[> \#work until 11:00 am
> \#M11.txt: Maple code for Lecture 11 of Dynamical Models in Biology taught by Dr. Z. Help11 :=proc() : print(`SFPe(f,x), Orbk(k,z,f,INI,K1,K2) `) :end:
\#M11.txt: Maple code for Lecture 11 of Dynamical Models in Biology taught by Dr. Z. Help11 :=proc () : print(${ }^{`} \operatorname{SFPe}(f, x), \operatorname{Orbk}(k, z, f, I N I, K 1, K 2)$)) :end:
$\# S F P e(f, x)$: The set of fixed points of $x->f(x)$ done exactly (and allowing symbolic
parameters), followed by the condition of stability (if it is netween -1 and 1 it is stable)
\#Try: $\operatorname{FPe}\left(k^{*} x^{*}(1-x), x\right)$;
$S F P e:=\boldsymbol{p r o c}(f, x) \operatorname{local} f 1, L, i$:
$f 1:=\operatorname{diff}(f, x)$:
$L:=[\operatorname{solve}(f=x, x)]:$
$[\operatorname{seq}([L[i], \operatorname{normal}(\operatorname{subs}(x=L[i], f 1))], i=1 . . \operatorname{nops}(L))]:$
end:
\#Added after class
\#Orbk(k,z,f,INI,K1,K2): Given a positive integer k, a letter (symbol), z, an expression fof z [1], ..., z[k] (representing a multi-variable function of the variables $z[1], \ldots, z[k]$
\#a vector INI representing the initial values [x[1],.., $x[k]]$, and (in applications) positive integres K1 and K2, outputs the
\#values of the sequence starting at $n=K 1$ and ending at $n=K 2$. of the sequence satisfying the difference equation
$\# \# x[n]=f(x[n-1], x[n-2], \ldots, x[n-k+1])$:
\#This is a generalization to higher-order difference equation of procedure Orb(f,x,x0,K1,K2) . For example
\#Orbk(1,z,5/2*z[1]*(1-z[1]),[0.5],1000,1010); should be the same as
$\# \operatorname{Orb}\left(5 / 2 *_{z}[1] *(1-z[1]), z[1],[0,5], 1000,1010\right)$;
\#Try:
$\# \operatorname{Orbk}\left(2, z,(5 / 4) *_{z[1]-(3 / 8)} *_{z}[2],[1,2], 1000,1010\right)$;
Orbk := $\mathbf{p r o c}(k, z, f, I N I, K 1, K 2)$ local L, i, newguy:
$L:=I N I: ~ \# W e ~ s t a r t ~ o u t ~ w i t h ~ t h e ~ l i s t ~ o f ~ i n i t i a l ~ v a l u e s ~$
if not (type (k, integer) and type (z, symbol) and type (INI, list) and nops (INI) $=k$ and type (K1, integer) and type ($K 2$, integer $)$ and $K 1>0$ and $K 2>K 1$) then \#checking that the input is OK print (${ }^{\text {bad input }) ~: ~}$
RETURN(FAIL) :
fi:
while $\operatorname{nops}(L)<K 2$ do
newguy $:=\operatorname{subs}(\{\operatorname{seq}(z[i]=L[-i], i=1 . . k)\}, f):$
\#Using what we know about the value yesterday, the day before yesterday, ... up to k days before yesterday we find the value of the sequence today $L:=[o p(L)$, newguy $]: \#$ we append the new value to the running list of values of our sequence od:
[op(K1 ..K2, L)]:
end:
\#\#\#\#STAFT FROM M9.txt
\#M9.txt: Maple Code for "Dynamical models in Biology" (Math 336) taught by Dr. Z., Lecture 9
Help9 := $\mathbf{p r o c}()$:
$\operatorname{print}(` \operatorname{Orb}(f, x, x 0, K 1, K 2), \operatorname{Orb2D}(f, x, x 0, K), F P(f, x), \operatorname{SFP}(f, x), \operatorname{Comp}(f, x)$ `) :end:
\#Orb(f,x,x0,K1,K2): Inputs an expression fin x (desccribing) a function of x, an initial point, $x 0$, and a positive integer K, outputs
\#the values of $x[n]$ from $n=K 1$ to $n=K 2$. Try: where $x[n]=f(x[n-1])$, . Try:
\#Orb($\left.2 * x^{*}(1-x), x, 0.4,1000,2000\right)$;
Orb $:=\boldsymbol{p r o c}(f, x, x 0, K 1, K 2)$ local $x 1, i, L$:
$x 1:=x 0$:
for i from 1 to $K 1$ do
$x 1:=\operatorname{subs}(x=x 1, f)$:
\#we don't record the first values of K1, since we are interested in the long-time behavior of the orbit
od:
$L:=[x 1]:$
for i from $K 1$ to $K 2$ do
 $L:=[o p(L), x l]: \#$ we append it to the list
od:
L : \#that's the output
end:
\#Orb2D(f,x,x0,K): 2D version of $\operatorname{Orb}(f, x, x 0,0, K)$, just for illustration
Orb2D := $\operatorname{proc}(f, x, x 0, K)$ local $L, L 1, i$:
$L:=\operatorname{Orb}(f, x, x 0,0, K):$
$L 1:=[[L[1], 0],[L[1], L[2]],[L[2], L[2]]]:$
for i from 3 to $\operatorname{nops}(L)$ do
$L 1:=[o p(L 1),[L[i-1], L[i]],[L[i], L[i]]]:$
od:
L1:
end:
$\# F P(f, x)$: The list of fixed points of the map $x->f$ where f is an expression in x. Try:
\#FP($\left.2^{*} x^{*}(1-x), x\right)$;
$F P:=\boldsymbol{p r o c}(f, x)$
$\operatorname{evalf}([\operatorname{solve}(f=x)])$:
end:
$\# S F P(f, x)$: The list of stable fixed points of the map $x->f$ where f is an expression in x. Try:
$\# \operatorname{SFP}\left(2^{*} x^{*}(1-x), x\right)$;
$S F P:=\operatorname{proc}(f, x)$ local $L, i, f 1, p t, L s$:
$L:=F P(f, x):$ \#The list of fixed points (including complex ones)
$L s:=[]: \quad \# L s$ is the list of stable fixed points, that starts out as the empty list

