```
\#Hrudai Battini Hw 20
read "/Users/hb334/Documents/DMB.txt":
\#1(i) 3 variations
N := 1000;
v:=2;
g:=5;
b1 := 0.3*v/N;
b2 \(:=0.9 * v / N\);
b3 := 3.9*v/N;
\(\mathrm{F}:=\operatorname{SIRS}(\mathrm{s}, \mathrm{i}, \mathrm{b} 1, \mathrm{~g}, \mathrm{v}, \mathrm{N})\);
EquP (F,[s,i]);
SEquP (F, [s,i]);
TimeSeries ( \(\mathrm{F},[\mathrm{s}, \mathrm{i}]\), \([800,200], 0.01,10,1\) );
TimeSeries ( \(\mathrm{F},[\mathrm{s}, \mathrm{i}],[800,200], 0.01,10,2\) ) ;
PhaseDiag(F,[s,i],[800,200],0.01,10);
F : = SIRS (s,i,b2, g,v,N);
EquP (F, [s,i]);
SEquP (F, [s,i]);
TimeSeries (F,[s,i], [800,200],0.01,10,1);
TimeSeries (F,[s,i],[800,200],0.01,10,2);
PhaseDiag(F,[s,i],[800,200],0.01,10);
F : = SIRS (s,i,b3, g,v,N);
EquP (F, [s,i]) ;
SEquP (F, [s,i]);
TimeSeries ( \(\mathrm{F},[\mathrm{s}, \mathrm{i}]\), \([800,200], 0.01,10,1\) );
TimeSeries (F, [s,i], [800,200],0.01,10,2) ;
PhaseDiag(F,[s,i],[800,200],0.01,10);
                    \(N:=1000\)
                    \(v:=2\)
                    \(g:=5\)
        b1 \(:=0.0006000000000\)
        b2 := 0.001800000000
        b3 := 0.007800000000
        \(F:=[-0.0006000000000 s i+5000-5 s-5 i, 0.0006000000000 s i-2 i]\)
        \(\{[1000 ., 0],.[3333.333333,-1666.666667]\}\)
                                    \{[1000., 0.] \}
```


$$
F:=[-0.001800000000 s i+5000-5 s-5 i, 0.001800000000 s i-2 i]
$$

$$
F:=[-0.007800000000 s i+5000-5 s-5 i, 0.007800000000 s i-2 i]
$$

$$
\{[256.4102564,531.1355311]\}
$$

\#1(ii) 3 variations
N $:=1000$;
v:=3;
g:=6;
b1 : = 0.3*v/N;
b2 $:=0.9 * v / N$;
b3 : = 3.9*v/N;
$\mathrm{F}:=\operatorname{SIRS}(\mathrm{s}, \mathrm{i}, \mathrm{b} 1, \mathrm{~g}, \mathrm{v}, \mathrm{N})$;
EquP (F, [s,i]);
SEquP (F, [s,i]);
TimeSeries ($\mathrm{F},[\mathrm{s}, \mathrm{i}]$, $[800,200], 0.01,10,1$);
TimeSeries (F, [s,i], [800,200],0.01, 10, 2) ;
PhaseDiag(F, [s,i], [800,200],0.01,10);
$\mathrm{F}:=\operatorname{SIRS}(\mathrm{s}, \mathrm{i}, \mathrm{b} 2, \mathrm{~g}, \mathrm{v}, \mathrm{N}) ;$
EquP (F, [s,i]) ;
SEquP (F, [s,i]);
TimeSeries (F, [s,i], [800, 200], 0.01, 10,1);
TimeSeries (F, [s,i], [800, 200], 0.01, 10, 2) ;
PhaseDiag (F, [s,i], [800, 200],0.01, 10);
$\mathrm{F}:=\operatorname{SIRS}(\mathrm{s}, \mathrm{i}, \mathrm{b} 3, \mathrm{~g}, \mathrm{v}, \mathrm{N})$;
EquP (F, [s,i]);
SEquP ($\mathrm{F},[\mathrm{s}, \mathrm{i}]$) ;
TimeSeries (F, [s,i], [800, 200], 0.01, 10, 1);
TimeSeries (F, [s,i], [800, 200], 0.01, 10, 2) ;
PhaseDiag (F, [s,i], [800, 200],0.01,10);

$$
\begin{gathered}
N:=1000 \\
v:=3 \\
g:=6 \\
b 1:=0.0009000000000 \\
b 2:=0.002700000000 \\
b 3:=0.01170000000
\end{gathered}
$$

