f(x)=x$,

$$
\begin{aligned}
& x=k x(1-x) \stackrel{1}{\Leftrightarrow}=\frac{1}{k}=1-x \\
& \Leftrightarrow x=1-\frac{1}{k}
\end{aligned}
$$

$\Rightarrow x(n)=0$ is an pquilibrime soution for all K
and k

$$
x(n)=\frac{1}{k}-\frac{1}{k} \text { is }
$$

adso an equilibortm solution
for all n for all n

Dynam Modeds Bro HW 25 PAt 1 stable Using Nounibirumes, sonfors of the frit order dymomial sysion $x(n)=x(n-1)^{2}-2 x(n-1)+2$ Fir exich quilibrivm solution foum P11" USING CALCULUS Find all stable equithorvon sigutions ofin the fynomicat - orber distrde tine dynomical. systen

$$
x(n)=x(n-1)^{2}+2 x(n-1)+2
$$

Step 1: Becaver this is a discrete $\left|f^{\prime}(c)\right|<1$ indicates a stable equilibrim equiliwhiun and $x(n)=c$ is our equiliuriun and f is the underliging transfonnation.

$$
f^{\prime}(c)=2 c-2
$$

When $c=1, f^{\prime}(1)=0 \Rightarrow\left|f^{\prime}(1)\right|<1$

$$
\Rightarrow x(n)=1 \text { is stable }
$$

When $c=2, f^{\prime}(1)=2 \Rightarrow\left|f^{\prime}(2)\right|>1 \Rightarrow x(n)=2$

Dynam Malds Bio HWW 25 P12" USENG CALCULVS find all SLNG oALCULUS equilibrium
soluttons of the slle

$$
\begin{aligned}
x(n) & =\frac{5}{2} x(n-1)(1-x(n-1) \\
\text { UT: } f(x) & =\frac{5}{2} x(1-x) \\
\Rightarrow f^{\prime}(x) & =\frac{5}{2}[(1-x)+(-x)] \\
& =\frac{5}{2}[1-2 x] \\
& =\frac{5}{2}-5 x
\end{aligned}
$$

When $x=\frac{3}{5}$,

$$
\begin{aligned}
& f^{\prime}\left(\frac{3}{5}\right)=\frac{5}{2}-3=-\frac{1}{2} \\
& \Rightarrow\left|f^{\prime}\left(\frac{3}{5}\right)\right|<\frac{1}{} \quad \text { Berause }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left|f\left(\frac{3}{5}\right)\right| \frac{1}{} \text { Berause } \\
& \Rightarrow x(n)=\frac{3}{5} \text { is stabikinnm Discncte }
\end{aligned}
$$

When $x=0, \quad f^{\prime}(0)=\frac{5}{2}$

$$
\Rightarrow\left|f^{\prime}(0)\right|>1
$$

$$
\Rightarrow x(n)=0 \text { is not }
$$ a stable equiliorim

