Hade Batter Bad Exam Work 1) Maple 2) x(4)= (=x(+))(1-x(+))(1- 2x(+)) a)  $f(y) = \frac{1}{2} \times (1 - \chi) (1 - \frac{1}{2}\chi) = \chi = 0, 1, 2 \exp[-\frac{1}{2}\chi - 0, 1 - \frac{1}{2}\chi]$ b)  $f(y) = (\frac{1}{2}\chi - \frac{1}{2}\chi) (1 - \frac{1}{2}\chi) = (\frac{1}{2}\chi - \frac{1}{2}\chi^2 - \frac{1}{2}\chi^2 + \frac{1}{2}\chi^2) = \frac{1}{2} - 5\chi - \frac{1}{2}\chi + \frac{1}{2}\chi^2$   $f'(\chi) = \frac{1}{2} - \frac{1}{2}\chi + \frac{1}{2}\chi^2$ Chuked in S Maple  $f'(0) = \frac{1}{2} > 0$  unstable  $f'(1) = \frac{1}{2} - \frac{1}{2} + \frac{1}{4} = -\frac{5}{4} < 0$  stable x= 11 stable eg. pt f'(2) = 2 - 42(2) + 42(4) = 2 >0 unstable C) Mople: 1x(100)= 0.99999999 3 x (n)= 2x(h-1) (1-x(h-1)) (1-2x(h-1)) 9) x=f(x)  $x=\frac{1}{2}x(1-x)(1-\frac{1}{2}x) \Rightarrow x=\frac{1}{2}x-\frac{1}{2}x^2+\frac{1}{2}x^2$  $\frac{1}{2}x^2-\frac{1}{2}x^2+\frac{1}{2}x=0$   $x(\frac{1}{2}x^2-\frac{1}{2}x+\frac{1}{2})=0$   $(x=0,\frac{1}{2}+\frac{1}{2})$ x=0, 15+5 110 x=0, 4 b) f(x) = 4x2 - 15x + 5 1710) = 5>1 Unstable (f(q)) = 15612 - 15(40+ 2 = 7.76. >1 15- 5-5 stable eq. pts unstable  $|f(\alpha_{\mathcal{V}}) \approx \frac{1}{7}(\alpha_{\mathcal{V}} - \frac{1}{2}(\alpha_{\mathcal{V}}) + \frac{1}{2}\alpha_{\mathcal{V}} 2)|$ <1 stable ()Maple : (x(1000) = 0.4753049232 15-5105 ~ 10/4 4) 9 + b) Mople 5) at b) Maple no A. 6) Maple 7) Made Sec. Sec. 8) Maple 6/ Lycie 9) Mople WILL AND I STORE

| 10) | 1,2,3 0.     | 2 456      | 0.4 7,8,9 | 0.6                                   |  |
|-----|--------------|------------|-----------|---------------------------------------|--|
|     |              | 1 2        | 3 7 56    | 7 8 9                                 |  |
|     | 0.9          | 10.2 0.1   |           |                                       |  |
|     |              | 16.1 0.2 1 | · ·       |                                       |  |
|     |              | 36101      | 0201      |                                       |  |
|     | 9 = 6.6      | 9          | 71 07     |                                       |  |
|     |              | 5 at       |           |                                       |  |
|     |              | 6 96       |           | · · · · · · · · · · · · · · · · · · · |  |
|     | b= 0.4       | 7 6 <      | >         | 0.6 C >                               |  |
|     | 14 1 2 - 1 S | 864        |           | 2 0.6 00                              |  |
|     |              | 9 <        |           |                                       |  |
|     |              |            |           | 0.0 0                                 |  |
|     |              |            |           |                                       |  |

> #Hrudai Battini Final Exam Maple Work
read "/Users/hb334/Documents/DMB.txt";
read "/Users/hb334/Documents/M5.txt";

First Written: Nov. 2021

*This is DMB.txt, A Maple package to explore Dynamical models in Biology (both discrete and continuous)* 

accompanying the class Dynamical Models in Biology, Rutgers University. Taught by Dr. Z. (Doron Zeilbeger)

The most current version is available on WWW at: http://sites.math.rutgers.edu/~zeilberg/tokhniot/DMB.txt . Please report all bugs to: DoronZeil at gmail dot com .