for i from 1 to $\operatorname{nops}(L)$ do
$p t:=L[i]:$
if $\operatorname{abs}(\operatorname{subs}(x=p t, f l))<1$ then
$L s:=[o p(L s), p t]: \#$ if pt, is stable we add it to the list of stable points
fi:
od:
Ls: \#The last line is the output
end:
\#Comp(f, $x): ~ f(f(x))$
$\operatorname{Comp}:=\boldsymbol{p r o c}(f, x): \operatorname{normal}(\operatorname{subs}(x=f, f))$:end:
\#QUESTION 1:
\#For each of the two functions, findall the fixed points, and for
each of
\#them, decide whether they are stable fixed points.
$>$ \#(i) $\quad x \Rightarrow x^{3}-6 x^{2}$
$\#$

$\#$

\#Fixed points
print("fixed points");
FP ($\left.x^{\wedge} 3-6 * x^{\wedge} 2+12 * x-6, x\right)$;
\#Stable Fixed Points
print("stable fixed points") ;
$\operatorname{SFP}\left(x^{\wedge} 3-6 * x^{\wedge} 2+12 * x-6, x\right)$;
\#Answer: 2 is our ONLY FIXED POINT
\#Just to verify:
\#When IC is 1
Orb (x^3 - 6*x^2 + 12*x - 6, x, 1.000001,1000,1020);
\#When IC is 1.0001

