#OK to post #Julian Herman, 10/11/21, Assignment 10

1)
$$x(n) = \frac{x(n-1)}{x(n-1)+c}$$
 To be a stable fixed point,
the absolute value of the
derivative evaluated at the
fixed point must be <1.
 $f(x) = \frac{x}{x+c}$ $f'(x) = \frac{x+c-x}{(x+c)^2} = \frac{c}{(x+c)^2}$
 $\left| \frac{c}{(o+c)^2} \right| <1$
 $\left| \frac{c}{c^2} \right| <1$
 $\left| \frac{c}{c^2} \right| <1$
 $\left| \frac{1}{c} \right| <1$
 $\left| \frac{1}{$

a) i.)
$$(x, y) \rightarrow (-\frac{16}{3}x + 5y, -7x + \frac{13}{2}y)$$

* For some mupping, such as the above, a fixed
point is stable iff the absolute value of
each and every eigenvalue of the jacobian
matrix evaluated at the fixed point is less
than 1 ... This cores from
the fact that the Lineorization (Teylor
expossion) of the equations representing
the original mapping evaluated at some
point near fixed point (x_{iy}) are equal to the
function evaluated at the fixed point plus
the respective point (x_{iy}) are equal to the
function evaluated at the fixed point plus
the fixed point cilluter the portial derivatives. If the
leigenvalues of the jacobian evaluated at
the fixed point cillutent the portial derivative
the fixed point is itself... see bolow:
Let $(\overline{x}, \overline{y})$ be fixed points
Liberization at some point (x',y') neur ($\overline{x},\overline{y}$):
 $5(\overline{x}+x', \overline{y}+y') = f(\overline{x},\overline{y}) + \frac{\partial F}{\partial x} | \overline{x}, \overline{y} x' + ...$

This small deviation
$$(x',y')$$
 from (\bar{x},\bar{y})
must still result in (\bar{x},\bar{y}) in order for
 (\bar{x},\bar{y}) to be stable. So when the
leignvalues of jacobian $(<)$, these partial
derivative terms, after multiple iterations,
have a smaller and smaller effect, eventually
going to 0 resulting in the function
still mapping to itself, hence, the
fixed point (\bar{x},\bar{y}) is stable:
 $f(\bar{x}+x',\bar{y}+y') = f(\bar{x},\bar{y}) + (\approx 0) = f(\bar{x},\bar{y})$
i) det $\begin{pmatrix} -\frac{16}{3}-\lambda \\ -7 \end{pmatrix} \begin{pmatrix} \frac{13}{2}-\lambda \end{pmatrix} \begin{pmatrix} \frac{13}{2}-\lambda \end{pmatrix} + 35=0$

$$= -\frac{104}{3} + \frac{16}{3}\lambda - \frac{13}{2}\lambda + \lambda^{2} + 35 = 0$$

$$\lambda^{2} - \frac{7}{6}\lambda + \frac{1}{3} = 0$$

$$6\lambda^{2} - 7\lambda + 2 = 0$$

$$6\lambda^{2} - 3\lambda - 4\lambda + 2$$

$$3\lambda(2\lambda - 1) - 2(2\lambda - 1)$$

$$(3\lambda - 2)(2\lambda - 1) = 0$$

$$\begin{pmatrix} |\frac{2}{3}\rangle \cap |\frac{1}{2}\rangle \end{pmatrix} \leq 1 \qquad (0,0) \text{ is STABLE}$$

$$(1) \quad det \begin{bmatrix} 12 \\ 3 \\ 35 \end{pmatrix} - 25 \\ 35 \end{pmatrix} = \begin{pmatrix} 42 \\ 3 \\ -3 \end{pmatrix} \begin{pmatrix} -52 \\ 2 \\ -\lambda \end{pmatrix} + 875 = 0$$

$$= -874 - \frac{13}{6}\lambda + \lambda^{2} + 875 = \lambda^{2} - \frac{13}{6}\lambda + 1 = 0$$

$$= (\lambda^{2} - 13\lambda + \zeta = 0)$$

$$(2\lambda^{-3})(3\lambda^{-2}) = 0$$

$$(\lambda^{-3})(3\lambda^{-2}) = 0$$

$$\begin{array}{l} \overbrace{(1)}^{111} \end{pmatrix} det \left[\begin{array}{c} -177 \\ -177 \\ -105 \\ 2 \end{array}, \begin{array}{c} 891 \\ 2 \end{array} \right]^{2} = \begin{array}{c} -15753 \\ 8 \end{array} - \frac{1}{4}\lambda + \lambda^{2} + \frac{2875}{4} = 0 \\ \hline \\ 8\lambda^{2} + 4\lambda - 6\lambda - 3 \\ 4\lambda (2\lambda + 1) - 3(2\lambda + 1) \\ (4\lambda - 3)(2\lambda + 1) = 0 \end{array} \right] = \begin{array}{c} -15753 \\ -\frac{1}{4}\lambda + \lambda^{2} + \frac{2875}{4} = 0 \\ \hline \\ \lambda_{1} = \frac{3}{4}, \lambda_{2} = -\frac{1}{2} \\ \hline \\ \lambda_{1} = \frac{3}{4}, \lambda_{2} = -\frac{1}{2} \\ \hline \\ \left(\frac{3}{4} |n|^{-\frac{1}{2}} |\right) \leq 1 \end{array}$$