$$
F:=[-0.0009000000000 s i+6000-6 s-6 i, 0.0009000000000 s i-3 i]
$$

$$
\{[1000 ., 0 .],[3333.333333,-1555.555556]\}
$$

\{[1000., 0.] \}

$$
F:=[-0.002700000000 s i+6000-6 s-6 i, 0.002700000000 s i-3 i]
$$

\#1(iii) 3 variations
N : = 1000;
v:=4;
g:=1;
b1 : = 0.3*v/N;
b2 $:=0.9 * v / N$;
b3 : = 3.9*v/N;
$\mathrm{F}:=\operatorname{SIRS}(\mathrm{s}, \mathrm{i}, \mathrm{b} 1, \mathrm{~g}, \mathrm{v}, \mathrm{N})$;
EquP (F, [s,i]);
SEquP (F, [s,i]);
TimeSeries ($\mathrm{F},[\mathrm{s}, \mathrm{i}]$, $[800,200], 0.01,10,1$);
TimeSeries (F, [s,i], [800,200],0.01, 10, 2) ;
PhaseDiag(F, [s,i], [800,200],0.01,10);
$\mathrm{F}:=\operatorname{SIRS}(\mathrm{s}, \mathrm{i}, \mathrm{b} 2, \mathrm{~g}, \mathrm{v}, \mathrm{N}) ;$
EquP (F, [s,i]) ;
SEquP (F, [s,i]);
TimeSeries (F, [s,i], [800, 200], 0.01, 10,1);
TimeSeries (F, [s,i], [800, 200], 0.01, 10, 2) ;
PhaseDiag (F, [s,i], [800, 200],0.01, 10);
$\mathrm{F}:=\operatorname{SIRS}(\mathrm{s}, \mathrm{i}, \mathrm{b} 3, \mathrm{~g}, \mathrm{v}, \mathrm{N})$;
EquP (F, [s,i]);
SEquP ($\mathrm{F},[\mathrm{s}, \mathrm{i}]$) ;
TimeSeries (F, [s,i], [800, 200], 0.01, 10, 1);
TimeSeries (F, [s,i], [800, 200], 0.01, 10, 2) ;
PhaseDiag (F, [s,i], [800, 200],0.01,10);

$$
\begin{gathered}
N:=1000 \\
v:=4 \\
g:=1 \\
b 1:=0.001200000000 \\
b 2:=0.003600000000
\end{gathered}
$$

$$
b 3:=0.01560000000
$$

$$
F:=[-0.001200000000 s i+1000-s-i, 0.001200000000 s i-4 i]
$$

$$
\{[1000 ., 0 .],[3333.333333,-466.6666667]\}
$$

$$
\begin{aligned}
& F:=[-0.003600000000 s i+1000-s-i, 0.003600000000 s i-4 i] \\
& \{[1000 ., 0 .],[1111.111111,-22.22222222]\} \\
& \{[1000 ., 0 .]\}
\end{aligned}
$$

$$
\begin{gathered}
F:=[-0.01560000000 s i+1000-s-i, 0.01560000000 s i-4 i] \\
\{[256.4102564,148.7179487],[1000 ., 0 .]\} \\
\{[256.4102564,148.7179487]\}
\end{gathered}
$$

\#1 (iv) 3 variations
N $:=1000$;
v:=7;
g:=10;
b1 : = 0.3*v/N;
b2 $:=0.9 * v / N$;
b3 $:=3.9 * v / N$;
$\mathrm{F}:=\operatorname{SIRS}(\mathrm{s}, \mathrm{i}, \mathrm{b} 1, \mathrm{~g}, \mathrm{v}, \mathrm{N})$;
EquP (F, [s,i]);
SEquP (F, [s,i]);
TimeSeries ($\mathrm{F},[\mathrm{s}, \mathrm{i}]$, $[800,200], 0.01,10,1$);
TimeSeries (F, [s,i], [800,200],0.01, 10, 2) ;
PhaseDiag(F, [s,i], [800,200],0.01,10);
$\mathrm{F}:=\operatorname{SIRS}(\mathrm{s}, \mathrm{i}, \mathrm{b} 2, \mathrm{~g}, \mathrm{v}, \mathrm{N}) ;$
EquP (F, [s,i]) ;
SEquP (F, [s,i]);
TimeSeries (F, [s,i], [800,200],0.01, 10,1);
TimeSeries (F, [s,i], [800, 200], 0.01, 10, 2) ;
PhaseDiag (F, [s,i], [800, 200],0.01, 10);
$\mathrm{F}:=\operatorname{SIRS}(\mathrm{s}, \mathrm{i}, \mathrm{b} 3, \mathrm{~g}, \mathrm{v}, \mathrm{N})$;
EquP (F, [s,i]);
SEquP ($\mathrm{F},[\mathrm{s}, \mathrm{i}]$) ;
TimeSeries (F, [s,i], [800, 200], 0.01, 10, 1) ;
TimeSeries (F, [s,i], [800, 200], 0.01, 10, 2) ;
PhaseDiag (F, [s,i], [800, 200],0.01,10);

$$
\begin{gathered}
N:=1000 \\
v:=7 \\
g:=10 \\
b 1:=0.002100000000 \\
b 2:=0.006300000000
\end{gathered}
$$

$$
F:=\left[-0.002100000000 \text { si+10000-10s-10i,0.002100000000si-7i]} \begin{array}{c}
\{[1000 ., 0 .],[3333.333333,-1372.549020]\} \\
\{[1000 ., 0 .]\}
\end{array}\right.
$$

$$
F:=[-0.006300000000 s i+10000-10 s-10 i, 0.006300000000 s i-7 i]
$$

$$
\{[1000 ., 0 .],[1111.111111,-65.35947712]\}
$$

$\{[1000 ., 0]$.