For general help, and a list of the MAIN functions, type "Help();". For specific help type "Help(procedure\_name);"

For a list of the supporting functions type: Help1(); For help with any of them type: Help(ProcedureName);

For a list of the functions that give examples of Discrete-time dynamical systems (some famous), type: HelpDDM();

For help with any of them type: Help(ProcedureName);

For a list of the functions continuous-time dynamical systems (some famous) type: HelpCDM(); For help with any of them type: Help(ProcedureName);

\_\_\_\_\_

(1)

> #1
#x(0) = 1, x(1) = 1, x(2) = 2
#x(n) = 2\*x(n-1) -x(n-3) -> recurrence equation #Day 1 is
actually Day 0, maple numerical indexing [N+1] = Day
DT:=RecToSeq([1,1,2], [2.,0,-1],1001)[1001]; #Population at Day
1000
DN:=RecToSeq([1,1,2], [2.,0,-1],1001)[1000]; #Population at Day
999
DIV:= (DT/DN); #The number of rabbits at Day 1000/999.

$$DT := 7.033036702 \times 10^{308}$$

$$DN := 4.346655726 \times 10^{308}$$

$$DI' := 1.618033989 (2)$$

$$= \frac{42}{F:= 5/2*x^*(1-x)*(1-1/2*x);}$$

$$= \exp P([F], [x]);$$

```
others.
  Orb(HW3g(x,y,z,M),[x,y,z],[1/3.,1/3,1/3],2,2); #Proportion of Aa
  = 1/2 at 2nd genration
  #b)
  OrbF(HW3g(x,y,z,M),[x,y,z],[1/3.,1/3,1/3],1000,1000); #Proportion
  of Aa = 1/2 at 1000th genration
                     M := [[1, 2, 1], [1, 1, 1], [1, 1, 1]]
                 [[0.3027472527, 0.4989010989, 0.1983516484]]
                [[0.5512669093, 0.3974661800, 0.05126690975]]
                                                                         (6)
> #6
  OrbF([(1+x+y)/(2+x+3*y), (1+x+3*y)/(3+x+2*y)], [x,y], [100, 1000],
  1000, 1000);
  OrbF([(1+x+y)/(2+x+3*y), (1+x+3*y)/(3+x+2*y)], [x,y], [100, 1000],
  2000,2000);#Orbit remains the same
  #I Believe y
  would = 0.7478789080.
                      [[0.4705902280, 0.7478789080]]
                      [[0.4705902280, 0.7478789080]]
                                                                         (7)
> #7
  #a)
  Fa:=SIRS(s,i,0.05*0.1,0.5,100,1000);
  La:=Dis([Fa[1],Fa[2]],[s,i],[300,300],0.01,50):
  La[5000];#1000-1000 = 0 removed individuals
  SEquP(Fa,[s,i]); Check
  #b)
  Fb:=SIRS(s,i,1.4*0.1,0.5,100,1000);
  Lb:=Dis([Fb[1],Fb[2]],[s,i],[300,300],0.01,50):
  Lb[5000]; #1000-(714+1)=285
  SEquP(Fb,[s,i]); Check
  \#c)NB/v -> B = v/N = B = .1 Cut off for when there would be a
  non-zero number of infected people.
             Fa := [-0.005 \ s \ i + 500.0 - 0.5 \ s - 0.5 \ i, 0.005 \ s \ i - 100 \ i]
                 [50.00, [999.9999900, 2.499066038 \times 10^{-6580}]]
                              {[1000., 0.]}
             Fb := [-0.14 s i + 500.0 - 0.5 s - 0.5 i, 0.14 s i - 100 i]
                     [50.00, [714.2895546, 1.421192563]]
                       { [714.2857143, 1.421464108] }
                                                                         (8)
> #8
  #Help(GeneNet);
  #a)
  Ga:= GeneNet(0,1,0.2,2,m1,m2,m3,p1,p2,p3);
  SEquP([Ga[1],Ga[2],Ga[3],Ga[4],Ga[5],Ga[6]],[m1,m2,m3,p1,p2,p3]);
  #b)
  Gb:= GeneNet(0,3,0.2,2,m1,m2,m3,p1,p2,p3);
  SEquP([Gb[1],Gb[2],Gb[3],Gb[4],Gb[5],Gb[6]],[m1,m2,m3,p1,p2,p3]);
  TimeSeries (Gb, [m1,m2,m3,p1,p2,p3], [0.2,0.1,0.3,0.1,0.4,0.5],0.01,
  100,1);
  TimeSeries (Gb, [m1,m2,m3,p1,p2,p3], [0.2,0.1,0.3,0.1,0.4,0.5],0.01,
```

