\# OK to post
Anusha Nagar, Homework 19, 11.06.2021
(1)
(i) $\beta=0.3 \frac{V}{N} \Rightarrow R=N-I N-S$

$$
\begin{gathered}
R @ t=10 \Rightarrow 1000-996.7-2.979 \\
R=6.279 \\
\beta=0.9 \frac{\mathrm{D}}{\mathrm{~N}} \Rightarrow R=1000-988.3315-8.99 \\
R=2.678
\end{gathered}
$$

$$
\begin{gathered}
B=3.9 \frac{\mathrm{~V}}{\mathrm{~N}} \Rightarrow R=1000-914.6283-40.00 \\
R=45.372
\end{gathered}
$$

(ii)

$$
\begin{aligned}
& \beta=0.3 \frac{V}{N} \Rightarrow R=1000-996.402-2.958 \\
& R=0.64 \\
& B=0.9 \frac{V}{N} \Rightarrow R=1000-985.6773-8.9797 \\
& R=5.343 \\
& \beta=3.9 \frac{V}{N} \Rightarrow R=1000-872.5259-40.8742 \\
& R=86.60
\end{aligned}
$$

(iii)

$$
\begin{gathered}
\beta=0.3 \frac{V}{N} \Rightarrow 1000-946.62-2.94 \\
R=0.44 \\
\beta=0.4 \frac{V}{N} \Rightarrow 1000-987.57-8.97 \\
R=3.46 \\
\beta=3.9 \frac{V}{N} \Rightarrow 1000-902.19-41.95 \\
R=55.86
\end{gathered}
$$

(2)
(See maple cove)
(3)
(4) Chemostat ($N, c, a 1, a 2$)

