[> \#Homework 13

[> read `C:/Users/cgrie/Dynam Models Bio/Homeworks/HW13/M13.txt`
$>$ Help13()

$$
\begin{equation*}
R T 2(x, y, d, K), \operatorname{Orb2}(F, x, y, p t 0, K 1, K 2), F P 2(F, x, y), S F P 2(F, x, y) \tag{1}
\end{equation*}
$$

\#QUESTION 1:

If a_{i} is the i-th digit of your RUID, find the fixed points, and the stable fixed points of the following first-order system of two quantities $x(n)$ and $y(n)$

$$
\begin{aligned}
& x(n)=\frac{a_{1} x(n-1)^{2}+a_{2} x(n-1)+a_{3}}{a_{1} x(n-1)^{2}+a_{4} x(n-1)+a_{5}} \\
& y(n)=\frac{a_{6} x(n-1)^{2}+a_{2} x(n-1)+a_{3}}{a_{3} x(n-1)^{2}+a_{4} x(n-1)+a_{7}}
\end{aligned}
$$

If it has a stable fixed point, confirm it using Orb2 with initial conditions
$x(0)=a_{2}+0.5, y(0)=a_{4}+0.5$

[> \#QUESTION 2:

By running $R T 2(x, y, d, K)$ with $d=1$ and $K=100$ generate 20 random transformations and find the stable equilibria for each transformation (if they exist)
$\left[\begin{array}{l}\text { proc }(x, y, d, K)\end{array}\right.$
local $r a, i, j, f, g$;
$r a:=\operatorname{rand}(1 . . K)$;
$\left.f:=\operatorname{add}\left(\operatorname{add}(r a())^{*} x^{\wedge} i^{*} y^{\wedge} j, j=0 . . d-i\right), i=0 . . d\right) / \operatorname{add}\left(\operatorname{add}\left(r a()^{*} x^{\wedge} i^{*} y^{\wedge} j, j=0 . . d-i\right)\right.$,
$i=0 . . d)$;
$\left.g:=\operatorname{add}\left(\operatorname{add}(r a())^{*} x^{\wedge} i^{*} y^{\wedge} j, j=0 . . d-i\right), i=0 . . d\right) / \operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i^{*} y^{\wedge} j, j=0\right.\right.$
.. $d-i), i=0 . . d) ;$
$[f, g]$
end proc
\#Generating the 20 random transformations:
$\Rightarrow \mathrm{A}:=\operatorname{seq}(\operatorname{RT2}(\mathrm{x}, \mathrm{y}, 1,100), \mathrm{n}=1 . .20)$;
$A:=\left[\frac{93+45 y+96 x}{6+98 y+59 x}, \frac{44+100 y+38 x}{69+27 y+96 x}\right],\left[\frac{17+90 y+34 x}{18+52 y+56 x}, \frac{43+83 y+25 x}{90+93 y+60 x}\right]$,

