7	ohi	1		He	re	ny	+								1 1		, N			<u> </u>								1.20		- A - A - A - A - A - A - A - A - A - A		
2.		2	10	X)=	(5/2	4	t C	N.)	(Į -	2	- 6	x))	(1	/_	1 2	2	el.	*))									
	a,		(3	2	(<u>5</u> 2'	a) '	(-		X		(1.		12	A	(-)									-			(5
			0	X	1.1	0	,]	, 2	-																							
	Ь.		8	1-0	2)	-	15/2	2	_		2	2)_((1	1		χ	1		3												
			6	2(2	-)=	2 75	2		1	5	2	+	2	x	3	7	4	2													
				- 1-							X										1											
					1)_		1	1	-				1		1		ne	90	er.	r	e										
					1	1		1	1	1	da	L	1		1			111		10	. 13											
		-	+			-		-			fa								<u>). </u>	\'V												
3	. 1 a		h		= (52	3	(n	_)(1	- 2	(n	-1) 5)(1	-	2	21	b.	-1) a	,	à.) =	20		15	x	- 1	15 14	2	+
			C) :	-	2 3 2	20			5	ac ac	2	+ -	5	36 -3						b	10	_		2 5/2	0			dane	n		
			C			6	2		15			15		3					f	7	15	t V	105	<u>') </u>	45	7.	40	7	no:	nste L	ible	2
			0			0	5	5	<u>+</u>		25	1	x H)(5)			7	f'	(-	5-	VI LO	05)	<i>د</i> ر	0.2	217)	15	ubl	e	
			2		4.	d,		5_	*	10	(0	5.1			15	Aug ma	7	05	1													M
	L									_							_															32
			-																													

```
> #John"John"Hermitt Final
   read "/Users/jch263/DMB.txt"
                                  First Written: Nov. 2021
This is DMB.txt, A Maple package to explore Dynamical models in Biology (both discrete and
    continuous)
accompanying the class Dynamical Models in Biology, Rutgers University. Taught by Dr. Z.
    (Doron Zeilbeger)
                      The most current version is available on WWW at:
                   http://sites.math.rutgers.edu/~zeilberg/tokhniot/DMB.txt.
                    Please report all bugs to: DoronZeil at gmail dot com.
                      For general help, and a list of the MAIN functions,
                type "Help();". For specific help type "Help(procedure name);"
                      For a list of the supporting functions type: Help1();
                   For help with any of them type: Help(ProcedureName);
For a list of the functions that give examples of Discrete-time dynamical systems (some famous),
    type: HelpDDM();
                   For help with any of them type: Help(ProcedureName);
For a list of the functions continuous-time dynamical systems (some famous) type: HelpCDM();
                    For help with any of them type: Help(ProcedureName);
                                                                                                  (1)
   read "/Users/jch263/M5.txt"
> #1
   #x(0) = 1, x(1) = 1, x(2) = 2
   \#x(n) = 2 \cdot x(n-1) - x(n-3)
   x := RecToSeq([1, 1, 2], [2, 0, -1], 999)[999]:
   y := RecToSeq([1, 1, 2], [2, 0, -1], 1000)[1000]:
                                        1.618033989
                                                                                                  (2)
```

$$\begin{aligned} \textit{differential} &:= \textit{dsolve} \bigg(\bigg\{ \textit{diff} \left(x(t), t \right) = \left(\frac{5}{2} \cdot x(t) \right) \cdot \left(1 - x(t) \right) \cdot \left(1 - \frac{1}{2} \cdot x(t) \right), x(0) = 0.1 \bigg\}, \\ & \left\{ x(t) \right\} \bigg); \\ evalf \left(\textit{subs} \left(t = 100, \textit{differential} \right) \right); \end{aligned}$$

$$differential := x(t) = \frac{19 e^{\frac{5t}{2}}}{81 \left(-\frac{1}{\sqrt{1 + \frac{19 e^{\frac{5t}{2}}}{81}}} - 1\right) \left(-\frac{19 e^{\frac{5t}{2}}}{81} - 1\right)}$$

$$x(100) = 0.9999999999$$
(3)

> #30

$$func := \left(\frac{5}{2} \cdot x\right) \cdot (1 - x) \cdot \left(1 - \frac{1}{2} \cdot x\right) :$$

$$Orb([func], [x], [0.1], 1000, 1000);$$

> #4

$$Orb\left(HW3(u, v, w), [u, v, w], \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right], 2, 2\right);$$

$$Orb\left(HW3(u, v, w), [u, v, w], \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right], 1000, 1000\right)$$

$$\left[\left[\frac{1}{4}, \frac{1}{2}, \frac{1}{4} \right] \right]$$

$$\left[\left[\frac{1}{4}, \frac{1}{2}, \frac{1}{4} \right] \right]$$
(5)