[[9.98, [988.3315033, 8.990054852]], [9.99, [988.3315033, 8.990054852]], [10.00, [988.3315033, 8.990054852]], [10.01, [988.3315033, 8.990054852]]]
beta is, $\frac{11}{10}$, times the threshold value the long-term behavior is
[[9.98, [985.0270559, 11.00918827]], [9.99, [985.0270559, 11.00918827]], [10.00, [985.0270559, 11.00918827]], [10.01, [985.0270559, 11.00918827]]]
beta is, $\frac{13}{10}$, times the threshold value the long-term behavior is
[[9.98, [981.4710448, 13.03586861]], [9.99, [981.4710448, 13.03586861]], [10.00, [981.4710448, 13.03586861]], [10.01, [981.4710448, 13.03586861]]]
beta is, $\frac{3}{2}$, times the threshold value the long-term behavior is
[[9.98, [977.6674922, 15.06997519]], [9.99, [977.6674922, 15.06997519]], [10.00, [977.6674922, 15.06997519]], [10.01, [977.6674922, 15.06997519]]]
beta is, $\frac{17}{10}$, times the threshold value the long-term behavior is
[[9.98, [973.6207848, 17.11137641]], [9.99, [973.6207848, 17.11137641]], [10.00, [973.6207848, 17.11137641]], [10.01, [973.6207848, 17.11137641]]]
beta is, $\frac{19}{10}$, times the threshold value
the long-term behavior is
[[9.98, [969.3356593, 19.15993017]], [9.99, [969.3356593, 19.15993017]], [10.00, [969.3356593, 19.15993017]], [10.01, [969.3356593, 19.15993017]]]
beta is, $\frac{21}{10}$, times the threshold value
the long-term behavior is
[[9.98, [964.8171858, 21.21548438]], [9.99, [964.8171858, 21.21548438]], [10.00, [964.8171858, 21.21548438]], [10.01, [964.8171858, 21.21548438]]] beta is, $\frac{23}{10}$, times the threshold value
the long-term behavior is
[[9.98, [960.0707508, 23.27787743]], [9.99, [960.0707508, 23.27787743]], [10.00, [960.0707508, 23.27787743]], [10.01, [960.0707508, 23.27787743]]] beta is, $\frac{5}{2}$, times the threshold value
the long-term behavior is
[[9.98, [955.1020392, 25.34693877]], [9.99, [955.1020392, 25.34693877]], [10.00, [955.1020392, 25.34693877]], [10.01, [955.1020392, 25.34693877]]]
beta is, $\frac{27}{10}$, times the threshold value the long-term behavior is
[[9.98, [949.9170149, 27.42248950]], [9.99, [949.9170149, 27.42248950]], [10.00, [949.9170149, 27.42248950]], [10.01, [949.9170149, 27.42248950]]]
beta is, $\frac{29}{10}$, times the threshold value the long-term behavior is
[[9.98, [944.5219011, 29.50434292]], [9.99, [944.5219011, 29.50434292]], [10.00, [944.5219011, 29.50434292]], [10.01, [944.5219011, 29.50434292]]]
beta is, $\frac{31}{10}$, times the threshold value the long-term behavior is
[[9.98, [938.9231598, 31.59230516]], [9.99, [938.9231598, 31.59230516]], [10.00, [938.9231598, 31.59230516]], [10.01, [938.9231598, 31.59230516]]]
beta is, $\frac{33}{10}$, times the threshold value the long-term behavior is
[[9.98, [933.1274712, 33.68617582]], [9.99, [933.1274712, 33.68617582]], [10.00, [933.1274712, 33.68617582]], [10.01, [933.1274712, 33.68617582]]]
beta is, $\frac{7}{2}$, times the threshold value the long-term behavior is
[[9.98, [927.1417118, 35.78574860]], [9.99, [927.1417118, 35.78574860]], [10.00, [927.1417118, 35.78574860]], [10.01, [927.1417118, 35.78574860]]]
beta is, $\frac{37}{10}$, times the threshold value
the long-term behavior is
[[9.98, [920.9729335, 37.89081195]], [9.99, [920.9729335, 37.89081195]], [10.00, [920.9729335, 37.89081195]], [10.01, [920.9729335, 37.89081195]]]
beta is, $\frac{39}{10}$, times the threshold value
the long-term behavior is
[[9.98, [914.6283415, 40.00114971]], [9.99, [914.6283415, 40.00114971]], [10.00,
$\mid>\operatorname{SIRSdemo}(1000,200,3,2,0.01,10)$
This is a numerical demonstration of the R0 phenomenon in the SIRS model using discretization with mesh size $=, 0.01$, and letting it run until time $t=, 10$ with population size, 1000, and fixed parameters $n u=, 2$, and gamma=, 3 where we change beta from $0.2 *^{*} n / N$ to $4^{*} n u / N$