> "fixed points"
[1., 2., 3.]
"stable fixed points"
[2.]
[2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000,
$2.000000000,2.000000000,2.000000000,2.000000000,2.000000000,2.000000000$,
2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000]
$>\#(i i) x \Rightarrow x^{4}-\frac{13}{36} x^{2}+x+\frac{1}{36}$
\#
\#
\#Fixed Points
print("fixed points");
$\operatorname{FP}\left(x^{\wedge} 4-13 / 36 * x^{\wedge} 2+x-1 / 36, x\right)$;
print("stable fixed points");
\#Stable Fixed Points $\operatorname{SFP}\left(x^{\wedge} 4-13 / 36 * x^{\wedge} 2+x-1 / 36, x\right) ;$
"fixed points"
[0.2552723494 I, -0.2552723494 I, 0.6528974525, - 0.6528974525]
"stable fixed points"

$$
[-0.6528974525]
$$

\#QUESTION 2:
\#Find the linearizations of the given functions at the designated points, and compare the exact value with the approximate value given by the linearization
$>\# f(x, y)=\sqrt{x+4 y}$ at $\cdot(1,2)$. The values at $\cdot(0.95,1.02)$
\#Exact value
\#What tool will we use to find the exact value of the function? probably fsolve
fun $:=\sqrt{x+4}$;

$$
\begin{equation*}
\text { fun }:=\sqrt{x+4} \tag{3}
\end{equation*}
$$

$>$ solve (fun, x);
\#The solve finds the root. so how do we find the place where $\sqrt{x+4}=1$?
solve (fun $=1, x$)
\#THAT IS THE CORRECT WAY TO USE THE SOLVE COMMAND

$$
\begin{align*}
& -4 \\
& -3 \tag{4}
\end{align*}
$$

\#Now we have to use the solve command to find the appropriate x and y (solving a system)
$>$ multifun $:=\sqrt{x+y}$;

$$
\begin{equation*}
\text { multifun }:=\sqrt{x+y} \tag{5}
\end{equation*}
$$

solve (multifun $=1,[x, y])$;
\#Cool I understand how that works.

$$
\begin{equation*}
[[x=-y+1, y=y]] \tag{6}
\end{equation*}
$$

-> \#Now, How do i figure out
$>$ solve(multifun, $[x=1, y=2]$);
Warning, solving for expressions other than names or functions is not recommended.
\#I have to try something else. I know how to do this in my head, and with substitution
\#I know that I could just create a proc to fix everything. maybe that is the best way
$>$ multifunProc $:=\operatorname{proc}(x, y) \operatorname{local} F$:
$F:=\sqrt{x+y}:$
end:
[No i dont need to do that, I learned how to use the subs command
$>F 1:=\sqrt{x+y}$

$$
\begin{equation*}
F 1:=\sqrt{x+y} \tag{8}
\end{equation*}
$$

\#In hindsight, trying to use the solve command for that purpose is kinda stupid? YES! Use the subs() command instead!
\#Now for the Linearizations (DO PARTIAL derivatives!)

$$
\begin{align*}
& {\left[>\text { \#here, we will find the sum } \sqrt{x_{0}+y_{0}}+\frac{\partial}{\partial x}(\sqrt{x+y})\left(x-x_{0}\right)+\frac{\partial}{\partial y}(\sqrt{x+y})\left(y-y_{0}\right)\right.} \\
& {[>\text { \#Which evaluates to }} \\
& >\text { Linearized } 1:=\left(\sqrt{x_{0}+y_{0}}\right)+\frac{1}{2} \cdot(x+y)^{-\frac{1}{2}} \cdot\left(x-x_{0}\right)+\frac{1}{2}(x+y)^{-\frac{1}{2}} \cdot\left(y-y_{0}\right) \\
& \text { Linearized } 1:=\sqrt{x_{0}+y_{0}}+\frac{x-x_{0}}{2 \sqrt{x+y}}+\frac{y-y_{0}}{2 \sqrt{x+y}} \tag{9}
\end{align*}
$$

ENow just substitute
$>$ plugged1 $:=$ subs ($\left\{\mathrm{x} _0=0.95, \mathrm{y} \quad 0=1.02\right\}$, Linearized1);
print("answer to 2 part (i)");
print("1st degree linear approximation");
evalf(subs (\{x = 1,y = 2\}, plugged1));
print("maple default");
evalf(subs (\{x=1,y=2\},F1));

$$
\text { plugged } 1:=1.403566885+\frac{x-0.95}{2 \sqrt{x+y}}+\frac{y-1.02}{2 \sqrt{x+y}}
$$

