PREAMBLE:

[> \#Question to self: but what if two text files have the same name of a procedure but do completely different things? is the procedure from the first txt file ignored because the procedure from the second file replaces the first?
 ```read `C:/Users/cgrie/Dynam Models Bio/Homeworks/HW21/DMB.txt` ; \\ read```

First Written: Nov. 2021

This is DMB.txt, A Maple package to explore Dynamical models in Biology (both discrete and continuous)
accompanying the class Dynamical Models in Biology, Rutgers University. Taught by Dr. Z. (Doron Zeilbeger)

The most current version is available on WWW at:
http://sites.math.rutgers.edu/~zeilberg/tokhniot/DMB.txt .
Please report all bugs to: DoronZeil at gmail dot com .

For general help, and a list of the MAIN functions, type "Help();". For specific help type "Help(procedure_name);"

For a list of the supporting functions type: Help1();
For help with any of them type: Help(ProcedureName);

For a list of the functions that give examples of Discrete-time dynamical systems (some famous), type: HelpDDM();

For help with any of them type: Help(ProcedureName);

For a list of the functions continuous-time dynamical systems (some famous) type: HelpCDM(); For help with any of them type: Help(ProcedureName);

IMPORTANT INFO FOR

When doing all the time series stuff, leave at least a couple of the parameters as symbols, otherwise the TimeSeries commands

\#

PROBLEM 1: Carefully read, and understand, the Maple code for the following procedures (type Help (ProcedureName) ; for instructions)

ChemoStat, GeneNet, Lotka, Volterra, VolterraM

For each of them, experiment with three randmom choices of parameters, and random initial conditions, using TimeSeries (with $\mathrm{h}=0.01$), of each of the quantities in question, and (if applicable, i.e things take place in R2) also PhaseDiag.

Part 1: CHEMOSTAT

What chemostats in real life do:
A Chemostat is a device that microorganisms grow/live inside, and delivers nutrient in a controlled manner
about the chemostat model:

> Help (ChemoStat);

ChemoStat(N,C,a1,a2): The Chemostat continuous-time dynamical system with N=Bacterial poplulation densitty, and $C=$ nutient Concentration in growth chamber (see Table 4.1 of Edelstein-Keshet, p. 122)
with paramerts a1, a2, Equations (19a_, (19b) in Edelestein-Keshet p. 127 (section 4.5, where they are called alpha1, alpha2). a1 and a 2 can be symbolic or numeric. Try:

ChemoStat(N,C,a1,a2);
ChemoStat(N,C,2,3);

$$
\begin{align*}
& >\text { CS }:=\text { ChemoStat }(\mathrm{N}, \mathrm{C}, 3,4) ; \\
& \qquad C S:=\left[\frac{3 C N}{C+1}-N,-\frac{C N}{C+1}-C+4\right] \tag{3}
\end{align*}
$$

Help(TimeSeries) ;

TimeSeries(F,x,pt,h,A,i): Inputs a transformation F in the list of variables x
The time-series of $x[i]$ vs. time of the Dynamical system approximating the the autonomous continuous dynamical process
$d x / d t=F(x(t))$ by a discrete time dynamical system with step-size h from $t=0$ to $t=A$ Try:
TimeSeries $\left(\left[x *(1-y), y^{*}(1-x)\right],[x, y],[0.5,0.5], 0.01,10,1\right)$;

Whats with the weird spikiness?
I will see what happens long term
TimeSeries (CS, [C,N], [0.5,0.5],0.01,20,2);

Move initial conditions so y-value starts near a 9
$[>$ TimeSeries (CS, [C,N],[0.5, 8.6], 0.01, 10, 2)

The volatility location actually got nudged up to above 10 \#

PART 2: GeneNet

what Gene net does:
There is an oscillatory network
gene regulation network- whet is the regulation?
people are Doing Synthetic biology by creating that correspond to simple models.
one type of model can be a clock
Another type of model can be a switch.
GeneNet is a clock-type model.

$$
\left[\begin{array}{l}
>\text { Help (GeneNet) ; } \\