. #5

$$M := \left[\left[\frac{1}{6}, \frac{2}{3}, \frac{1}{6} \right], \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right], \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right] \right] :$$

$$Orb \left(HW3g(u, v, w, M), [u, v, w], \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right], 2, 2 \right);$$

$$OrbF \left(HW3g(u, v, w, M), [u, v, w], \left[\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right], 1000, 1000 \right);$$

$$\left[\left[\frac{9}{34}, \frac{1}{2}, \frac{4}{17} \right] \right]$$

$$\left[\left[0.3757562480, 0.4935706703, 0.1306730817 \right]$$

$$(6)$$

> #6

```
OrbF\left(\left[\frac{(1+x+y)}{2+x+3\cdot y}, \frac{(1+x+3\cdot y)}{3+x+2\cdot y}\right], [x,y], [100, 1000], 1000, 1010\right);
[0.4705902280, 0.7478789080], [0.4705902280, 0.7478789080], [0.4705902280, 0.7478789080]
                                                                                                             (7)
    0.7478789080], [0.4705902280, 0.7478789080], [0.4705902280, 0.7478789080],
    [0.4705902280, 0.7478789080], [0.4705902280, 0.7478789080], [0.4705902280, 0.7478789080]
    0.7478789080], [0.4705902280, 0.7478789080], [0.4705902280, 0.7478789080],
    [0.4705902280, 0.7478789080]]
> #7
   N := 1000:
   v := 100:
   g := 0.5:
   ba := 0.05 \cdot \left(\frac{v}{N}\right):
   bb := 1.4 \cdot \left(\frac{v}{N}\right):
   bc := 1.0001 \cdot \left(\frac{v}{N}\right):
   functa := SIRS(x, y, ba, g, v, N);
   SEquP(functa, [x, y]);
   RemovedA := 1000 - (1000 + 0);
   functb := SIRS(x, y, bb, g, v, N);
   SEquP(functb, [x, y]);
   RemovedB := 1000 - (714 + 1);
   functc := SIRS(x, y, bc, g, v, N);
   SEquP(functc, [x, y]);
    functa := [-0.0050000000000 \, x \, y + 500.0 - 0.5 \, x - 0.5 \, y, \, 0.005000000000 \, x \, y - 100 \, y]
                                             {[1000., 0.]}
                                           RemovedA := 0
      functb := [-0.1400000000 \, x \, y + 500.0 - 0.5 \, x - 0.5 \, y, \, 0.1400000000 \, x \, y - 100 \, y]
                                   {[714.2857143, 1.421464108]}
                                          RemovedB := 285
      functc := [-0.1000100000 \, x \, y + 500.0 - 0.5 \, x - 0.5 \, y, \, 0.1000100000 \, x \, y - 100 \, y]
                                {[999.9000100, 0.0004974626915]}
                                                                                                             (8)
> #8
   a0 := 0:
   aa := 1:
    ab := 3:
   ac1 := 7.39;
   ac2 := 7.4;
   B := 0.2:
   n := 2:
    Ga := GeneNet(a0, aa, B, n, m01, m02, m03, p01, p02, p03);
    SEquP(Ga, [m01, m02, m03, p01, p02, p03], [m1, m2, m3, p1, p2, p3], 0.01, 10, 1);
    Gb := GeneNet(a0, ab, B, n, m01, m02, m03, p01, p02, p03);
```