"answer to 2 part (i)"

"1st degree linear approximation"

$$
\begin{align*}
& \text { "maple default" } \\
& 1.732050808 \tag{10}\\
& {\left[>F 2:=x^{3} \cdot y^{4} \cdot z^{5} ;\right.} \\
& F 2:=x^{3} y^{4} z^{5} \tag{11}\\
& \stackrel{>}{>} \text { Linearized2 }:=\operatorname{subs}\left(\left\{x=x _0, y=y \quad 0, z=z \quad 0\right\}, F 2\right)+1 / 2 *(\operatorname{diff}(F 2, x) \text { * } \\
& \text { (} \left.\left.x-x _0\right)+\operatorname{diff}(F 2, Y) \text { * }(y-y — 0)+\operatorname{diff}(F 2, z) \text { * }\left(z-z _0\right)\right) ; \\
& \text { Linearized } 2:=x_{0}^{3} y_{0}^{4} z_{0}^{5}+\frac{3 x^{2} y^{4} z^{5}\left(x-x_{0}\right)}{2}+2 x^{3} y^{3} z^{5}\left(y-y_{0}\right)+\frac{5 x^{3} y^{4} z^{4}\left(z-z_{0}\right)}{2} \tag{12}
\end{align*}
$$

> Linearized2);
> plugged $2:=1.060573524+\frac{3 x^{2} y^{4} z^{5}(x-1.01)}{2}+2 x^{3} y^{3} z^{5}(y-1.02)$
> $+\frac{5 x^{3} y^{4} z^{4}(z-0.99)}{2}$

$$
\begin{align*}
& F 3:=\sqrt{x 1+x 2+x 3+x 4} \\
& \sqrt{1+x 2+x 3+x 4} \tag{15}\\
& 1.030573524 \\
& \text { "maple default" } \\
& 1 . \\
& \text { "1st degree linear approximation" } \\
& 1 . \tag{14}
\end{align*}
$$

$$
\begin{align*}
& +\frac{x 3-x 3_{0}}{4 \sqrt{x 1+x 2+x 3+x 4}}+\frac{x 4-x 4_{0}}{4 \sqrt{x 1+x 2+x 3+x 4}} \tag{16}\\
& \gg \text { plugged3 := subs }\left(\left\{\times 1 _0=1.01, \times 2 _0=1.01, \times 3 _0=0.99, \times 4 _0=0.99\right\}\right. \text {, } \\
& \text { plugged } 3:=2.000000000+\frac{x 1-1.01}{4 \sqrt{x 1+x 2+x 3+x 4}}+\frac{x 2-1.01}{4 \sqrt{x 1+x 2+x 3+x 4}} \tag{17}
\end{align*}
$$

$$
+\frac{x 3-0.99}{4 \sqrt{x 1+x 2+x 3+x 4}}+\frac{x 4-0.99}{4 \sqrt{x 1+x 2+x 3+x 4}}
$$

print("answer to 2 (iii)");
print("first degree linear approximation");
evalf(subs ($\{x 1=1, x 2=1, x 3=1, x 4=1\}, p l u g g e d 3))$;
print("maple default");
evalf(subs ($\{x 1=1, x 2=1, x 3=1, x 4=1\}, F 3$));
"answer to 2 (iii)"
"first degree linear approximation"
2.000000000
"maple default"
2.000000000
> \#QUESTION 3
\#What is the Jacobian MATRIX (NOT Jacobian determinant) of the following transformation
$\#(x, y) \rightarrow\left(\frac{x}{y+1}, \frac{y}{x+1}\right)$
\#My guess is that we first create a system of equations by using the solve command to get our fixed points?
\#Is finding a fixed point even relevant? Do we even need to make a system of equations
\#Since we are dealing with 2 unknowns x and y, we should have 2 equations
$\left[>\operatorname{solve}\left(\left\{\frac{x}{y+1}, \frac{y}{x+1}\right\},\{x, y\}\right)\right.$;

