[> #work until 11:00 am

(> #M11oxt: Maple code for Lecture 11 of Dynamical Models in Biology taught by Dr. Z.
Helpll =proc( ) : print(" SFPe(f,x), Orbk(k,z,f,INLKI,K2) ") :end:

#M11.txt: Maple code for Lecture 11 of Dynamical Models in Biology taught by Dr. Z.
Helpll =proc( ) : print(" SFPe(f,x), Orbk(k,z,f,INLKI,K2) ") :end:

#SFPe(f,x): The set of fixed points of x->f(x) done exactly (and allowing symbolic
parameters), followed by the condition of stability (if it is netween -1 and 1 it is stable)
#Try: FPe(k*x*(1-x),x),
SFPe :=proc( f,x) localfl, L,i:
J1 = diff (f,x) -
L := [solve(f=x,x)]:
[seq([L[i], normal(subs(x=L[i],f1))],i=1..nops(L))]:

end:

#Added after class

#Orbk(k,z,f,IN[LK1,K2): Given a positive integer k, a letter (symbol), z, an expression f of z
[1], ..., z[k] (representing a multi-variable function of the variables z[1],...,z[k]

#a vector INI representing the initial values [x[1],..., x[k]], and (in applications) positive
integres K1 and K2, outputs the

#values of the sequence starting at n=K1 and ending at n=K2. of the sequence satisfying the
difference equation

#ix[n]=f(x[n-1],x[n-2],..., x[n-k+1]):

. For example
#Orbk(1,z,5/2*z[1]*(1-z[1]),[0.5],1000,1010),; should be the same as
#Orb(5/2*%z[1]*(1-z[1]),z[1],[0,5],1000,1010),
#Try:
#Orbk(2,z,(5/4)*z[1]-(3/8)*z[2],[1,2],1000,1010),
Orbk :==proc(k, z, f, INI, K1, K2) local L, i, newguy :
L == INI: #We start out with the list of initial values

if not (#ype(k, integer) and type(z, symbol) and type(INI, list) and nops(INI) =k and type(K1,
integer) and type(K2, integer) and K/ > 0 and K2 > K/ ) then
#checking that the input is OK

print( 'bad input”) :

RETURN (FAIL) :

fi:

while nops(L) < K2 do
newguy = subs({seq(z[i]|=L[-i],i=1.k)},f):

#This is a generalization to higher-order difference equation of procedure Orb(f,x,x0,K1,K2)



#Using what we know about the value yesterday, the day before yesterday, ... up to k days
before yesterday we find the value of the sequence today
L= [op(L), newguy] : #we append the new value to the running list of values of our sequence
od:

[op(KI.K2,L)]:

end:

HHH#HSTAFT FROM M9.txt
#MO9.txt: Maple Code for "Dynamical models in Biology" (Math 336) taught by Dr. Z., Lecture 9

Help9 :=proc( ) :
print(" Orb(f,x,x0,K1,K2), Orb2D(f,x,x0,K) , FP(f,x) , SFP(f,x) , Comp(f,x) ") :end:

#Orb(f,x,x0,K1,K2): Inputs an expression fin x (desccribing) a function of x, an initial point,
x0, and a positive integer K, outputs

#the values of x[n] from n=KI to n=K2. Try: where x[n]=f(x[n-1]), . Try:

#Orb(2*x*(1-x),x,0.4,1000,2000),

Orb :==proc( 1, x,x0,KI, K2) localx/, i, L:

xl :=x0:

for i from 1 to K/ do

xI = subs(x=x1,f) :
#we don't record the first values of K1, since we are interested in the long-time behavior of
the orbit

od:

L:=[xI]:

for i from K/ to K2 do

xl == subs(x=x1,f): #we compute the next member of the orbit
L := [op(L),xI]:#we append it to the list

od:

L : #that's the output

end:

#Orb2D(f,x,x0,K).: 2D version of Orb(f,x,x0,0,K), just for illustration
Orb2D :=proc(f, x,x0,K) local L, L1, i :

L:= Orb(f,x,x0,0,K) :

L1 = [[L[1],0], [Z[1], L[2]}, [L[2}, L[2]] ]:

for i from 3 tonops(L) do

L1 = [op(L1), [L[i- 1], L[i]}, [L[i], L[i]]]:

od:

Ll:

end:



#EP(f,x): The list of fixed points of the map x->fwhere f'is an expression in x. Try:
#EP(2*x*(1-x),x),

FP :=proc(f, x)

evalf ([solve(f=x)]) :

end:

#SFP(f,x): The list of stable fixed points of the map x->fwhere f'is an expression in x. Try:
#SFP(2*x*(1-x),x);

SFP :=proc(f,x) local L, i, f1, pt, Ls :

L := FP(f,x) : #The list of fixed points (including complex ones)

Ls:=1]: #Ls is the list of stable fixed points, that starts out as the empty list
f1 = diff (f,x) : #The derivative of the function f w.r.t. x

for i from 1 to nops(L) do
pt=1L[i]:

if abs(subs(x=pt, f1)) < 1 then

Ls := [op(Ls), pt]: #if pt, is stable we add it to the list of stable points
fi:

od:

Ls: #The last line is the output

end:

#Comp(1,x): f(f(x))

Comp :=proc( f, x) : normal(subs(x=f,f) ) :end:

#QUESTION 1:

#For each of the two functions, findall the fixed points, and for
each of

#them, decide whether they are stable fixed points.