SEquP(Gb, [m01, m02, m03, p01, p02, p03], [m1, m2, m3, p1, p2, p3], 0.01, 10, 1);Gc1 := GeneNet(a0, ac1, B, n, m01, m02, m03, p01, p02, p03);SEquP(Gc1, [m01, m02, m03, p01, p02, p03], [m1, m2, m3, p1, p2, p3], 0.01, 10, 1); Gc2 := GeneNet(a0, ac2, B, n, m01, m02, m03, p01, p02, p03);SEquP(Gc2, [m01, m02, m03, p01, p02, p03], [m1, m2, m3, p1, p2, p3], 0.01, 10, 1);ac1 := 7.39 $Ga := \left[-m01 + \frac{1}{p03^2 + 1}, -m02 + \frac{1}{p01^2 + 1}, -m03 + \frac{1}{p02^2 + 1}, -0.2\ p01 + 0.2\ m01, \right]$ -0.2 p02 + 0.2 m02, -0.2 p03 + 0.2 m030.6823278038]} $Gb := \left[-m01 + \frac{3}{p03^2 + 1}, -m02 + \frac{3}{p01^2 + 1}, -m03 + \frac{3}{p02^2 + 1}, -0.2\ p01 + 0.2\ m01, \right]$ -0.2 p02 + 0.2 m02, -0.2 p03 + 0.2 m03 $\{[1.213411663, 1.213411663, 1.213411663, 1.213411663, 1.213411663, 1.213411663, 1.213411663]\}$ $Gc1 := \left[-m01 + \frac{7.39}{p03^2 + 1}, -m02 + \frac{7.39}{p01^2 + 1}, -m03 + \frac{7.39}{p02^2 + 1}, -0.2\ p01 + 0.2\ m01, \right]$ -0.2 p02 + 0.2 m02, -0.2 p03 + 0.2 m03 $\{\lceil 1.777163792, 1.777163792, 1.777163792, 1.777163792, 1.777163792, 1.777163792, 1.777163792 \rceil\}$ $Gc2 := \left[-m01 + \frac{7.4}{p03^2 + 1}, -m02 + \frac{7.4}{p01^2 + 1}, -m03 + \frac{7.4}{p02^2 + 1}, -0.2\ p01 + 0.2\ m01, \right]$ -0.2 p02 + 0.2 m02, -0.2 p03 + 0.2 m03(9)Eq := ChemoStat(N, C, 2.5, 2.7);Dis(Eq, [N, C], [1, 1], 0.01, 10)[1000]; $Eq := \left[\frac{2.5 \ C \ N}{1 + C} - N, - \frac{C \ N}{1 + C} - C + 2.7 \right]$ [10.00, [5.083016070, 0.6667368829]] (10)> #10 0.1, 0.1], [0.1, 0.1, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], [0.075, 0.075, 0.075, 0.4, 0.075, 0.075]0.075, 0.075,0.075, 0.075, 0.075, 0.075, 0.4, 0.075, 0.075, 0.075, 0.075, [0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.6, 0.05, 0.05], [0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.6, 0.05], [0.05, 0.0

```
0.05, 0.05, 0.05, 0.611);
  evalf(ProbM^{1000});
                  0.2
                        0.1 0.1
                                     0.1
                                            0.1
                                                   0.1
                                                         0.1
                                                                0.1
                                                                      0.1
                  0.1
                        0.2
                               0.1
                                     0.1
                                            0.1
                                                         0.1
                                                                0.1
                                                                      0.1
                                                   0.1
                  0.1
                        0.1
                               0.2
                                     0.1
                                            0.1
                                                   0.1
                                                         0.1
                                                                0.1
                                                                      0.1
                 0.075 0.075 0.075
                                           0.075 0.075 0.075 0.075 0.075
                                     0.4
                 0.075 0.075 0.075 0.075
                                            0.4
                                                 0.075 0.075 0.075 0.075
     ProbM :=
                 0.075 0.075 0.075 0.075
                                           0.075
                                                  0.4
                                                        0.075 0.075 0.075
                       0.05 0.05
                                           0.05
                                                               0.05
                 0.05
                                     0.05
                                                  0.05
                                                         0.6
                                                                      0.05
                        0.05 0.05
                                     0.05
                                           0.05
                                                  0.05
                                                         0.05
                                                                0.6
                                                                      0.05
                        0.05 0.05 0.05
                 0.05
                                           0.05
                                                  0.05
                                                         0.05
                                                               0.05
                                                                      0.6
[0.0769230769230801, 0.0769230769230801, 0.0769230769230801, 0.102564102564107,
                                                                                     (11)
   0.102564102564107, 0.102564102564107, 0.153846153846160, 0.153846153846160,
   0.153846153846160],
   [0.0769230769230801, 0.0769230769230801, 0.0769230769230801,
   0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160,
   0.153846153846160, 0.153846153846160],
   [0.0769230769230801, 0.0769230769230801, 0.0769230769230801,
   0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160,
   0.153846153846160, 0.153846153846160],
   [0.0769230769230801, 0.0769230769230801, 0.0769230769230801,
   0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160,
   0.153846153846160, 0.153846153846160],
   [0.0769230769230801, 0.0769230769230801, 0.0769230769230801,
   0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160,
   0.153846153846160, 0.153846153846160],
   [0.0769230769230801, 0.0769230769230801, 0.0769230769230801,
   0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160,
   0.153846153846160, 0.153846153846160],
   [0.0769230769230801, 0.0769230769230801, 0.0769230769230801,
   0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160,
   0.153846153846160, 0.153846153846160],
   [0.0769230769230801, 0.0769230769230801, 0.0769230769230801,
   0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160,
   0.153846153846160, 0.153846153846160],
   [0.0769230769230801, 0.0769230769230801, 0.0769230769230801,
   0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160,
```