Charles Griebell

Homework 20

OK to post (but not completely right and not completely finished, contains errors in the conjecture code)
[> with(LinearAlgebra);
[\&x, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, BidiagonalForm, BilinearForm, CARE, CharacteristicMatrix, CharacteristicPolynomial, Column, ColumnDimension, ColumnOperation, ColumnSpace, CompanionMatrix, CompressedSparseForm, ConditionNumber, ConstantMatrix, ConstantVector, Copy, CreatePermutation, CrossProduct, DARE, DeleteColumn, DeleteRow, Determinant, Diagonal, DiagonalMatrix, Dimension, Dimensions, DotProduct, EigenConditionNumbers, Eigenvalues, Eigenvectors, Equal, ForwardSubstitute, FrobeniusForm, FromCompressedSparseForm, FromSplitForm, GaussianElimination, GenerateEquations, GenerateMatrix, Generic, GetResultDataType, GetResultShape, GivensRotationMatrix, GramSchmidt, HankelMatrix, HermiteForm, HermitianTranspose, HessenbergForm, HilbertMatrix, HouseholderMatrix, IdentityMatrix, IntersectionBasis, IsDefinite, IsOrthogonal, IsSimilar, IsUnitary, JordanBlockMatrix, JordanForm, KroneckerProduct, LA_Main, LUDecomposition, LeastSquares, LinearSolve, LyapunovSolve, Map, Map2, MatrixAdd, MatrixExponential, MatrixFunction, MatrixInverse, MatrixMatrixMultiply, MatrixNorm, MatrixPower, MatrixScalarMultiply, MatrixVectorMultiply, MinimalPolynomial, Minor, Modular, Multiply, NoUserValue, Norm, Normalize, NullSpace, OuterProductMatrix, Permanent, Pivot, PopovForm, ProjectionMatrix, QRDecomposition, RandomMatrix, RandomVector, Rank, RationalCanonicalForm, ReducedRowEchelonForm, Row, RowDimension, RowOperation, RowSpace, ScalarMatrix, ScalarMultiply, ScalarVector, SchurForm, SingularValues, SmithForm, SplitForm, StronglyConnectedBlocks, SubMatrix, SubVector, SumBasis, SylvesterMatrix, SylvesterSolve, ToeplitzMatrix, Trace, Transpose, TridiagonalForm, UnitVector, VandermondeMatrix, VectorAdd, VectorAngle, VectorMatrixMultiply, VectorNorm, VectorScalarMultiply, ZeroMatrix, ZeroVector, Zip]
[> read `C:/Users/cgrie/Dynam Models Bio/Homeworks/HW21/DMB.txt` ; First Written: Nov. 2021

This is DMB.txt, A Maple package to explore Dynamical models in Biology (both discrete and continuous)
accompanying the class Dynamical Models in Biology, Rutgers University. Taught by Dr. Z. (Doron Zeilbeger)

The most current version is available on WWW at:
http://sites.math.rutgers.edu/~zeilberg/tokhniot/DMB.txt .
Please report all bugs to: DoronZeil at gmail dot com .

For general help, and a list of the MAIN functions, type "Help();". For specific help type "Help(procedure_name);"

For a list of the supporting functions type: Help1(); For help with any of them type: Help(ProcedureName);

For a list of the functions that give examples of Discrete-time dynamical systems (some famous), type: HelpDDM();

For help with any of them type: Help(ProcedureName);

For a list of the functions continuous-time dynamical systems (some famous) type: HelpCDM();
For help with any of them type: Help(ProcedureName);

PROBLEM 1: Make up a different problem
(i) For the following vectors:

Determine which vectors are eigenvectors of the matrix

$\left[\begin{array}{cc}1 & 6 \\ 6 & -4\end{array}\right]$

Create the Eigenvectors to

```
> A:= Matrix([[1,6],[6,-4]]);
Ev := Eigenvectors(A):
print(`Eigenvectors of A are:`);
Ival1:= Ev[1][1];
Ivec1:= Column(Ev[2],1);
```

```
Ival2:= Ev[1][2];
Ivec2:= Column(Ev[2],2);
```

$$
A:=\left[\begin{array}{cc}
1 & 6 \\
6 & -4
\end{array}\right]
$$

Eigenvectors of A are:

$$
\text { Ival1 }:=5
$$

$$
\text { Ivec1 }:=\left[\begin{array}{c}
\frac{3}{2} \\
1
\end{array}\right]
$$

$$
\text { Ival2 }:=-8
$$

$$
\text { Ivec } 2:=\left[\begin{array}{c}
-\frac{2}{3} \tag{3}\\
1
\end{array}\right]
$$