$$
\begin{equation*}
\left[\frac{93+14 y+50 x}{47+8 y+46 x}, \frac{44+9 y+77 x}{59+16 y+x}\right],\left[\frac{70+77 y+39 x}{92+71 y+67 x}, \frac{78+51 y+53 x}{12+19 y+63 x}\right], \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& {\left[\frac{40+90 y+3 x}{49+49 y+67 x}, \frac{74+90 y+74 x}{27+98 y+72 x}\right],\left[\frac{2+73 y+85 x}{41+4 y+44 x}, \frac{13+19 y+10 x}{15+64 y+9 x}\right],} \\
& {\left[\frac{12+52 y+25 x}{72+90 y+18 x}, \frac{43+55 y+40 x}{17+70 y+52 x}\right],\left[\frac{81+87 y+34 x}{85+9 y+68 x}, \frac{83+63 y+100 x}{70+36 y+36 x}\right],} \\
& {\left[\frac{10+40 y+66 x}{87+16 y+98 x}, \frac{43+53 y+61 x}{47+28 y+75 x}\right],\left[\frac{3+5 y+11 x}{37+75 y+4 x}, \frac{91+22 y+40 x}{58+93 y+98 x}\right],} \\
& {\left[\frac{11+30 y+6 x}{32+40 y+24 x}, \frac{80+96 y+11 x}{23+41 y+52 x}\right],\left[\frac{58+67 y+81 x}{65+69 y+2 x}, \frac{36+61 y+84 x}{96+94 y+31 x}\right],} \\
& {\left[\frac{81+31 y+54 x}{67+59 y+66 x}, \frac{12+49 y+90 x}{35+15 y+26 x}\right],\left[\frac{100+24 y+8 x}{63+78 y+23 x}, \frac{73+22 y+32 x}{98+9 y+53 x}\right],} \\
& {\left[\frac{3+98 y+69 x}{3+73 y+88 x}, \frac{37+60 y+94 x}{52+16 y+29 x}\right],\left[\frac{51+3 y+45 x}{67+40 y+71 x}, \frac{74+49 y+60 x}{69+33 y+30 x}\right],} \\
& {\left[\frac{1+83 y+9 x}{64+43 y+57 x}, \frac{52+62 y+46 x}{76+9 y+53 x}\right],\left[\frac{37+88 y+50 x}{37+76 y+95 x}, \frac{8+92 y+92 x}{2+97 y+44 x}\right],} \\
& {\left[\frac{9+30 y+14 x}{79+73 y+21 x}, \frac{78+49 y+93 x}{15+56 y+69 x}\right],\left[\frac{17+21 y+42 x}{21+5 y+58 x}, \frac{3+86 y+55 x}{97+4 y+92 x}\right],}
\end{aligned}
$$

\#question to self: What does paramater K mean and paramater d mean?
\#Answer for $\mathrm{K}:$ any random number ra is between 1 and the value of K
\#Answer for d : the paramater d can be obtained experimentally below
print("d=2");
d2 := seq(RT2 (x,y,2,100) ,n=1..3);
print("d=3");
d3 : = seq (RT2 (x,y,3,100) , n=1..3) ;
\#Thus, d represents the highest degree of the algebraic expressions
" $\mathrm{d}=2$ "
$d 2:=\left[\frac{61 x^{2}+49 x y+34 y^{2}+68 x+88 y+46}{77 x^{2}+33 x y+42 y^{2}+5 x+86 y+21}\right.$,
$\left.\frac{29 x^{2}+65 x y+98 y^{2}+29 x+58 y+98}{60 x^{2}+44 x y+34 y^{2}+66 x+29 y+35}\right],\left[\frac{59 x^{2}+68 x y+85 y^{2}+100 x+32 y+83}{50 x^{2}+17 x y+92 y^{2}+39 x+76 y+40}\right.$,
$\left.\frac{34 x^{2}+51 x y+18 y^{2}+18 x+20 y+78}{87 x^{2}+13 x y+52 y^{2}+100 x+10 y+78}\right],\left[\frac{62 x^{2}+69 x y+92 y^{2}+97 x+37 y+13}{80 x^{2}+61 x y+46 y^{2}+78 x+60 y+38}\right.$,
$\left.\frac{46 x^{2}+41 x y+48 y^{2}+9 x+72 y+3}{27 x^{2}+26 x y+88 y^{2}+79 x+35 y+78}\right]$
" $\mathrm{d}=3$ "
$d 3:=\left[\frac{38 x^{3}+81 x^{2} y+100 x y^{2}+35 y^{3}+55 x^{2}+95 x y+55 y^{2}+72 x+83 y+76}{86 x^{3}+98 x^{2} y+48 x y^{2}+17 y^{3}+67 x^{2}+79 x y+16 y^{2}+68 x+20 y+88}\right.$,