Recall that the epidemic will persist if beta exceeds nu/N, that in this case is, $\frac{1}{500}$ We start with, 200, infected individuals, 0 removed and hence, 800, susceptible We will show what happens once time is close to, 10 beta is, $\frac{1}{10}$, times the threshold value the long-term behavior is
[[9.98, [998.9334028, 0.9819978668]], [9.99, [998.9334028, 0.9819978668]], [10.00, [998.9334028, 0.9819978668$]],[10.01,[998.9334028,0.9819978668]]]$
beta is, $\frac{3}{10}$, times the threshold value the long-term behavior is
[[9.98, [996.4021571, 2.957935239]], [9.99, [996.4021571, 2.957935239]], [10.00, [996.4021571, 2.957935239]], [10.01, [996.4021571, 2.957935239]]]
beta is, $\frac{1}{2}$, times the threshold value the long-term behavior is
[[9.98, [993.3444243, 4.949667221]], [9.99, [993.3444243, 4.949667221]], [10.00, [993.3444243, 4.949667221]], [10.01, [993.3444243, 4.949667221]]] beta is, $\frac{7}{10}$, times the threshold value the long-term behavior is
[[9.98, [989.7667603, 6.956997143]], [9.99, [989.7667603, 6.956997143]], [10.00, [989.7667603, 6.956997143]], [10.01, [989.7667603, 6.956997143]]]
beta is, $\frac{9}{10}$, times the threshold value
the long-term behavior is
[[9.98, [985.6773407, 8.979679729]], [9.99, [985.6773407, 8.979679729]], [10.00, [985.6773407, 8.979679729]], [10.01, [985.6773407, 8.979679729]]]
beta is, $\frac{11}{10}$, times the threshold value
the long-term behavior is
[[9.98, [981.0859054, 11.01742279]], [9.99, [981.0859054, 11.01742279]], [10.00, [981.0859054, 11.01742279]], [10.01, [981.0859054, 11.01742279]]]
beta is, $\frac{13}{10}$, times the threshold value the long-term behavior is
[[9.98, [976.0036901, 13.06988925]], [9.99, [976.0036901, 13.06988925]], [10.00, [976.0036901, 13.06988925]], [10.01, [976.0036901, 13.06988925]]]
beta is, $\frac{3}{2}$, times the threshold value the long-term behavior is
[[9.98, [970.4433482, 15.13669951]], [9.99, [970.4433482, 15.13669951]], [10.00, [970.4433482, 15.13669951]], [10.01, [970.4433482, 15.13669951]]]
beta is, $\frac{17}{10}$, times the threshold value the long-term behavior is
[[9.98, [964.4188616, 17.21743410]], [9.99, [964.4188616, 17.21743410]], [10.00, [964.4188616, 17.21743410]], [10.01, [964.4188616, 17.21743410]]]
beta is, $\frac{19}{10}$, times the threshold value the long-term behavior is
[[9.98, [957.9454447, 19.31163661]], [9.99, [957.9454447, 19.31163661]], [10.00, [957.9454447, 19.31163661]], [10.01, [957.9454447, 19.31163661]]]
beta is, $\frac{21}{10}$, times the threshold value the long-term behavior is
[[9.98, [951.0394389, 21.41881679]], [9.99, [951.0394389, 21.41881679]], [10.00, [951.0394389, 21.41881679]], [10.01, [951.0394389, 21.41881679]]] beta is, $\frac{23}{10}$, times the threshold value the long-term behavior is
[[9.98, [943.7182031, 23.53845386]], [9.99, [943.7182031, 23.53845386]], [10.00, [943.7182031, 23.53845386]], [10.01, [943.7182031, 23.53845386]]] beta is, $\frac{5}{2}$, times the threshold value the long-term behavior is [[9.98, [935.9999984, 25.67000000]], [9.99, [935.9999984, 25.67000000]], [10.00, [935.9999984, 25.67000000]], [10.01, [935.9999984, 25.67000000]]]
beta is, $\frac{27}{10}$, times the threshold value
the long-term behavior is
[[9.98, [927.9038703, 27.81288384]], [9.99, [927.9038703, 27.81288384]], [10.00,
[927.9038703, 27.81288384]], [10.01, [927.9038703, 27.81288384]]]
beta is, $\frac{29}{10}$, times the threshold value
the long-term behavior is
[[9.98, [919.4495282, 29.96651411]], [9.99, [919.4495282, 29.96651411]], [10.00, [919.4495282, 29.96651411]], [10.01, [919.4495282, 29.96651411]]]
beta is, $\frac{31}{10}$, times the threshold value
the long-term behavior is
[[9.98, [910.6572255, 32.13028319]], [9.99, [910.6572255, 32.13028319]], [10.00, [910.6572255, 32.13028319]], [10.01, [910.6572255, 32.13028319]]]
beta is, $\frac{33}{10}$, times the threshold value
the long-term behavior is
[[9.98, [901.5476397, 34.30357076]], [9.99, [901.5476397, 34.30357076]], [10.00, [901.5476397, 34.30357076]], [10.01, [901.5476397, 34.30357076]]]
beta is, $\frac{7}{2}$, times the threshold value
the long-term behavior is
[[9.98, [892.1417551, 36.48574730]], [9.99, [892.1417551, 36.48574730]], [10.00, [892.1417551, 36.48574730]], [10.01, [892.1417551, 36.48574730]]]
beta is, $\frac{37}{10}$, times the threshold value
the long-term behavior is
[[9.98, [882.4607475, 38.67617753]], [9.99, [882.4607475, 38.67617753]], [10.00, [882.4607475, 38.67617753]], [10.01, [882.4607475, 38.67617753]]] beta is, $\frac{39}{10}$, times the threshold value the long-term behavior is
[[9.98, [872.5258747, 40.87422371]], [9.99, [872.5258747, 40.87422371]], [10.00, [872.5258747, 40.87422371]], [10.01, [872.5258747, 40.87422371]]]
$=>\operatorname{SIRSdemo}(1000,200,7,3,0.01,10)$
This is a numerical demonstration of the R0 phenomenon in the SIRS model using discretization with mesh size $=, 0.01$, and letting it run until time $t=, 10$ with population size, 1000, and fixed parameters $n u=, 3$, and gamma $=7$ where we change beta from $0.2^{*} n u / N$ to $4^{*} n u / N$ Recall that the epidemic will persist if beta exceeds $n u / N$, that in this case is, $\frac{3}{1000}$