\#Create some false eigenvectors to mix in with the correct ones

THE FOLLOWING EIGENVECTORS ARE:

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
12
\end{array}\right],\left[\begin{array}{c}
-4 \\
6
\end{array}\right],\left[\begin{array}{l}
1 \\
4
\end{array}\right],\left[\begin{array}{c}
\frac{2}{3} \\
\frac{3}{2}
\end{array}\right],\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

\#IN the pop quiz we were supposed to compute the matrixvector product of the coefficient matrix A and the eigenvector v and compute the same eigenvector v multiplied by the eigenvalue λ (a scalar) and test if

$$
\left[\begin{array}{cc}
1 & 6 \\
6 & -4
\end{array}\right] v=\lambda v \quad \text { is correct }
$$

The answers would be
$\left[\begin{array}{c}-4 \\ 6\end{array}\right]$

$$
\left[\begin{array}{c}
-4 \\
6
\end{array}\right]
$$

and
$\left[\begin{array}{c}-\frac{2}{3} \\ 1\end{array}\right]$

$$
\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]
$$

(5)

AND
$\left[\begin{array}{l}3 \\ 2\end{array}\right]$

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Part 2 of problem 1 (create a continuous differential equation)
A squirrel's weight increases if its caloric intake exceeds its caloric expenditures.
A fat squirrel burns more calories than an emaciated squirrel. In this case, a squirrel twice as fat burns twice as many calories (Instantaneous rate)

Ignoring biological specifics, let 1 calorie $=1$ kilogram of fat, and assume that calories burned only depends on a squirrels weight

$$
\begin{aligned}
& {\left[\begin{array}{c}
-4 \\
6
\end{array}\right]} \\
& {\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
3 \\
2
\end{array}\right]}
\end{aligned}
$$

instantaneous rate of Calories consumed per unit time (K) is assumed to be constant

The Instantaneous RATE of calories burned with respect to weight can be modeled as:

$$
\begin{aligned}
& \frac{d(\text { weight })}{d t}=\text { caloriesEaten }(t)-\text { caloriesBurned }(t) \\
& \frac{d(\text { weight })}{d t}=K-2 \cdot \text { weight }(t)
\end{aligned}
$$

Tus, via separation of variables (Ignore weight as a function of t, because we dont want to multiply by an extra dt from chain rule),

$$
\int \frac{d(\text { weight })}{K-2 \cdot \text { weight }}=\int d t
$$

Which is integrated as follows (via u-substitution)
Let $u=K-2 \cdot$ weight
Therefore, $d u=-2 \cdot d($ weight $)$
Therefore, rewrite integral as:

$$
\begin{aligned}
&-\frac{1}{2} \left.\frac{1}{u} \mathrm{~d} u=\int \mathrm{d} t \xrightarrow{\text { Afterevaluatingindefiniteintegrals }}-\frac{1}{2} \ln |u|=t+c \xlongequal{\text { un }- \text { substituting }}-\frac{1}{2} \ln \right\rvert\, K \\
& \quad-2 \cdot \text { weight } \mid=t+c
\end{aligned}
$$

let our initial weight of squirrel be 400 kilorgams and its daily caloric intake be 900 calories. Therefore, the value of c is obtained as follows:

$$
\begin{aligned}
& -\frac{1}{2} \ln |900-400|=0+c \\
& {[>\operatorname{evalf}((-1 / 2) * \ln (500)) ;}
\end{aligned}
$$

\#Therefore, with these initial conditions, $c=-3.107304049$

$$
\left[\begin{array}{rl}
> & \text { squir_weight }: \\
& \text { squir_weight }:=t=-\frac{\ln (K-2 w)}{2}+3.107304049
\end{array}\right.
$$

Take a random time

```
|> t_rand := evalf(rand(0.01..10.1));
    t_rand := ( ) \mapstoRandomTools: - Generate(float('range' = 0.01 ..10.1, 'method' = 'uniform') )
```

Therefore the weight of a squirrel at random time t rand is :

$$
\begin{align*}
& r:=3.967188605 \\
& f:=3.967188605=-0.5000000000 \ln (900 .-2 . w)+3.107304049 \\
& t=, 3.967188605 \\
& 449.9104463 \tag{11}
\end{align*}
$$

\#So that's finished!
Problem 2:

Part (a):
[> Help (Orb) ;
$\operatorname{Orb}(F, x, x 0, K 1, K 2)$: Inputs a transformation F in the list of variables x with initial point pt, outputs the trajectory of
of the discrete dynamical system (i.e. solutions of the difference equation): $x(n)=F(x(n-1))$ with x
(0) $=x 0$ from $n=K 1$ to $n=K 2$.