$$
\begin{aligned}
& \left.\frac{60 x^{3}+24 x^{2} y+25 x y^{2}+55 y^{3}+94 x^{2}+82 x y+33 y^{2}+17 x+74 y+92}{90 x^{3}+69 x^{2} y+64 x y^{2}+12 y^{3}+7 x^{2}+79 x y+14 y^{2}+87 x+17 y+74}\right], \\
& {\left[\frac{44 x^{3}+30 x^{2} y+41 x y^{2}+16 y^{3}+53 x^{2}+63 x y+48 y^{2}+84 x+3 y+83}{37 x^{3}+67 x^{2} y+65 x y^{2}+38 y^{3}+46 x^{2}+89 x y+33 y^{2}+42 x+85 y+55},\right.} \\
& \left.\frac{18 x^{3}+99 x^{2} y+37 x y^{2}+21 y^{3}+33 x^{2}+60 x y+99 y^{2}+73 x+44 y+90}{97 x^{3}+95 x^{2} y+59 x y^{2}+45 y^{3}+89 x^{2}+24 x y+78 y^{2}+66 x+24 y+64}\right], \\
& {\left[\frac{9 x^{3}+100 x^{2} y+9 x y^{2}+47 y^{3}+47 x^{2}+10 x y+79 y^{2}+32 x+66 y+60}{56 x^{3}+100 x^{2} y+94 x y^{2}+28 y^{3}+17 x^{2}+40 x y+39 y^{2}+16 x+56 y+48},\right.} \\
& \left.\frac{16 x^{3}+30 x^{2} y+36 x y^{2}+35 y^{3}+15 x^{2}+44 x y+54 y^{2}+57 x+49 y+77}{23 x^{3}+38 x^{2} y+15 x y^{2}+98 y^{3}+30 x^{2}+55 x y+88 y^{2}+98 x+50 y+91}\right]
\end{aligned}
$$

\#Now, find the stable equilibria for each transformation using SFP2
> print(SFP2);
$\operatorname{proc}(F, x, y)$
local $L, J, S, J 0, i, p t, E V$;
$L:=\operatorname{evalf}(F P 2(F, x, y))$;
$J:=\operatorname{Matrix}([[\operatorname{diff}(F[1], x), \operatorname{diff}(F[2], x)],[\operatorname{diff}(F[1], y), \operatorname{diff}(F[2], y)]])$;
$S:=[] ;$
for i to $\operatorname{nops}(L)$ do
$p t:=L[i] ;$
$J 0:=\operatorname{subs}(\{x=p t[1], y=p t[2]\}, J)$;
$E V:=$ LinearAlgebra:-Eigenvalues(J0);
if $\operatorname{abs}(E V[1])<1$ and $\operatorname{abs}(E V[2])<1$ then $S:=[o p(S), p t]$ end if
end do
end proc
$\stackrel{\text { SFP2 }}{ }(\mathrm{A}[1], \mathrm{x}, \mathrm{y})$;

$$
[[1.624821324,0.7307142101]]
$$

Assuming that our equilibrium point is the output from the block above, we need to find a way to get enough iterations our of ORB2 without the program crashing.

```
> #Verify that these equilibria are stable using orb2 (Plug in the
    equilibria as initial conditions? The maple code took over 5
    minutes and never finished computing, even at 100 steps)
> print(Orb2);
proc(F, x, y,pt0, K1,K2)
local \(p t, L, i\);
```

$p t:=p t 0$;
for i to $K l$ do $p t:=\operatorname{subs}(\{x=p t[1], y=p t[2]\}, F)$ end do;
$L:=[] ;$
for i from $K 1+1$ to $K 2$ do $p t:=\operatorname{subs}(\{x=p t[1], y=p t[2]\}, F) ; L:=[o p(L), p t]$ end do; L
end proc

```
> \#Whenever generating a random variable, you MUST call it with
    empty parenthesis.
    rvar \(:=\) rand(1..10);
    print(rvar());
rvar \(:=\operatorname{proc}()\)
```

 proc() option builtin \(=\) RandNumberInterface; end proc \((6,10,4)+1\)
 end proc
7
\#Experiment: I think i only need to initialize a random variable
once, and then:
\#Because essentially, rvar2() is picking an item from an array-
like structure?
\#For the math homework, knowing this is kind of useless though
rvar2 := rand(10..20);
rvar2 := proc()
proc() option builtin $=$ RandNumberInterface; end proc $(6,11,4)+10$
end proc
rvar2()
11
\#Keep this code
Orb2 (A[1] , x,y,[rvar2(),rvar2()],1,6);
\#Why do the fractions get so big so fast? is it because of finding least common multiples?
$\left[\left[\frac{26827533}{19570642}, \frac{21958724}{21752523}\right],\left[\frac{8842467658970574}{6084602322725197}, \frac{3226209141368821}{3730753289609559}\right]\right.$, $\left[\frac{3080711607639407995708348633623870}{2003157659073381419282911419776029}, \frac{2107705525483346910884916206236010}{2631638009345202163259156395381761}\right]$, $\left[\frac{1458552978781997541868043980133955934378502174828435487413797411217187}{923723776704604473618847254809429172813214479133254107739302662731964}\right.$, $\left.\frac{137462071189940196254535671259112736810233100385292214805902690867528}{179433960337447964374218206593169979600807078358918904760704575681473}\right]$,

