\#HW 10 Hrudai Battini
with (LinearAlgebra) :
\# 1
\#X=0 is always a fixed point of the equation $x(n)=x(n-1) /(x$
$(n-1)+c)$ as this simplfied to $x=x / x+c$ and solving for the fixed
\#points returns $x=0$ and 1-c. The stable fixed point takes the
derivative of $x(n)$ which equals $1 /(x+c)+x /(x+c)^{\wedge} 2$. For $x=0$ to
\#be a stable fixed point, $|1 / c|<1$. Therfore c is greater than 1
or less than negative 1. For 1-c, $c>1$ but less than 3.
\#2
a $:=1$ inalg[matrix] (2,2, [-16/3*0.3,5*0.6,-7*0.3,13/2*0.6]);
evalm(a^1000);

$$
a:=\left[\begin{array}{cc}
-1.600000000 & 3.0 \\
-2.1 & 3.900000000
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
-3.397667283 \times 10^{35} & 6.267256575 \times 10^{35} \tag{1}\\
-4.387079623 \times 10^{35} & 8.092303133 \times 10^{35}
\end{array}\right]
$$

$\mathrm{b}:=\operatorname{linalg}[m a t r i x](2,2,[92 / 3 * 0.3,-25 * 0.6,-105 / 2 * 0.3,89 / 2 * 0.6]) ;$ \#Osciallates Unstable evalm(b^1000);

$$
\begin{gathered}
b:=\left[\begin{array}{cc}
9.200000000 & -15.0 \\
-15.75000000 & 26.70000000
\end{array}\right] \\
{\left[\begin{array}{cc}
1.984332416 \times 10^{1551} & -3.330718487 \times 10^{1551} \\
-3.497254406 \times 10^{1551} & 5.870170649 \times 10^{1551}
\end{array}\right]}
\end{gathered}
$$

$[>c:=\operatorname{linalg}[m a t r i x](2,2,[-177 / 4 * 0.3,75 / 2 * 0.6,-105 / 2 * 0.3,89 / 2 * 0.6]$); evalm(c^1000);

$$
\begin{gathered}
c:=\left[\begin{array}{cc}
-13.27500000 & 22.50000000 \\
-15.75000000 & 26.70000000
\end{array}\right] \\
{\left[\begin{array}{ll}
-1.178923817 \times 10^{1128} & 1.998932780 \times 10^{1128} \\
-1.399252944 \times 10^{1128} & 2.372513420 \times 10^{1128}
\end{array}\right]}
\end{gathered}
$$

Hruda B Muw 10
2i) $\left[\begin{array}{ccc}-\frac{16}{3}-\lambda & 5 \\ -7 & \frac{13}{2} \lambda\end{array}\right]$

$$
\begin{aligned}
& \left(-\frac{16}{3}-\lambda\right)\left(\frac{13}{2}-2\right)-35=\lambda^{2}-\frac{7}{2}-\frac{10^{4}}{3}+35 \\
& 6 \lambda^{2}-7 \lambda+2 \quad 7^{2}-\frac{7}{355} \lambda+\frac{1}{3} \\
& (3 \lambda-2)(2 \lambda-1) \quad \lambda=\frac{1}{2}, \frac{2}{3}<1 \text { Stable }
\end{aligned}
$$

2ii $\left[\begin{array}{cc}92 & -\lambda \\ -25 \\ 35 & \frac{-57}{2}-\lambda\end{array}\right]$

$$
\begin{aligned}
& \left(\frac{92}{3}-\lambda\right)\left(\frac{-57}{2}-\lambda\right)-(-25)(-35) \\
& \lambda^{2}-\frac{13}{6} \lambda+875-674 \lambda^{2}-\frac{13}{0} \lambda+1 \\
& 6 \lambda^{2}-13 \lambda+6=(3 \lambda-2)(27-3)
\end{aligned}
$$

$$
\lambda=\frac{2}{3}, \frac{3}{2} \quad \frac{3}{2}>1 \text { Notstable }
$$

2iii. $\left[\begin{array}{ll}-\frac{177}{4}-\lambda & \frac{75}{2} \\ \frac{-705}{2} & \frac{89}{2}-\lambda\end{array}\right]$

$$
\frac{3}{4}-\frac{1}{4} \lambda-\frac{3}{8}
$$

$$
\begin{aligned}
&(4 \lambda-2 \lambda-3 \\
&(4 \lambda-3)(2 \lambda+1) \lambda=-\frac{1}{2}, \frac{3}{4}<1 \\
& \text { stable }
\end{aligned}
$$