We start with , 200, infected individuals, 0 removed and hence, 800, susceptible

We will show what happens once time is close to, 10
beta is, $\frac{1}{10}$, times the threshold value the long-term behavior is
[[9.98, [998.9571869, 0.9729968716]], [9.99, [998.9571869, 0.9729968716]], [10.00, [998.9571869, 0.9729968716]], [10.01, [998.9571869, 0.9729968716]]]
beta is, $\frac{3}{10}$, times the threshold value the long-term behavior is
[[9.98, [996.6155905, 2.936908621]], [9.99, [996.6155905, 2.936908621]], [10.00, [996.6155905, 2.936908621]], [10.01, [996.6155905, 2.936908621]]]
beta is, $\frac{1}{2}$, times the threshold value the long-term behavior is
[[9.98, [993.9350689, 4.924545130]], [9.99, [993.9350689, 4.924545130]], [10.00, [993.9350689, 4.924545130]], [10.01, [993.9350689, 4.924545130]]]
beta is, $\frac{7}{10}$, times the threshold value the long-term behavior is
[[9.98, [990.9190693, 6.935665103]], [9.99, [990.9190693, 6.935665103]], [10.00, [990.9190693, 6.935665103]], [10.01, [990.9190693, 6.935665103]]]
beta is, $\frac{9}{10}$, times the threshold value
the long-term behavior is
[[9.98, [987.5717147, 8.969979927]], [9.99, [987.5717147, 8.969979927]], [10.00, [987.5717147, 8.969979927]], [10.01, [987.5717147, 8.969979927]]]
beta is, $\frac{11}{10}$, times the threshold value
the long-term behavior is
[[9.98, [983.8977865, 11.02715490]], [9.99, [983.8977865, 11.02715490]], [10.00,
[983.8977865, 11.02715490]], [10.01, [983.8977865, 11.02715490]]]
beta is, $\frac{13}{10}$, times the threshold value
the long-term behavior is
[[9.98, [979.9027040, 13.10681067]], [9.99, [979.9027040, 13.10681067]], [10.00,
[979.9027040, 13.10681067]], [10.01, [979.9027040, 13.10681067]]]
beta is, $\frac{3}{2}$, times the threshold value
the long-term behavior is
[[9.98, [975.5925002, 15.20852494]], [9.99, [975.5925002, 15.20852494]], [10.00, [975.5925002, 15.20852494]], [10.01, [975.5925002, 15.20852494]]]
beta is, $\frac{17}{10}$, times the threshold value the long-term behavior is
[[9.98, [970.9737953, 17.33183428]], [9.99, [970.9737953, 17.33183428]], [10.00, [970.9737953, 17.33183428]], [10.01, [970.9737953, 17.33183428]]]
beta is, $\frac{19}{10}$, times the threshold value the long-term behavior is
[[9.98, [966.0537675, 19.47623623]], [9.99, [966.0537675, 19.47623623]], [10.00, [966.0537675, 19.47623623]], [10.01, [966.0537675, 19.47623623]]]
beta is, $\frac{21}{10}$, times the threshold value the long-term behavior is
[[9.98, [960.8401210, 21.64119148]], [9.99, [960.8401210, 21.64119148]], [10.00, [960.8401210, 21.64119148]], [10.01, [960.8401210, 21.64119148]]]
