Ok to post

1. $x=0$ is always a fixed point because 0 divided by any constant is always 0 .
$\mathrm{X}=\mathrm{x} /(\mathrm{x}+\mathrm{c})$
$x^{\wedge} 2+c x=x$
$x^{\wedge} 2+(c-1) x=0$
$x(x+(c-1))=0$
$X=0,-(c-1)$
For the other fixed point to be stable c must be $-2<\mathrm{c}<-1$ or 1 for $\mathrm{x}=0$

$$
\begin{aligned}
& \text { 2. i. }\left[\begin{array}{cc}
-\frac{16}{3} & 5 \\
-7 & \frac{13}{2}
\end{array}\right] \quad 1 / 3<1 \quad \text { stable } \\
& \text { ii }\left[\begin{array}{cc}
\frac{92}{3} & -25 \\
-35 & -\frac{57}{2}
\end{array}\right] \frac{17}{3}>1 \quad \text { not stipple } \\
& \text { iii. }-\left[\begin{array}{cc}
\frac{-179}{4} & \frac{25}{2} \\
\frac{-105}{2} & \frac{89}{2}
\end{array}\right] \begin{array}{ccc}
-\frac{27}{4} & <1 & \text { stable. } \\
-8 & <1 &
\end{array}
\end{aligned}
$$