$$
2433371179185099547921002976853690617938227865834737856743697657,
$$

$1496785712847568919533032975595432406176199484420086138353100441140584738047 \backslash$ 4190147428863571889376444698115579689783871003192245373803167553 / $1999474410568344523317114385188713228957503280333986265397550569284243860450 \backslash$ 9540701981093126150383585427900089134076139677302367981539499574]]
\#Maybe try getting everything in decimal form using evalf to more easily identify quantitative behavior
$>$ evalf(Orb2 (A[1] ,x,y, [rvar2(), rvar2()],90,91));
\#This block of code also takes way too long to run. I can usually only go up to 6 iterations

$$
\begin{equation*}
\operatorname{Orb2}\left(A_{1}, x, y,[r \operatorname{var} 2(), r \operatorname{var} 2()], 90,91\right) \tag{12}
\end{equation*}
$$

\#QUESTION 4 :
[Write the three-variable analog of $\operatorname{RT} 2(x, y, d, K)$ and call it RT3 (x, y, z, d, K)
I see that the original code iterates through i and j to create each algebraic expression. for example, if
ra $=2$ and $d=2$
therefore, we need to include one more iterable variable m that iterates from 0 . .d
> RT3bad := proc (x,y,z,d,K) local ra,i,j,m,f,g,h;
ra := rand(1..K);
$\mathrm{f}:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i * y^{\wedge} j^{*} z^{\wedge} m, m=0 \ldots d-j\right), j=0 . . d-i\right)\right.$,
$i=0 \ldots d) * 1 / a d d\left(a d d\left(a d d\left(r a() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 \ldots d-j\right), j=0\right.\right.$
.. d - i), i = 0 .. d) ;
$\mathrm{g}:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 \ldots d-j\right), j=0 \ldots d-i\right)\right.$,
$i=0 \ldots d) * 1 / a d d\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 \ldots d-j\right), j=0\right.\right.$.. d - i), i = 0 . . d) ;
$h:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 \ldots d-j\right), j=0 \ldots d-i\right)\right.$,
$i=0 \ldots d) * 1 / \operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(\operatorname{ra}() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 \ldots d-j\right), j=0\right.\right.$.. d - i), i = 0 .. d);
end;
RT3bad := $\operatorname{proc}(x, y, z, d, K)$
local $r a, i, j, m, f, g, h$;
$r a:=\operatorname{rand}(1 . . K)$;
$\left.f:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}(r a())^{*} x^{\wedge}{ }^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . d-j\right), j=0 . . d-i\right), i=0 . . d\right) * 1$
$/ \operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(\mathrm{ra}()^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . d-j\right), j=0 . . d-i\right), i=0 . . d\right) ;$
$g:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . d-j\right), j=0 . . d-i\right), i=0 . . d\right) * 1$
$/ \operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . d-j\right), j=0 . . d-i\right), i=0 . . d\right)$;
$h:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . d-j\right), j=0 . . d-i\right), i=0 . . d\right) * 1$
$/ \operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a()^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . d-j\right), j=0 . . d-i\right), i=0 . . d\right)$
end proc
$>\operatorname{RT} 3 \mathrm{bad}(\mathrm{x}, \mathrm{y}, \mathrm{z}, 2,10)$;
$\left(3 x^{2} z^{2}+9 x^{2} z+9 x y z+5 x z^{2}+x^{2}+7 x y+6 x z+3 y^{2}+6 y z+8 z^{2}+3 x+5 y+8 z\right.$

$$
\begin{equation*}
+1) /\left(10 x^{2} z^{2}+3 x^{2} z+2 x y z+8 x z^{2}+4 x^{2}+8 x y+10 x z+y^{2}+10 y z+2 z^{2}+9 x\right. \tag{14}
\end{equation*}
$$