\text { GeneNet(a0,a,b,n,m1,m2,m3,p1,p2,p3): The contiuous-time dynamical system, with quantities } m 1 \text {, } \\
m 2, m 3, p 1, p 2, p 3 \text {, due to M. Elowitz and S. Leibler } \\
\text { described in the Ellner-Guckenheimer book, Eq. (4.1) (chapter 4, p. 112) } \\
\text { and parameers a0 (called alpha_0 there),a (called alpha there), b (called beta there) and n. Try: } \\
\text { GeneNet(0,0.5,0.2,2,m1,m2,m3,p1,p2,p3); }
\end{array}\right.
$$

It appers that gene net describes how concentrations of protien repressors (p 1 corresponds to $\mathrm{P}_{-} \mathrm{lacI}, \mathrm{p} 2$ corresponds to $\mathrm{P}_{\text {_t }}$ tetR, p 3 corresponds to $\mathrm{P}_{-} \mathrm{cI}$)
interact with MRNA
MRNA :(m1 corresponds to M_lacI , m2 corresponds to M_tetR, m3 corresponds to M_cI)

$$
\left[\begin{array}{l}
>\text { GN }:=\text { GeneNet }(1,0.5,0.2,4, \mathrm{~m} 1, \mathrm{~m} 2, \mathrm{~m} 3, \mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3) ; \\
G N:=\left[-m 1+\frac{0.5}{p 3^{4}+1}+1,-m 2+\frac{0.5}{p 1^{4}+1}+1,-m 3+\frac{0.5}{p 2^{4}+1}+1,-0.2 p 1+0.2 \mathrm{ml},\right. \\
\quad-0.2 p 2+0.2 m 2,-0.2 p 3+0.2 m 3]
\end{array}\right.
$$

$\left[\begin{array}{l}> \\ \quad \text { TimeSeries }(G N,[m 1, m 2, m 3, p 1, p 2, p 3], \operatorname{evalf}([1.3,3,1,-6,0.1,0.1]),\end{array}\right.$

TimeSeries (GN, [m1,m2,m3,p1,p2,p3],evalf([1.3,3,1,1,0.1,0.1]), $0.01,10,2)$

Help(PhaseDiag) ;

PhaseDiag(F,x,pt,h,A): Inputs a transformation F in the list of variables x (of length 2), i.e. a mapping from $R^{\wedge} 2$ to $R^{\wedge} 2$ gives the

The phase diagram of the solution with initial condition $x(0)=p t$
$d x / d t=F[1](x(t))$ by a discrete time dynamical system with step-size h from $t=0$ to $t=A$ Try:

$$
\begin{equation*}
\text { PhaseDiag }\left(\left[x *(1-y), y^{*}(1-x)\right],[x, y],[0.5,0.5], 0.01,10\right) ; \tag{7}
\end{equation*}
$$

> \#We must represent some part of GN in R2 (even if there is not all the information). \#Maybe just show relationship between 2 v m 1 and p 1 .
\#THIS IS WHY DR. Z Mentioned if applicable, because a problem with more than 2

Slice_GN := [GN[1], 0.5*p3];
Slice_GN2 := [GN[1], p3];

PhaseDiag(Slice_GN,[m1,p3], evalf([0.1,0.1]),0.01,10,2);

PhaseDiag (Slice_GN2,[m1,p3], evalf([0.1,0,1]),0.01,10,2);
Slice_GN $:=\left[-m 1+\frac{0.5}{p 3^{4}+1}+1,0.5 p 3\right]$

$$
\text { Slice_GN2 }:=\left[-m 1+\frac{0.5}{p 3^{4}+1}+1, p 3\right]
$$

PART 3: Lotka
what lotka does:
The Lotka-Volterra model depicts competition between two species (higher population of N1 with respect to N 2 will decrease the growth rate of N 2)
This is known as competitive exclusion
h

> Help (Lotka) ;

Lotka(r1,k1,r2,k2,b12,b21,N1,N2): The Lotka-Volterra continuous-time dynamical system, Eqs.
(9a),(9b) (p. 224, section 6.3) of Edelstein-Keshet
with popoluations N1, N2, and parameters r1,r2,k1,k2, b12, b21 (called there beta_12 and beta_21)
Try:
Lotka(r1,k1,r2,k2,b12,b21,N1,N2);
Lotka(1,2,2,3, 1,2,N1,N2);
$\lceil>\mathrm{L}:=\operatorname{Lotka}(\mathrm{r} 1, \mathrm{k} 1, \mathrm{r} 2, \mathrm{k} 2, \mathrm{~b} 12, \mathrm{~b} 21, \mathrm{~N} 1, \mathrm{~N} 2) ;$

$$
\begin{equation*}
L:=\left[\frac{r 1 N 1(-b 12 N 2-N 1+k 1)}{k 1}, \frac{r 2 N 2(-b 21 N 1-N 2+k 2)}{k 2}\right] \tag{10}
\end{equation*}
$$

$$
\left[\begin{array}{c}
>\mathrm{LI}:=\operatorname{Lotka}(1,2,2,3,1,2, \mathrm{~N} 1, \mathrm{~N} 2) ; \\
L I:=\left[\frac{N 1(2-N 1-N 2)}{2}, \frac{2 N 2(3-N 2-2 N 1)}{3}\right] \tag{11}
\end{array}\right.
$$

\#Equilibrium
 TimeSeries (LI, [N1,N2],evalf([1,1]), 0.01,5,1);

\#It appears that initial condition [1,1] is an equilibrium (by inspection of plugging those values into a transformation)

