Julian Herman

Dynamical Models in Biology

Dr. Z
HW1

1. $c_{n}=c_{n-3} 3^{*} p_{3}+c_{n-2} *^{*} p_{2}+c_{n-1} *^{*} p_{1}$ with initial conditions: $c(n=0)=c_{0}, c(n=1)=c_{1}, c(n=2)=c_{2}$
c_{n} being the expected number of females born at time n
females born at $n=4: c(n=4)=c_{1}{ }^{*} p_{3}+c_{2}{ }^{*} p_{2}+c_{3}{ }^{*} p_{1}$
where $c_{3}=c(n=3)=c_{0}{ }^{*} p_{3}+c_{1}{ }^{*} p_{2}+c_{2}{ }^{*} p_{1}$
therefore $\mathrm{c}_{4}=\mathbf{c}(\mathrm{n}=4)=\mathrm{c}_{1}{ }^{*} \mathrm{p}_{3}+\mathrm{c}_{2}{ }^{*} \mathrm{p}_{2}+\left(\mathrm{c}_{0}{ }^{*} \mathrm{p}_{3}+\mathrm{c}_{1}{ }^{*} \mathrm{p}_{2}+\mathrm{c}_{2}{ }^{*} \mathrm{p}_{1}\right)^{*} \mathrm{p}_{1}$
2.
```
> \#F(n) is the number offemales born at time \(n\) based on the intial conditions
    \# co females born at \(n=0\); c1 females born at \(n=1\); c2 females born at \(n=2\);
    \(\# p 1\) is the probability of a one-year-old to give birth to a new female; similarly for \(p 2\) and \(p 3\).
    \(F:=\mathbf{p r o c}(c 0, c 1, c 2, p 1, p 2, p 3, n)\) option remember:
    if \(n=0\) then
    co:
    elif \(n=1\) then
    cl:
    elif \(n=2\) then
    c2:
    else
    \(\operatorname{expand}(p 3 \cdot F(c 0, c 1, c 2, p 1, p 2, p 3, n-3)+p 2 \cdot F(c 0, c 1, c 2, p 1, p 2, p 3, n-2)+p 1 \cdot F(c 0, c 1, c 2, p 1, p 2, p 3, n-1))\);
        fi:
        end
    > \(F(c 0, c 1, c 2, p 1, p 2, p 3,4)\)
                                    \(c 0 p 1 p 3+c 1 p 1 p 2+c 2 p l^{2}+p 3 c 1+p 2 c 2\)
```

3. Extinction:
(p1, p2, p3)= (.2, .4, .25)

Stability:
(p1,p2,p3)=
(.353, .33,
.329)