$$
+5 y+5 z+8)
$$

```
    \#Checking the number of terms in RT3. Seems weird because i dont
    have any multivariable terms with a degree 3 for \(y\). Maybe the
    issue was letting \(m=0 \ldots d-j\).
    \#And the fix to this problem would just be setting m = 0 .. i-j
    probably because \(m\) is nested.
[> RT3worse := proc (x,y,z,d,K) local ra,i,j,m,f,g,h;
    ra := rand(1..K);
    \(\mathrm{f}:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 \ldots i-j\right), j=0 \ldots d-i\right)\right.\),
    \(i=0 \ldots d) * 1 / a d d\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 \ldots i-j\right), j=0\right.\right.\)
    .. d - i), i = 0 .. d);
    \(\mathrm{g}:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 \ldots i-j\right), j=0 \ldots d-i\right)\right.\),
    \(i=0 \ldots d) * 1 / a d d\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 \ldots i-j\right), j=0\right.\right.\)
    .. d - i), i = 0 .. d);
    \(h:=\operatorname{add}\left(a d d\left(a d d\left(r a() * x^{\wedge} i * y^{\wedge} j^{*} z^{\wedge} m, m=0 \ldots i-j\right), j=0 \ldots d-i\right)\right.\),
    \(i=0 \ldots d) * 1 / \operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 \ldots i-j\right), j=0\right.\right.\)
    .. d - i), i = 0 . . d);
    end;
RT3worse := \(\boldsymbol{\operatorname { p r o c }}(x, y, z, d, K)\)
```

local $r a, i, j, m, f, g, h$;

$$
\begin{aligned}
& r a:=\operatorname{rand}(1 . . K) ; \\
& \left.f:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}(r a())^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . i-j\right), j=0 . . d-i\right), i=0 . . d\right) * 1 \\
& / \operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a()^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . i-j\right), j=0 . . d-i\right), i=0 . . d\right) ; \\
& g:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a()^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . i-j\right), j=0 . . d-i\right), i=0 . . d\right) * 1 \\
& / \operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a()^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . i-j\right), j=0 . . d-i\right), i=0 . . d\right) ; \\
& h:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a()^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . i-j\right), j=0 . . d-i\right), i=0 . . d\right) * 1 \\
& / \operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a()^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . i-j\right), j=0 . . d-i\right), i=0 . . d\right)
\end{aligned}
$$

end proc
$>\operatorname{RT} 3 w o r s e(x, y, z, 2,10)$;

$$
\begin{equation*}
\frac{x^{2} z^{2}+2 x^{2} z+x^{2}+7 x y+x z+7 x+7}{7 x^{2} z^{2}+6 x^{2} z+9 x^{2}+8 x y+9 x z+7 x+4} \tag{16}
\end{equation*}
$$

[> \#That is worse than what i wanted. Maybe I need to have $m=d-i$ to keep it as the same degree as everything else. I th
/> RT3 : $=\operatorname{proc}(x, y, z, d, K)$ local ra,i,j,m,f,g,h;
ra := rand(1..K);
f:= add (add (add (ra()*x^i*y^j*z^m, m = 0 .. d-i), j = 0 .. d - i),
$i=0 \ldots d) * 1 / a d d\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 \ldots d-i\right), j=0\right.\right.$.. d - i), i = 0 .. d);
$\mathrm{g}:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i * y^{\wedge} j^{\star} z^{\wedge} m, m=0 \ldots d-i\right), j=0 \ldots d-i\right)\right.$,
$i=0 \ldots d) * 1 / a d d\left(a d d\left(a d d\left(r a() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 . . d-i\right), j=0\right.\right.$
.. d - i), i $=0$. . d) ;
$h:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 \ldots d-i\right), j=0 \ldots d-i\right)\right.$,
$i=0 \ldots d) * 1 / a d d\left(\operatorname{add}\left(\operatorname{add}\left(r a() * x^{\wedge} i * y^{\wedge} j * z^{\wedge} m, m=0 \ldots d-i\right), j=0\right.\right.$.. d - i), i = 0 .. d);
end;
$R T 3:=\boldsymbol{\operatorname { p r o c }}(x, y, z, d, K)$
local $r a, i, j, m, f, g, h$;

