1. A sequence is defined in terms of the recurrence, and initial conditions
$a_{n}=4 a_{n-1}-6 a_{n}-2+4 a_{n}-3-a_{n-4}, a_{0}=0, a_{1}=1 . a_{2}=8, . a_{3}=27$,
(i) Find an for $1 \leq n \leq 8$. (ii) Can you guess an explicit formula for a_{n} in terms of n ? (iii) Can you prove it?

You are welcome to use Maple for the computations. You can write a short Maple code for an) using "option remember".

iii. $4(n-1)^{3}-6(n-2)^{3}+4(n-3)^{3}-(n-41)^{3}=n^{3}$.
2. $\frac{d t}{d t}=\frac{t^{3}}{t+1} \quad y(0)=1$

$\rightarrow c=-\frac{1}{2}$
$-\frac{1}{2 y^{2}}=\ln (t+1)-\frac{1}{2}$
$-2 t^{2}=\frac{1}{\ln (t+1)-\frac{1}{2}}$
$y=\sqrt{\frac{1}{-2 \ln (t+1)+1}}$
2. Solve the following differential equation, subject to the given initial condition dy ya $\mathrm{dt}=(\mathrm{t}+1), \mathrm{y}(0)=1$. Do it both by hand and using Maple (as we did in Lecture 2).
3. Solve the following differential equation, subject to the given initial conditions $y^{\prime \prime}(t)-3 y^{\prime}(t)+2 y(t)$ $=0, y(0)=2, y^{\prime}(0)=3$.

Do it both by hand and using Maple (as we did in Lecture 2)
dsolve $\left(\left\{\left(D^{\wedge} 2\right)(y(t))-3^{*} D y(t)+2^{*} y(t)=0, y(0)=2, D y(0)=3\right\}, y(t)\right)$
$y(t)=e^{\wedge}(t)+e^{\wedge}\left(2^{\star} t\right)$

4. Find all the eigenvalues and corresponding eigenvectors of the matrix

3	-4
4	3

Do it both by hand and using Maple (as we did in Lecture 2).
with(LinearAlgebra)
evalf(Eigenvalues(matrix([[3, -4][4,3]])))
Matrix (1,2,[[3+4*|, 3-4*|]])
evalf(Eigenvects(matrix([[3, -4], [4,3]])))
Vector[column](2,[3+4*I, 3-4*I]), Matrix(2,2,[[I,-I], [1., 1.]])

