Hade Batini Hull
Da

$$
\text { Ans Thaitence equation hes two equilibriumpaits } x=0+x=\frac{2}{2} \text { and } x=\frac{2}{3} \text { is stable }
$$

b) i)

$$
\begin{array}{ll}
x(n)=x(n-1)\left(2-x_{(} n-2\right) & \left.x_{1}=x_{n}\right) \quad x_{2}=x(n-1) \\
x_{1}(n)=x_{1}(n)\left(2-x_{2}(n-1)\right) &
\end{array}
$$

ii)

$$
\begin{aligned}
& z=x(n)=x(n-1)=x(n-2) \\
& z=z(1-z) \quad \quad z=0 \quad z=1
\end{aligned}
$$

iii) $\left(t_{1} z_{2}\right)\left(z_{1}\left(2-t_{2}\right),(z, i)\right.$

$$
J=\left(\begin{array}{cc}
2-z_{2} & -z_{1} \\
1 & 0
\end{array}\right) \quad(e, u) \quad\left(\begin{array}{cc}
2 & 0 \\
1 & 0
\end{array}\right)(z-\lambda) \quad \lambda=2,0 \text { until }
$$

(1,1)

$$
J=\left(\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right) \lambda=(1-\lambda) \lambda+1 \quad \lambda^{2}-\lambda+1 \quad|\lambda|=1,1 \quad 1 \pm \sqrt{|1-1|}
$$

The ditterene eq. has two equillbism ats. $x=0,1$, neither ore stable

$$
\begin{aligned}
& x(n)=x(n-1)\left(\frac{5}{3}-x(n-1)\right. \\
& x_{1}(n)=x(n) \quad x_{2}(n)=x(n-1) \\
& \text { i) } x_{1}(n)=x_{1}(n-1)\left(\frac{5}{5}-x_{1}(n-1) \quad z=x_{1}(n)=x(n-1)=x(n-2)\right. \\
& \text { ii) } z=z(\xi-z) \quad z=0 \quad z=\frac{2}{3} \\
& \text { ii.) } \left.t_{1}, z_{2}\right)=\left(t_{1}\left(\frac{5}{3}-z_{1}\right), z_{1}\right) \quad f\left(z_{1} z_{2}\right)-z_{1}\left(\frac{5}{3}-t_{2}\right) ; g\left(t_{2} z_{1}\right)=z_{1} \\
& J=\left(\begin{array}{cc}
\frac{5}{3}-z_{2} & -z_{1} \\
1 & 0
\end{array}\right) \xrightarrow{(0,0)} \rightarrow\left(\begin{array}{cc}
\frac{5}{3} & 0 \\
1 & 0
\end{array}\right) \begin{array}{c}
\left(\frac{5}{3}-\lambda\right)-\lambda=\lambda=0 \frac{5}{3} \text { int the } \\
\text { as both not lest then } D
\end{array} \\
& \left.\left(\begin{array}{ll}
2 & \frac{1}{2} \\
\frac{1}{3} & 3
\end{array}\right) \quad\left(\begin{array}{cc}
1 & -\frac{2}{3} \\
1 & 0
\end{array}\right) \begin{array}{l}
\left.(-\lambda)(-\lambda)+\frac{2}{3}=\lambda^{2}-\lambda+\frac{2}{3}\right) \\
(\lambda x=.8164 \text { stable }
\end{array} \right\rvert\, \lambda k\left(\frac{1}{2}+\frac{\sqrt{2}}{2} i\right)
\end{aligned}
$$

$$
z=z\left(a-z_{2}\right) \quad z=0 \quad 1=a-z \quad z=a-1 \quad a>0
$$

$\left(z_{1} z_{2}\right)\left(z_{1}\left(a-\theta_{1}, z_{1}\right) \quad\left(\begin{array}{ll}a-z_{2} & \left.-z_{1}\right)\end{array} \quad(0,0)\right.\right.$

$$
J=\left(\begin{array}{cc}
\left(z_{1}(a-\lambda), \lambda\right) & (0,0) \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{ll}
a & 0 \\
1 & 0
\end{array}\right)(0-\lambda)(\lambda) z_{1}^{2}-\lambda a
$$