beta is, $\frac{23}{10}$, times the threshold value the long-term behavior is
[[9.98, [955.3410529, 23.82612625]], [9.99, [955.3410529, 23.82612625]], [10.00, [955.3410529, 23.82612625]], [10.01, [955.3410529, 23.82612625]]]
beta is, $\frac{5}{2}$, times the threshold value
the long-term behavior is
[[9.98, [949.5652167, 26.03043478]], [9.99, [949.5652167, 26.03043478]], [10.00, [949.5652167, 26.03043478]], [10.01, [949.5652167, 26.03043478]]]
beta is, $\frac{27}{10}$, times the threshold value
the long-term behavior is
[[9.98, [943.5216861, 28.25348193]], [9.99, [943.5216861, 28.25348193]], [10.00, [943.5216861, 28.25348193]], [10.01, [943.5216861, 28.25348193]]]
beta is, $\frac{29}{10}$, times the threshold value
the long-term behavior is
[[9.98, [937.2199158, 30.49460585]], [9.99, [937.2199158, 30.49460585]], [10.00, [937.2199158, 30.49460585]], [10.01, [937.2199158, 30.49460585]]]
beta is, $\frac{31}{10}$, times the threshold value
the long-term behavior is
[[9.98, [930.6697029, 32.75312075]], [9.99, [930.6697029, 32.75312075]], [10.00, [930.6697029, 32.75312075]], [10.01, [930.6697029, 32.75312075]]]
beta is, $\frac{33}{10}$, times the threshold value
the long-term behavior is
[[9.98, [923.8811464, 35.02831970]], [9.99, [923.8811464, 35.02831970]], [10.00, [923.8811464, 35.02831970]], [10.01, [923.8811464, 35.02831970]]]
beta is, $\frac{7}{2}$, times the threshold value
the long-term behavior is
[[9.98, [916.8646074, 37.31947743]], [9.99, [916.8646074, 37.31947743]], [10.00, [916.8646074, 37.31947743]], [10.01, [916.8646074, 37.31947743]]]
beta is, $\frac{37}{10}$, times the threshold value
the long-term behavior is
[[9.98, [909.6306685, 39.62585316]], [9.99, [909.6306685, 39.62585316]], [10.00, [909.6306685, 39.62585316]], [10.01, [909.6306685, 39.62585316]]]
beta is, $\frac{39}{10}$, times the threshold value
the long-term behavior is
[[9.98, [902.1900937, 41.94669340]], [9.99, [902.1900937, 41.94669340]], [10.00,
[902.1900937, 41.94669340]], [10.01, [902.1900937, 41.94669340]]]
[> \#Problem 2
${ }^{>} \quad f 1:=$ RandNice $([x, y], 8)$ $f 1:=[(5-7 x-7 y)(2-5 x-8 y),(6-2 x-3 y)(4-4 x-6 y)]$
$\stackrel{f}{ }>=$ RandNice $([x, y], 8)$ $f 2:=[(5-3 x-8 y)(1-8 x-5 y),(2-3 x-2 y)(2-4 x-8 y)]$
$>f 3:=$ RandNice $([x, y], 8)$
$f 3:=[(3-3 x-y)(2-5 x-4 y),(5-6 x-2 y)(3-7 x-8 y)]$
$\overline{=} \operatorname{EquPts}(f 1,[x, y])$

$$
\begin{equation*}
\left\{[10,-6],[42,-26],\left[-\frac{27}{7}, \frac{32}{7}\right],\left[\frac{1}{7}, \frac{4}{7}\right]\right\} \tag{7}
\end{equation*}
$$