#(i) x=2xX —6xX+12x—6
#
#

#Fixed points

print ("fixed points");

FP(x"3 - 6*x*2 + 12*x - 6, X);

#Stable Fixed Points

print ("stable fixed points");

SFP(x*3 - 6*x"*2 + 12*x - 6, X);

#Answer: 2 is our ONLY FIXED POINT

#Just to verify:

#When IC is 1

Orb (x*3 - 6*x*2 + 12*x - 6, x, 1.000001,1000,1020);



#When IC is 1.0001

"fixed points"
[1.,2.,3.]
"stable fixed points"
[2.]

[2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000, 0))
2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000,
2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000, 2.000000000,
2.000000000, 2.000000000, 2.000000000, 2.000000000 ]

IR £ RO
> #(ii) x >x 36x--|—x+ 36
#

#

#Fixed Points

print("fixed points");

FP(x"4 - 13/36*x"2 + x - 1/36, x);

print("stable fixed points") ;

#Stable Fixed Points

SFP (x4 - 13/36*x"2 + x - 1/36, x);
"fixed points"

[0.2552723494 1, -0.2552723494 1, 0.6528974525, —0.6528974525 ]
"stable fixed points"
[ —0.6528974525] ?2)

> #QUESTION 2:
#Find the linearizations of the given functions at the designated
points, and compare the exact value with the approximate wvalue
given by the linearization

| > # flxy)=Jx+4y at -(1,2). Thevaluesat -(0.95,1.02)
> #Exact value

#What tool will we use to find the exact value of the function?
probably fsolve

> fun=.x+4;
fun = /x+4 3)

> solve( fun , x);
#The solve finds the root. so how do we find the place where | x + 4 =17?
solve( fun=1,x)
#THAT IS THE CORRECT WAY TO USE THE SOLVE COMMAND
—4
—3 (C))
> #Now we have to use the solve command to find the appropriate x
and y (solving a system)

> multifun ==\ x+y;

VAN



multifun == \/x +y &)

> solve(multifun =1, [x, y]);

#Cool I understand how that works.
i [[x=-y+ Ly=y]] ()
;> #Now, How do i figure out

> solve(multifun, [x=1,y=2]);
Warning, solving for expressions other than names or functions is
not recommended.
[] @)

> #I have to try something else. I know how to do this in my head,
and with substitution
#I know that I could just create a proc to fix everything. maybe
that is the best way

> multifunProc = proc(x, y) local F':
F=\x+y:

end:
[ No 1 dont need to do that, I learned how to use the subs command

> Fl={x+y
Fl=[x+y 3)

=> #In hindsight, trying to use the solve command for that purpose
is kinda stupid? YES! Use the subs() command instead!

i> #Now for the Linearizations (DO PARTIAL derivatives!)

0 ad
> #here, we will find the sum | x; +y, + a(\/x-i-y)(x—xo) + a_y(\/x+y)()’_yo)

:> #Which evaluates to
1 1

1 B 1
> Linearizedl = ( /xb4—yb) +—Ez-(x-+)0 2'(x-—xb)'+ E{(x‘+JU 2'(Y'_Jb)
X—x Y=,

Linearizedl ==m+ 2\/% * ZW ”

| Now just substitute

> pluggedl := subs({x_0=0.95,y 0=1.02},Linearizedl);
print("answer to 2 part (i)");
print ("1lst degree linear approximation");
evalf(subs({x = 1,y = 2} ,pluggedl)) ;
print ("maple default");
evalf (subs ({x=1,y=2},F1));

pluggedl == 1.403566885 +

x—0.95 n y—1.02
2(yx+y 2(x+y
"answer to 2 part (i)"

"Ist degree linear approximation”
1.700902274




"maple default"
1.732050808 (10)

F2:=x'7 (11)

=> Linearized2 := subs({x=x_ 0,y=y_0,z=z_ 0} ,F2) +1/2* (diff (F2,x)*
(x-x__0)+diff(F2,y)*(y-y__0)+diff(F2,z)*(z-z__ 0));

3 x2y425 (x — xo)
2

> plugged2 := subs({x__ 0 =1.01,y 0 =1.02 ,z
Linearized2) ;

33 s 5x3y4z4(z—20)
+2x y z (y—yo)-i- > (12)
0

. . 4
Linearized2 = xo3 Yy 205 +

= 0.99},

2 45
3 — 1.01
Yz L 108 (- 1.02) 13)

plugged? := 1.060573524 +

5 x3y4 z (z—0.99)