F1 := RandNice([$\mathrm{x}, \mathrm{y}], 3$);
EquP (F1, [x,y]);
SEquP (F1, $\mathrm{x}, \mathrm{y}]$) ;
F2 := RandNice([x,y],3);
EquP (F2, [x,y]);
SEquP (F2, [x,y]);
F3 : = RandNice ([x,y],3);
EquP (F3, [x,y]);
SEquP (F3, [x,y]);

$$
\begin{align*}
& F 1:=[(2-2 x-3 y)(2-3 x-2 y),(1-x-y)(3-x-3 y)] \\
& \left\{\left[-1, \frac{4}{3}\right],[0,1],[1,0]\right\} \\
& \{[-1 ., 1.333333333],[1 ., 0 .]\} \\
& F 2:=[(2-3 x-y)(2-x-3 y),(1-3 x-y)(1-2 x-2 y)] \\
& \left\{\left[-\frac{1}{4}, \frac{3}{4}\right],\left[\frac{1}{8}, \frac{5}{8}\right],\left[\frac{3}{4},-\frac{1}{4}\right]\right\} \\
& \{[0.1250000000,0.6250000000]\} \\
& F 3:=[(3-3 x-y)(1-2 x-y),(3-2 x-y)(1-x-y)] \\
& \{[0,1],[0,3],[1,0]\} \\
& \{[0 ., 1 .]\} \tag{1}\\
& \text { TimeSeries (F1, }[x, y],[-1,1], 0.01,10,1) \text {; } \\
& \text { TimeSeries (F1, [x,y], [-1,1],0.01, 10,2) ; } \\
& \text { PhaseDiag (F1, }[x, y],[-1,1], 0.01,10) \text {; } \\
& \text { TimeSeries (F2, }[\mathrm{x}, \mathrm{y}],[0.12,0.6], 0.01,10,1 \text {); } \\
& \text { TimeSeries (F2, } \mathrm{x}, \mathrm{y}],[0.12,0.6], 0.01,10,2 \text {) ; } \\
& \text { PhaseDiag (F2, } \mathrm{x}, \mathrm{y}],[0.12,0.6], 0.01,10) \text {; } \\
& \text { TimeSeries (F3, [x,y],[0.1,0.9],0.01, 10,1); } \\
& \text { TimeSeries (F3, [x,y],[0.1,0.9],0.01,10,2); } \\
& \text { PhaseDiag (F3,[x,y],[0.1,0.9],0.01,10); }
\end{align*}
$$

\#3
$\# x(n)=(3+x(n-2)+x(n-3)+x(n-4)) /(1+x(n-1)+x(n-3)) ;$
Orbk (4,z, (3+z[2]+z[3]+z[4])/(1+z[1]+z[3]),[1.,4.,7.,9.],2000, 2005);

Orbk (4,z, (3+z[2]+z[3]+z[4])/(1+z[1]+z[3]),[0.,0.,1.,2.],2000, 2005);
$\operatorname{Orbk}(4, z,(3+z[2]+z[3]+z[4]) /(1+z[1]+z[3]),[0 ., 2 ., 0 ., 0], 2000,$. 2005); \#Closest Iteration however The value at the orbit oscillates.
$\mathrm{g}:=(3+\mathrm{z}[2]+\mathrm{z}[3]+\mathrm{z}[4]) /(1+z[1]+\mathrm{z}[3])$;
G:=ToSys (4,z,g);
SFP(G);
[3.361949597, 1.111471286, 3.361949597, 1.111471286, 3.361949597, 1.111471286]
[2.102371582, 1.592131201, 2.102371582, 1.592131201, 2.102371582, 1.592131201]
[1.766389404, 1.881881430, 1.766389404, 1.881881430, 1.766389404, 1.881881430]

$$
\begin{gathered}
g:=\frac{3+z_{2}+z_{3}+z_{4}}{1+z_{1}+z_{3}} \\
G:=\left[\frac{3+z_{2}+z_{3}+z_{4}}{1+z_{1}+z_{3}}, z_{1}, z_{2}, z_{3}\right],\left[z_{1}, z_{2}, z_{3}, z_{4}\right]
\end{gathered}
$$