$\stackrel{-}{>} \operatorname{StEquPts}(f 1,[x, y]) \quad \varnothing$
$>L 1:=\operatorname{Dis} 2(f 1, x, y,[10,-6]+[0.1,0.1], 0.01,10): \operatorname{print}([\operatorname{op}(n o p s(L 1)-3 . . n o p s(L 1)$, L1)]) :
$[[9.98,[\operatorname{Float}(\infty), \operatorname{Float}(\infty)]],[9.99,[\operatorname{Float}(\infty), \operatorname{Float}(\infty)]],[10.00,[\operatorname{Float}(\infty)$,
Float $(\infty)]],[10.01,[\operatorname{Float}(\infty)$, $\operatorname{Float}(\infty)]]]$
$\mid>L 2:=\operatorname{Dis} 2(f 1, x, y,[42,-26]+[0.1,0.1], 0.01,10): \operatorname{print}([o p(n o p s(L 2)-3 . . n o p s(L 2)$, L2)]) :
$[[9.98,[\operatorname{Float}(\infty)$, $\operatorname{Float}(\infty)]],[9.99,[\operatorname{Float}(\infty)$, Float $(\infty)]],[10.00,[\operatorname{Float}(\infty)$,
Float $(\infty)]],[10.01,[\operatorname{Float}(\infty)$, $\operatorname{Float}(\infty)]]]$
$\left[>L 3:=\operatorname{Dis} 2\left(f 1, x, y,\left[-\frac{27}{7}, \frac{32}{7}\right]+[0.1,0.1], 0.01,10\right): \operatorname{print}([\operatorname{op}(\operatorname{nops}(L 3)-3 . . \operatorname{nops}(L 3)\right.$, L3)]) :
$[[9.98,[\operatorname{Float}(\infty), \operatorname{Float}(\infty)]],[9.99,[\operatorname{Float}(\infty)$, $\operatorname{Float}(\infty)]],[10.00,[\operatorname{Float}(\infty)$,
Float $(\infty)]],[10.01,[\operatorname{Float}(\infty)$, $\operatorname{Float}(\infty)]]]$
$>L 4:=\operatorname{Dis} 2\left(f 1, x, y,\left[\frac{1}{7}, \frac{4}{7}\right]+[0.1,0.1], 0.01,10\right): \operatorname{print}([\operatorname{op}(\operatorname{nops}(L 4)-3 . . n o p s(L 4)$, L4)]) :
[[9.98, $[\operatorname{Float}(\infty)$, $\operatorname{Float}(\infty)]],[9.99,[\operatorname{Float}(\infty), \operatorname{Float}(\infty)]],[10.00,[\operatorname{Float}(\infty)$,
Float $(\infty)]],[10.01,[\operatorname{Float}(\infty)$, Float $(\infty)]]]$
$\gg \# f 1$ does not have stable
$[>\operatorname{EquPts}(f 2,[x, y])$

$$
\begin{equation*}
\left\{[-8,13],\left[-3, \frac{7}{4}\right],\left[-\frac{1}{22}, \frac{3}{11}\right],\left[\frac{1}{3}, \frac{1}{2}\right]\right\} \tag{13}
\end{equation*}
$$

$>\operatorname{StEquPts}(f 2,[x, y])$

$$
\begin{equation*}
\left\{\left[-\frac{1}{22}, \frac{3}{11}\right]\right\} \tag{14}
\end{equation*}
$$