2

> print("answer to 2 part (ii)");
print ("1lst degree linear approximation");
evalf (subs ({x=1,y=1,z=1},plugged2)) ;
print ("maple default");
evalf (subs ({x=1,y=1,z=1},F2));

"answer to 2 part (ii)"

_|_

"1st degree linear approximation"
1.030573524
"maple default"
1. (14)

> F3:=xI+x2+x3+x4;

F3:=xI +x2+x3+x4

J14+x2+x3+ x4 as)
[> Linearized3 :=subs ({x1=x1 0,x2=x2 0,x3=x3_ 0,x4=x4__0},F3) +1/2%
(diff (F3,x1) * (x1-x1__ 0)+diff (F3,x2) * (x2-x2 0)+diff (F3,x3) * (x3-

x3  0)+diff (F3,x4)*(x4-x4__0));

x1 —x]o x2 —x20
Linearized3 = \/x10+x20+x30+x40 + + (16)
4 xl+x2+ x3+ x4 4 xl+x2+ x3+ x4
x3 —x30 x4—x40

+ +
4 xl+x2+x3+ x4 4 xl+x2+ x3+ x4

=> plugged3 := subs({xl_0=1.01,x2 0=1.01,x3 0=0.99,x4 0=0.99},
Linearized3);

1—1.01 2—1.01
plugged3 = 2.000000000 + al + * a7)

4 xI+x2+x3+ x4 4 xI+x2+x3+ x4




x3 —0.99 + x4 —0.99
4 xl+x2+ x3+ x4 4 xl+x2+ x3+ x4

=> print("answer to 2 (iii)");
print ("first degree linear approximation") ;

+

evalf (subs ({x1=1,x2=1,x3=1,x4=1} ,plugged3)) ;
print("maple default");
evalf (subs ({x1=1,x2=1,x3=1,x4=1} ,F3));

"answer to 2 (iii)"
"first degree linear approximation"
2.000000000
"maple default"
2.000000000 (18)

> #QUESTION 3
#What is the Jacobian MATRIX (NOT Jacobian determinant) of the
following transformation

X Y
> # -
(x.) (y+l’x+lj

> #My guess is that we first create a system of equations by using
the solve command to get our fixed points?
#Is finding a fixed point even relevant? Do we even need to make
a system of equations

> #Since we are dealing with 2 unknowns x and y, we should have 2
equations

> solve({y_)f_ T x-JI}—I }, {x,y});
{x=0,y=0} )

> #OK great, but there is more than one solution, not just {x=0,y=
0}. we can have {x=y,y=x} work for all values except x=y=-1
#Although, does x=y tell us anything? Of course it is not the
original transformation, but is it special in any way? #Not
relevant to problem

> #Maybe the question is much less complicated than I imagine it to
be. *THE ANSWER IS BELOW*

0 X 0 X
5;(y+1) 5;(y+1)
> # p y 3 ’ is the CORRECT JACOBIAN MATRIX
E;;(.x+-l) 53;(x-+1 )
>ﬁwMBWOMMh0dUMMmemmmMMWTONGIWWn%dmemhﬂeﬂmﬂwpmm(LU
COMPUTED MATRIX L1l
1 x

H FH*

y+1 (y+1)°

y 1
(x+1)> x+1




#Which at point (1,1) evaluates to 111
1 -1
-1 1

#

[> #QUEStion 4
#What is the jacobian matrix of

=(x,y,z)—>(x +y+z e +y2 + 22, X +y3 +z3) at point- (1,1, 1)
| > #four Jacobian matrix before evaluating the derivatives is:

a—ax(x—l—y—l—z) a—ay(x+y—|—z) %(x+y+z)
i(xz—i-yz—i-zz) i(xz—i-yz—i-zz) i(xz—i-yz—l-zz)
0x oy 0z
a—ax(x3+y3+z3) a—ay(x3+y3+z3) %(x3+y3+z3)
:Which evaluates to
111
2x 2y 2z
3x% 337 37
:Which atpoint (1,1, 1) evaluatesto |||
(111
2 2 2
333

> QUESTION 5: In your words explain why it makes that a fixed point
vvv

_> #° ‘(xo,yo)
;> #0f a transformation

> #(x, )= (f(x%)), (%))
|> #i.e. a point in R"2 such that

> # X, =f(x0, yo) and y,, =g(xo , yo) creates a stable fixed point - (xo , yo)
if all of the eigenvalues are less than 1

[ The fixed point is a stable fixed point if all of the eigenvalues of a matrix have absolute value less than
1 because if the eigenvalue diagonal matrix 4 of the Jacobian matrix is part of a recurrence
A(n)=A(n—1)(x,)

| the solutions will tend to zero, implying stability

> #Questions for Dr Z:
#Are there any instances when imaginary fixed points are
important?
#My best guess could be yes, but not in biology, but what if
there is an important application of imaginary fixed points in



biology

#Dr Z said that fixed points being imaginary numbers appear in
electrodynamics. ex. impedance

#On Stack exchange, they say that the Jacobian can be used to
linearize stuff at complex