For the full trajectory (from $n=0$ to $n=K 2$), use $K 1=0$. Try:
$\operatorname{Orb}(5 / 2 * x *(1-x),[x],[0.5], 1000,1010)$;
$\operatorname{Orb}\left(\left[(1+x+y) /(2+x+y),(6+x+y) /\left(2+4^{*} x+5^{*} y\right),[x, y],[2 ., 3], 1000,1010.\right) ;\right.$

```
> #Denote Lynx population at time n as L(n)
    #Denote Hare population at time n as H(n)
    #Represent the underlying transformation with the
    Lynx := 2*L +3*H;
    Hare := 3*L + H;
    disPops := Orb([Lynx,Hare],[L,H],[10.,20.],0,10);
    print(`at the start of the 10th year, there were`);
```

```
print(disPops[10][1]. `lynxes`);
print(disPops[10][2]. `hares`);
```

$$
\begin{gathered}
\text { Lynx }:=2 L+3 H \\
\text { Hare }:=3 L+H
\end{gathered}
$$

disPops $:=[[10 ., 20],.[80 ., 50],.[310 ., 290],.[1490 ., 1220],.[6640 ., 5690],.[30350 .$, 25610.], [137530., 116660.], [625040., 529250.], [2.837830 $\left.\times 10^{6}, 2.404370 \times 10^{6}\right]$, $\left[1.2888770 \times 10^{7}, 1.0917860 \times 10^{7}\right],\left[5.8531120 \times 10^{7}, 4.9584170 \times 10^{7}\right],[2.65814750$ $\left.\left.\times 10^{8}, 2.25177530 \times 10^{8}\right]\right]$
at the start of the 10th year, there were

$$
\begin{align*}
& 1.2888770 \times 10^{7} \text { lynxes } \\
& 1.0917860 \times 10^{7} \text { hares } \tag{13}
\end{align*}
$$

THE CONTINUOUS CASE

```
[> \#Another way to do this is to do the diff command
Lynx:= diff(L(t), \(t\) ) \(=2 * L(t)+3 * H(t) ;\)
Hare: \(=\operatorname{diff}(H(t), t)=3 * L(t)+H(t)\);
\#With 10 lynxes and 20 hares
print(`given 10 lynxes and 20 hares as our initial conditions`):
print('the corresponding dynamical system is`);
particular_sol := dsolve (\{L \((0)=10, H(0)=20\), Lynx, Hare \(\}\) );
print(``);
print(``);
print(`how many rabbits and hares are there at 10 years?`);
p_sol_10 := subs(t=10,particular_sol):
populations:= evalf(p_sol_10);
print(`Where \(H(10)\) corresponds to hare and \(L(10)\) corresponds to
Lynx`);
```

$$
\begin{aligned}
& \begin{array}{l}
\text { Lynx }:=\frac{\mathrm{d}}{\mathrm{~d} t} L(t)=2 L(t)+3 H(t) \\
\text { Hare }:=\frac{\mathrm{d}}{\mathrm{~d} t} H(t)=3 L(t)+H(t)
\end{array} \\
& \text { given } 10 \text { lynxes and } 20 \text { hares as our initial conditions } \\
& \text { the corresponding dynamical system is } \\
& \text { particular_sol }:=\left\{H(t)=\left(10+\frac{20 \sqrt{37}}{37}\right) \mathrm{e}^{\frac{(3+\sqrt{37})_{t}}{2}}+\left(10-\frac{20 \sqrt{37}}{37}\right) \mathrm{e}^{-\frac{(-3+\sqrt{37})_{t}}{2}},\right. \\
& L(t)=\frac{\left(10+\frac{20 \sqrt{37}}{37}\right) \mathrm{e}^{\frac{(3+\sqrt{37}) t}{2}} \sqrt{37}}{6}-\frac{\left(10-\frac{20 \sqrt{37}}{37}\right) \mathrm{e}^{-\frac{(-3+\sqrt{37}) t}{2}} \sqrt{37}}{6} \\
& \left.+\frac{\left(10+\frac{20 \sqrt{37}}{37}\right) \mathrm{e}^{\frac{(3+\sqrt{37}) t}{2}}}{6}+\frac{\left(10-\frac{20 \sqrt{37}}{37}\right) \mathrm{e}^{-\frac{(-3+\sqrt{37}) t}{2}}}{6}\right\}
\end{aligned}
$$

how many rabbits and hares are there at 10 years?
populations $:=\left\{H(10)=7.021456243 \times 10^{20}, L(10)=8.288551198 \times 10^{20}\right\}$
Where $H(10)$ corresponds to hare and $L(10)$ corresponds to Lynx