$>L 5:=\operatorname{Dis} 2\left(f 2, x, y,\left[-\frac{1}{22}, \frac{3}{11}\right]+[0.1,0.1], 0.01,10\right): \operatorname{print}([\operatorname{op}(\operatorname{nops}(L 5)-3 . . \operatorname{nops}(L 5)$, L5)]) :
[[9.98, [$-0.04545454593,0.2727272734]],[9.99,[-0.04545454593,0.2727272734]]$,
[10.00, [$-0.04545454593,0.2727272734]],[10.01,[-0.04545454593,0.2727272734]]]$
$>$ \#Stable!
$>L 6:=\operatorname{Dis} 2(f 2, x, y,[-8,13]+[0.1,0.1], 0.01,10): \operatorname{print}([\operatorname{op}(n o p s(L 6)-3 . . n o p s(L 6)$, L6)]) :
$[[9.98,[\operatorname{Float}(\infty)$, $\operatorname{Float}(\infty)]],[9.99,[\operatorname{Float}(\infty)$, Float $(\infty)]],[10.00,[\operatorname{Float}(\infty)$,
Float $(\infty)]],[10.01,[\operatorname{Float}(\infty)$, $\operatorname{Float}(\infty)]]]$
$>L 7:=\operatorname{Dis} 2\left(f 2, x, y,\left[-3, \frac{7}{4}\right]+[0.1,0.1], 0.01,10\right): \operatorname{print}([\operatorname{op}(n o p s(L 7)-3 . . n o p s(L 7)$, L7)]) :
$[[9.98,[\operatorname{Float}(\infty), \operatorname{Float}(\infty)]],[9.99,[\operatorname{Float}(\infty), \operatorname{Float}(\infty)]],[10.00,[\operatorname{Float}(\infty)$,
Float $(\infty)]],[10.01,[\operatorname{Float}(\infty)$, Float $(\infty)]]]$
$>L 8:=\operatorname{Dis} 2\left(f 2, x, y,\left[\frac{1}{3}, \frac{1}{2}\right]+[0.1,0.1], 0.01,10\right): \operatorname{print}([\operatorname{op}(\operatorname{nops}(L 8)-3 . . n o p s(L 8)$, L8)]) :
[[9.98, [Float (∞), Float (∞)]], [9.99, [Float (∞), Float $(\infty)]$], [10.00, [Float (∞), Float $(\infty)]],[10.01,[\operatorname{Float}(\infty)$, $\operatorname{Float}(\infty)]]]$
> \#Rest are unstable
$>\operatorname{EquPts}(f 3,[x, y])$

$$
\begin{equation*}
\left\{\left[\frac{1}{3}, \frac{1}{12}\right],\left[\frac{8}{7},-\frac{13}{14}\right],\left[\frac{21}{17},-\frac{12}{17}\right]\right\} \tag{19}
\end{equation*}
$$

$>\operatorname{StEquPts}(f 3,[x, y])$

$$
\begin{equation*}
\left\{\left[\frac{1}{3}, \frac{1}{12}\right]\right\} \tag{20}
\end{equation*}
$$

Float $(\infty)]],[10.01$, [Float (∞), Float $(\infty)]]]$
$\overline{=}>\operatorname{L11}:=\operatorname{Dis} 2\left(f 3, x, y,\left[\frac{21}{17},-\frac{12}{17}\right]+[0.1,0.1], 0.01,10\right): \operatorname{print}([\operatorname{op}(\operatorname{nops}(L 11)-3$..nops(L11), L11)]) :
$[[9.98,[\operatorname{Float}(\infty), \operatorname{Float}(\infty)]],[9.99,[\operatorname{Float}(\infty), \operatorname{Float}(\infty)]],[10.00,[\operatorname{Float}(\infty)$,
Float $(\infty)]]$, [10.01, $[\operatorname{Float}(\infty)$, $\operatorname{Float}(\infty)]]]$
>> \#Unstable for the rest
\#Problem 3
$>\operatorname{EquPts}(\operatorname{SIRS}(s, i$, beta, gamma, nu, $N),[s, i])$

$$
\begin{equation*}
\left\{[N, 0],\left[\frac{v}{\beta}, \frac{\gamma(N \beta-v)}{\beta(\gamma+v)}\right]\right\} \tag{24}
\end{equation*}
$$

$\overline{=}$ \#We see that values for steady state susceptible and infected align. Since removed is N-S-I, these also align
$[>$
$[>$
$>$ Chemostat $:=\operatorname{proc}(N, C, a 1, a 2)$:
$[a 1 *(C /(1+C) * N)-N,-C /(1+C) * N-C+a 2]:$
end:
$>\operatorname{EquPts}(\operatorname{Chemostat}(N, C, a 1, a 2),[N, C])$

$$
\begin{equation*}
\left\{[0, a 2],\left[\frac{a 1(a 2 a 1-a 2-1)}{a l-1}, \frac{1}{a 1-1}\right]\right\} \tag{25}
\end{equation*}
$$