000 is stable when $a<11$.

$$
\begin{aligned}
& J=\left(\begin{array}{cc}
a-a-1 & -a+1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-1 & 1-a \\
1 & 0
\end{array}\right)(-1-\lambda)(-\lambda)-(1-a) \\
& \left.\lambda^{2}+\lambda+a-1\right)
\end{aligned}
$$

$-\frac{1}{2} \pm \frac{\sqrt{5-4 a}}{2} \quad(a-1, a-1)$ is stable when $a<2$
c) $x^{\prime}(t)=x(t)(3-x(t))(5-x(t))$
i) $F(x) x(3-x)(5-x) \quad x=0,3,5$
ii) $x=\left(3 x-x^{2} \rightarrow\left(15 x-5 x^{2}-3 x^{2}+x^{3}\right)^{\prime} \rightarrow x^{\prime}=15-16 x+3 x^{2}\right.$
$x^{\prime}(0)=15$ not negative \rightarrow unstable; $x^{\prime}(3)=-6$ negative \rightarrow stable; $x^{\prime}(5)=100^{n 0 y s t h}$ inside iii \rightarrow maple
b) i) $=F(x)=x^{2}(3-x)(5-x)(7-x) \quad x=0,3,5,7$
ii) maple
iii) mope

```
    #Hrudai Battini hw 16
    read "/Users/hb334/Documents/M15.txt";
> #1
#a
    Orbk(2,z,evalf((z[1]*((5/3)-z[2]))), [0.5,0.5], 1000,1020);
    #b
    Orbk(2,z,evalf((z[1]*((2)-z[2]))), [0.5,0.5], 1000,1020);
    [0.6666666666, 0.6666666666, 0.6666666666, 0.6666666666, 0.6666666666, 0.6666666666,
        0.6666666666, 0.6666666666, 0.6666666666, 0.6666666666, 0.6666666666,
        0.6666666666, 0.6666666666, 0.6666666666, 0.6666666666, 0.6666666666,
        0.6666666666, 0.6666666666, 0.6666666666, 0.6666666666, 0.6666666666]
[0.9883413838, 0.9405167599, 0.9514818836, 1.008079109, 1.056989208, 1.048449677,
        0.9886993603, 0.9407971956, 0.9514288060, 1.007756059, 1.056703974, 1.048508116,
        0.9890535391, 0.9410764153, 0.9513778716, 1.007436466, 1.056420171, 1.048564138,
        0.9894039700, 0.9413544191, 0.9513290388]
        #4
    #iii a
    plot(Dis1 (x* (3-x)* (5-x),x,0.01,0.01,20));
    plot(Dis1(x*(3-x)*(5-x) ,x,3.01,0.01,20)); #Stable
    plot(Dis1(x*(3-x)*(5-x),x,5.01,0.01,20));
```


\# 4 b

\#ii
$\mathrm{F}:=$ expand (diff(x^2*(3-x) *(5-x) *(7-x), x));
eval ($\mathrm{F}, \mathrm{x}=0$) ; \#Not negative so Unstable
eval (F,x=3) ; \#Negative so Stable
eval ($F, x=5$) ; \#Postive so Unstable
eval ($\mathrm{F}, \mathrm{x}=7$) ; \#Negative so Stable
plot (Dis1 ($x^{\wedge} 2 *(3-x)$ * (5-x) * (7-x) , $\left.x, 0.01,0.01,20\right)$);
plot (Dis1 ($\left.\left.x^{\wedge} 2 *(3-x) *(5-x) *(7-x), x, 3.01,0.01,20\right)\right)$;
plot (Dis1 ($x^{\wedge} 2 *(3-x)$ * (5-x) * (7-x), $\left.x, 5.01,0.01,20\right)$);
plot (Dis1 (($\left.x^{\wedge} 2\right)$ * (3-x) * (5-x) * (7-x), x, 7.01,0.01, 20)) ; \#Negative however the Asymptote is at 3.

$$
F:=-5 x^{4}+60 x^{3}-213 x^{2}+210 x
$$

 v"