$$
>\operatorname{seq}(F(1,1,1, .2, .4, .25, i), i=950 \ldots 1000)
$$

$6.29289516910^{-33}, 5.81977859410^{-33}, 5.38223217910^{-33}, 4.97758166610^{-33}, 4.60335385310^{-33}, 4.25726148210^{-33}$,
$3.93718925310^{-33}, 3.64118090710^{-33}, 3.36742725210^{-33}, 3.11425512610^{-33}, 2.88011715310^{-33}, 2.66358229410^{-33}$, $2.46332710110^{-33}, 2.27812762610^{-33}, 2.10685193910^{-33}, 1.94845321410^{-33}, 1.80196332510^{-33}, 1.66648693510^{-33}$, $1.54119602110^{-33}, 1.42532480910^{-33}, 1.31816510410^{-33}, 1.21906195010^{-33}, 1.12740963410^{-33}, 1.04264798310^{-33}$, $9.64258937710^{-34}, 8.91763389210^{-34}, 8.24718248710^{-34}, 7.62713739810^{-34}, 7.05370894810^{-34}, 6.52339237110^{-34}$, $6.03294640310^{-34}, 5.57937346610^{-34}, 5.15990134710^{34}, 4.77196625610^{-34}, 4.41319715610^{-34}, 4.081401270100^{34}$, $3.77455068010^{-34}, 3.49076993310^{-34}, 3.22832457710^{-34}, 2.98561055810^{-34}, 2.76114442610^{-34}, 2.55355425210^{34}$, $2.36157126010^{-34}, 2.18402206010^{-34}, 2.01982147910^{-34}, 1.86796593510^{-34}, 1.72752729410^{-34}, 1.59764720310^{-34}$, $1.47753184210^{-34}, 1.36644707310^{-34}, 1.26371395210^{-34}$
$\stackrel{ }{=} \operatorname{seq}(F(1,1,1, .353, .33, .329, i), i=950 \ldots 1000)$
$308.5444920,310.4143846,312.2956093,314.1882349,316.0923305,318.0079657,319.9352103,321.8741346,323.8248096$, $325.7873064,327.7616967,329.7480524,331.7464462,333.7569510,335.7796401,337.8145876,339.8618675$, $341.9215547,343.9937244,346.0784522,348.1758142,350.2858869,352.4087476,354.5444735,356.6931426$, $358.8548336,361.0296252,363.2175967,365.4188282,367.6334000,369.8613928,372.1028882,374.3579677$, $376.6267139,378.9092095,381.2055380,383.5157829,385.8400288,388.1783606,390.5308634,392.8976233$, $395.2787265,397.6742603,400.0843117,402.5089689,404.9483205,407.4024553,409.8714633,412.3554341$, 414.8544589, 417.3686287
$\stackrel{>}{>} \operatorname{seq}(F(1,1,1, .47,35, .4, i), i=950 \ldots 1000)$
Explosion: $\quad 9.74044697410^{42}, 1.08117100310^{43}, 1.20007915610^{43}, 1.33206493310^{43}, 1.47856662410^{43}, 1.64118070210^{43}$,
$(p 1, p 2, p 3)=\quad 1.82167922210^{43}, 2.02202912910^{43}, 2.24441369910^{43}, 2.49125632310^{43}, 2.76524691810^{43}, 3.06937124410^{43}$,
$(.47, .35, .4) \quad 3.40694343510^{43}, 3.78164211610^{43}, 4.19755049510^{43}, 4.65920084810^{43}, 5.17162391810^{43}, 5.74040373610^{43}$, $6.37173846610^{43}, 7.07250795410^{43}, 7.85034869510^{43}, 8.71373705710^{43}, 9.67208164210^{43}, 1.07358258210^{44}$, $1.19165615310^{44}, 1.32271556110^{44}, 1.46818900010^{44}, 1.62966173810^{44}, 1.80889339110^{44}, 2.00783710210^{44}$, $2.22866082010^{44}, 2.47377092710^{44}, 2.74583846410^{44}, 3.04782823010^{44}, 3.38303110110^{44}, 3.75509988310^{44}$, $4.16808912210^{44}, 4.62649928610^{44}, 5.13532581010^{44}, 5.70011353010^{44}, 6.32701710710^{44}, 7.02286810010^{44}$, $7.79524940610^{44}, 8.65257789910^{44}, 9.60419614510^{44}, 1.06604742210^{45}, 1.18329226910^{45}, 1.31343181010^{45}$, $1.45788421410^{45}, 1.61822362210^{45}, 1.79619730110^{45}$

Stability can be found when: $\mathrm{p} 1+\mathrm{p} 2+\mathrm{p} 3=1$ (or is close to equaling 1)

When the probabilities sum to ~ 1, the number of females born at time n is a constant equal to whatever constant $c 0=c 1=c 2$ are set to. Whether or not this is stable from a biological standpoint is debatable because, in this case, something such as a disease or predator could easily wipe out a population that only births one new female per time n (assuming n is a year). However, in terms of mathematical growth, this would be stable.

$$
\begin{aligned}
& >\operatorname{seq}(F(1,1,1, .25, .5, .25, i), i=950 . .1000) \\
& 1.000000000,1.000000000,1.000000000,1.000000000,1.000000000,1.000000000,1.000000000, \\
& \quad 1.000000000,1.000000000,1.000000000,1.000000000,1.000000000,1.000000000 \\
& 1.000000000,1.000000000,1.000000000,1.000000000,1.000000000,1.000000000 \\
& 1.000000000,1.000000000,1.000000000,1.000000000,1.000000000,1.000000000, \\
& 1.000000000,1.000000000,1.000000000,1.000000000,1.000000000,1.000000000, \\
& 1.000000000,1.000000000,1.000000000,1.000000000,1.000000000,1.000000000 \\
& 1.000000000,1.000000000,1.000000000,1.000000000,1.000000000,1.000000000, \\
& 1.000000000,1.000000000,1.000000000,1.000000000,1.000000000,1.000000000, \\
& 1.000000000,1.000000000
\end{aligned}
$$

Population extinction can be found when the probabilities sum to << than 1. Popilation explosion can be found when the probabilities sum to >> 1 .