```
>> #another equilibrium
TimeSeries(LI,[N1,N2],evalf([0,0]),0.01,5,1);
```


[> \#an example where n2 is smaller than $n 1$ enough that there appears to be stability and nobody dies off TimeSeries (LI, [N1,N2], evalf([0.5,0.02]), 0.01, 20,1);


```
>> #Test out the phase diagram
    Help (PhaseDiag) ;
    #PHASE DIAGRAM HAS
```

PhaseDiag(F,x,pt,h,A): Inputs a transformation F in the list of variables x (of length 2), i.e. a mapping from $R^{\wedge} 2$ to $R^{\wedge} 2$ gives the

The phase diagram of the solution with initial condition $x(0)=p t$ $d x / d t=F[1](x(t))$ by a discrete time dynamical system with step-size h from $t=0$ to $t=A$ Try:

PhaseDiag([x*(1-y), $\left.\left.y^{*}(1-x)\right],[x, y],[0.5,0.5], 0.01,10\right) ;$
\#N2 can still be smaller than N1 and
TimeSeries (LI, [N1,N2],evalf([-1,0.5]),0.01,10,1);

Part 4: Volterra

```
> Help(Volterra);
Volterra(a,b,c,d,x,y): The (simple, original) Volterra predator-prey continuous-time dynamical
    system with parameters a,b,c,d
        Given by Eqs. (7a) (7b) in Edelstein-Keshet p. }219\mathrm{ (section 6.2).
        a,b,c,d may be symbolic or numeric
                                    Try:
                                    Volterra(a,b,c,d,x,y);
                                    Volterra(1,2,3,4,x,y);
```

what Volterra does:

```
>> #SYMBOLIC
    Volterra(a,b,c,d,x,y);
        [-bxy+ax,dxy-cy]
    #NUMERIC
    Volterra(2,1,2,7,2,7);
        [-10,84]
```

PART 5: VolterraM
What makes VolterraM different than Volterra?

```
> Help(VolterraM);
VolterraM(a,b,c,d,x,K,y): The MODIFIED Volterra predator-prey continuous-time dynamical
    system with parameters a,b,c,d,K
        Given by Eqs. (8a) (8b) in Edelstein-Keshet p. }220\mathrm{ (section 6.2).
        a,b,c,d ,Kmay be symbolic or numeric
            Try:
            VolterraM(a,b,c,d,K,x,y);
            VolterraM(1,2,3,4,3,x,y);
```

```
> print(Volterra);
    proc}(a,b,c,d,x,y)[a*x-\mp@subsup{b}{}{*}\mp@subsup{x}{}{*}y,-\mp@subsup{c}{}{*}y+\mp@subsup{d}{}{*}x*y] end pro
    print(VolterraM);
    proc}(a,b,c,K,d,x,y)[a*x*(1-x/K)-\mp@subsup{b}{}{*}x*y,-\mp@subsup{c}{}{*}y+\mp@subsup{d}{}{*}x*y] end pro
```

VolterraM itroduces attenuation to (provided that the values of K are within bounds)
-K probably represents a carrying capacity constant (Probably positive, because