PROBLEM 3

Carefully read
https://sites.math.rutgers.edu/~zeilberg/Bio21/LadasSri.pdf
and confirm the claims for randomly chosen values of the parameters for conjecture 1.
$x_{n+1}=x_{n}(1-b-c)+y_{n}\left(1-\exp \left(-a x_{n}\right), \mathrm{n}=1,2, \ldots\right.$
$y_{n+1}=\left(1-y_{n}\right)^{b+y_{n}\left(\exp \left(-a x_{n}\right)\right)}$
where $0<b+c \leq 1,0<a$
underlying transformation:

$$
\left[\begin{array}{cc}
1-b-c & 1-\exp (-a x) \\
\frac{1}{y}-b & \exp (-a x)
\end{array}\right]\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]
$$

\#THat is not necessary because orb already does the job, although evaluating the jacobian of that matrix is a way to evaluate stability

$$
\left[\begin{array}{c}
(1-b-c) x_{n}+\left(1-\mathrm{e}^{-a x-}\right) y_{n} \tag{15}\\
\left(\frac{1}{y_{-}}-b\right) x_{n}+\mathrm{e}^{-a x_{-}}-y_{n}
\end{array}\right]
$$

```
>> print(Orb);
proc(F, x, x0, K1,K2)
    local xl, i, L, il, i2;
    if not (type(F, list) and type(x,list) and type(x0, list) and nops(F) =nops(x) and
    nops(x) =nops(x0) and type(K1,integer) and type(K2,integer) and 0<=K1 and K1
        < K2) then
        print(bad input); RETURN(FAIL)
    end if;
    x1:= x0;
    for i from 0 to Kl - 1 do
        xl:= [\operatorname{seq}(\operatorname{subs}({\operatorname{seq}(x[i2]=xl[i2],i2=1..nops(x))},F[i1]),il=1 ..nops(F))]
    end do;
    L:= [xl];
    for i from K1 to K2 do
        xl:= [\operatorname{seq}(\operatorname{subs}({\operatorname{seq}(x[i2]=xl[i2],i2=1..nops(x))},F[i1]),il=1..nops(F))];
        L:= [op(L),xl]
        end do;
    L
end proc
    Orb*
    rror, `;` unexpected
    #Make some random conditions for a
    rand_param := rand(0.01..100);
    print(`a`);
    a_rand := rand_param();
    b_rand := 2:
    crand := 2:
    while (b_rand + c_rand) > 1 do
    b_rand := rand_param();
    c_rand := rand_param();
```

```
    od:
    print(`b`);
    b rand;
    print(`c`);
    c rand;
    print(`b+c`);
    print(b_rand+c_rand);
rand_param := ( ) \mapstoRandomTools: - Generate(float('range' = 0.01 ..100, 'method'
    = 'uniform'))
\[
\begin{gather*}
a \\
a_{-} \text {rand }:=50.93653700 \\
b \\
0.03603940400 \\
c \\
0.07587722142 \\
b+c \\
0.1119166254 \tag{17}
\end{gather*}
\]
NOW FOR OUR ORB COMMAND
```

```
[> digits \(:=3\);
    digits \(:=3\)
= \(>\operatorname{Orb}\left(\left[\left(1-b \_r a n d-` c \_r a n d `\right) * x+y *\left(1-e v a l f\left(\exp \left(-` a \_r a n d ` * x\right)\right)\right),(1-y) *\right.\right.\)
    `b_rand` \(\left.\left.\mp y^{*}\left(\operatorname{eva} \bar{l} f\left(\exp \left(-` a \_r a n d ` * x\right)\right)\right)\right],[x, y],[\overline{1} ., 1], 10,20.\right)\);
```

CONJECTURE 1: Prove if $R_{0}=\frac{a}{b+c}>1$ then the solution

CONJECTURE 2:
Prove if

Question 5: see worked out by hand
Question 6: The stable fixed point is NOT a global attractor because Global attractors require ALL starting points to eventually tend to the stable point.

Starting at $\mathrm{x}(-9)$ does not lead to the stable fixed point. (view images below)

$$
2 \rightarrow+\sqrt{11}
$$

$$
\begin{aligned}
& =\frac{x}{10+x} \\
& -2 x=x \\
& 20=3 x \Rightarrow
\end{aligned}
$$

$$
\sqrt{5}
$$

! prolt
7)?