$$
\begin{equation*}
\{x=0, y=0\} \tag{19}
\end{equation*}
$$

\#OK great, but there is more than one solution, not just $\{x=0, y=$ $0\}$. we can have $\{x=y, y=x\}$ work for all values except $x=y=-1$ \#Although, does $x=y$ tell us anything? Of course it is not the original transformation, but is it special in any way? \#Not relevant to problem
\#Maybe the question is much less complicated than I imagine it to be. *THE ANSWER IS BELOW*
$\left[>\#\left[\begin{array}{cc}\frac{\partial}{\partial x}\left(\frac{x}{y+1}\right) & \frac{\partial}{\partial y}\left(\frac{x}{y+1}\right) \\ \frac{\partial}{\partial x}\left(\frac{y}{x+1}\right) & \frac{\partial}{\partial y}\left(\frac{y}{x+1}\right)\end{array}\right]\right.$
is the CORRECT JACOBIAN MATRIX
\# There is no need to do further computation WRONG I still need to evaluate it at the point $(1,1)$ \#COMPUTED MATRIX $\downarrow \downarrow \downarrow$

$$
\#\left[\begin{array}{cc}
\frac{1}{y+1} & -\frac{x}{(y+1)^{2}} \\
-\frac{y}{(x+1)^{2}} & \frac{1}{x+1}
\end{array}\right]
$$

\#Which at point $(1,1)$ evaluates to $\downarrow \downarrow \downarrow$
$\#\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$

\#QUEStion 4
 \#What is the jacobian matrix of

$\left[(x, y, z) \rightarrow\left(x+y+z, \quad x^{2}+y^{2}+z^{2}, \quad x^{3}+y^{3}+z^{3}\right)\right.$ at point $\cdot(1,1,1)$
\#our Jacobian matrix before evaluating the derivatives is:

$$
\left.\begin{array}{ccc}
\frac{\partial}{\partial x}(x+y+z) & \frac{\partial}{\partial y}(x+y+z) & \frac{\partial}{\partial z}(x+y+z) \\
\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right) & \frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}\right) & \frac{\partial}{\partial z}\left(x^{2}+y^{2}+z^{2}\right) \\
\frac{\partial}{\partial x}\left(x^{3}+y^{3}+z^{3}\right) & \frac{\partial}{\partial y}\left(x^{3}+y^{3}+z^{3}\right) & \frac{\partial}{\partial z}\left(x^{3}+y^{3}+z^{3}\right)
\end{array}\right]
$$

Which evaluates to
$\left[\left[\begin{array}{ccc}1 & 1 & 1 \\ 2 x & 2 y & 2 z \\ 3 x^{2} & 3 y^{2} & 3 z^{2}\end{array}\right]\right.$
$=$ Which at point $(1,1,1)$ evaluates to $\downarrow \downarrow \downarrow$

$$
\left.\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right]
$$

> QUESTION 5: In your words explain why it makes that a fixed point VVV
$>$ \#` $\left(x_{0}, y_{0}\right)$
\#Of a transformation
$>\#(x, y) \rightarrow(f(x, y), g(x, y))$
$>$ \#i.e. a point in R^2 such that
$>\# x_{0}=f\left(x_{0}, y_{0}\right)$ and $y_{0}=g\left(x_{0}, y_{0}\right)$ creates a stable fixed point $\cdot\left(x_{0}, y_{0}\right)$
if all of the eigenvalues are less than 1
The fixed point is a stable fixed point if all of the eigenvalues of a matrix have absolute value less than 1 because if the eigenvalue diagonal matrix A of the Jacobian matrix is part of a recurrence $A(n)=A(n-1)(x, y)$
the solutions will tend to zero, implying stability
> \#Questions for Dr Z:
\#Are there any instances when imaginary fixed points are important?
\#My best guess could be yes, but not in biology, but what if there is an important application of imaginary fixed points in

biology

\#Dr Z said that fixed points being imaginary numbers appear in electrodynamics. ex. impedance
\#On Stack exchange, they say that the Jacobian can be used to linearize stuff at complex