$$
\begin{aligned}
& r a:=\operatorname{rand}(1 . . K) \\
& f:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a()^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . d-i\right), j=0 . . d-i\right), i=0 . . d\right)^{*} 1 \\
& / \operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a()^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . d-i\right), j=0 . . d-i\right), i=0 . . d\right) \\
& g:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a()^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . d-i\right), j=0 . . d-i\right), i=0 . . d\right) * 1 \\
& / \operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a()^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . d-i\right), j=0 . d-i\right), i=0 . . d\right) \\
& h:=\operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a()^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . d-i\right), j=0 . . d-i\right), i=0 . . d\right) * 1 \\
& l \operatorname{add}\left(\operatorname{add}\left(\operatorname{add}\left(r a()^{*} x^{\wedge} i^{*} y^{\wedge} j^{*} z^{\wedge} m, m=0 . . d-i\right), j=0 . . d-i\right), i=0 . . d\right)
\end{aligned}
$$

end proc
$>\operatorname{RT} 3(x, y, z, 1,10) ;$

$$
\begin{equation*}
\frac{6 y z+6 x+6 y+5 z+1}{5 y z+9 x+10 y+10 z+4} \tag{18}
\end{equation*}
$$

$>$ \#We want to have isolated terms of $x^{\wedge} d, y^{\wedge} d$, and $z^{\wedge} d$. If i have $d=2$, I WANT a $C 1 * x^{\wedge} 2$, $a C 2 * y^{\wedge} 2$ and $a C 3 z^{\wedge} 2$
\#I also want for $d=2$ to have an $x y$ an $x z$ and a $y z$
\#I do not want highest degree terms multiplied together
\#My proposal is to subtract 1 as follows: let d-i - 1
$\# i=0 \ldots d, j=0 \ldots d-i$, and $m=0 \ldots$
\#I think it is better to show HOW to do a PROPER trinomial
expansion? I think the problem I was having was
[> \#QUESTION 4 (ii) Write the three-variable analog of Orb2
> print (Orb2) ;
$\operatorname{proc}(F, x, y, p t 0, K 1, K 2)$
local $p t, L, i$;
$p t:=p t 0 ;$
for i to $K 1$ do $p t:=\operatorname{subs}(\{x=p t[1], y=p t[2]\}, F)$ end do;
$L:=[] ;$
for i from $K 1+1$ to $K 2$ do

$$
p t:=\operatorname{subs}(\{x=p t[1], y=p t[2]\}, F) ; L:=[o p(L), p t]
$$

end do;
L
end proc
$>$ Orb3: =proc $(F, x, Y, z, p t 0, K 1, K 2)$ local pt,L,i;
pt := pt0;
for i to $K 1$ do pt $:=$ subs (\{x=pt[1],y=pt[2],z=pt[3]\},F) end do;
L : = [] ;
for i from $K 1+1$ to $K 2$ do pt:= subs (\{x=pt[1],y=pt[2],z=pt[3]\},F)
;
$\mathrm{L}:=[\mathrm{op}(\mathrm{L}), \mathrm{pt}]$ end do;
end;
Orb3 := $\mathbf{p r o c}(F, x, y, z, p t 0, K 1, K 2, K 3)$
local $p t, L, i$;
$p t:=p t 0 ;$
for i to $K 1$ do $p t:=\operatorname{subs}(\{x=p t[1], y=p t[2], z=p t[3]\}, F)$ end do;
$L:=[] ;$
for i from $K 1+1$ to $K 2$ do

$$
p t:=\operatorname{subs}(\{x=p t[1], y=p t[2], z=p t[3]\}, F) ; L:=[o p(L), p t]
$$

end do
end proc
\#Orb3 ($x^{\wedge} 2+1, x, y, z,[1,1,1], 10,100$) ;
\#This part of the code is really faulty
\#I think
Orb2 (x+y,x,y,[1,2],10,20);
Warning, computation interrupted.
\#What should the format of F be in our orb2 command in order to compute correctly.
\#I think i will copy and paste one of the transformations from RT2 into the paramater F to comfirm