100,2);TimeSeries (Gb, [m1,m2,m3,p1,p2,p3], [0.2,0.1,0.3,0.1,0.4,0.5],0.01, 100, 3);TimeSeries (Gb, [m1,m2,m3,p1,p2,p3], [0.2,0.1,0.3,0.1,0.4,0.5],0.01, 100, 4);TimeSeries (Gb, [m1,m2,m3,p1,p2,p3], [0.2,0.1,0.3,0.1,0.4,0.5],0.01, 100, 5);TimeSeries (Gb, [m1,m2,m3,p1,p2,p3], [0.2,0.1,0.3,0.1,0.4,0.5],0.01, 100, 6);#c) Gc:= GeneNet(0,7.39,0.2,2,m1,m2,m3,p1,p2,p3); SEquP([Gc[1],Gc[2],Gc[3],Gc[4],Gc[5],Gc[6]],[m1,m2,m3,p1,p2,p3]); TimeSeries (Gc, [m1,m2,m3,p1,p2,p3], [0.2,0.1,0.3,0.1,0.4,0.5],0.01, 500,1);#will take very long to reach asymptote, any longer and my computer stalls, it shows the narrowing to an asymptote Gco:= GeneNet(0,7.40,0.2,2,m1,m2,m3,p1,p2,p3); SEquP([Gco[1], Gco[2], Gco[3], Gco[4], Gco[5], Gco[6]], [m1, m2, m3, p1, Gco[6]], [m1, m2, m3, p1, Gco[6]]p2,p3]);#No Stable EQ pt. therefore no asymptote.  $Ga := \left[ -m1 + \frac{1}{p3^2 + 1}, -m2 + \frac{1}{p1^2 + 1}, -m3 + \frac{1}{p2^2 + 1}, -0.2 p1 + 0.2 m1, -0.2 p2 + 0.2 m1 \right]$  $+ 0.2 m^2, -0.2 p^3 + 0.2 m^3$ 0.6823278038]  $Gb := \left[ -m1 + \frac{3}{p3^2 + 1}, -m2 + \frac{3}{p1^2 + 1}, -m3 + \frac{3}{p2^2 + 1}, -0.2 p1 + 0.2 m1, -0.2 p2 \right]$  $+ 0.2 m^2, -0.2 p^3 + 0.2 m^3$ 

{ [1.213411663, 1.213411663, 1.213411663, 1.213411663, 1.213411663, 1.213411663] }











Digits := 10a := 0.100000000b := 0.07500000000c := 0.0500000000A := [[0.2, 0.100000000, 0.100000000, 0.100000000, 0.100000000, 0.100000000, 0.1000000000, 0.1000000000]]0.100000000, 0.100000000, 0.100000000], 0.100000000, 0.100000000, 0.100000000], [0.100000000, 0.100000000, 0.2, 0.100000000, 0.100000000, 0.100000000, 0.100000000, 0.100000000, 0.100000000], [0.07500000000, 0.07500000000, 0.07500000000, 0.4, 0.07500000000, 0.07500000000, 0.07500000000]0.0750000000, 0.0750000000, 0.07500000000], 0.0750000000, 0.0750000000, 0.0750000000], [0.07500000000, 0.07500000000, 0.07500000000, 0.07500000000, 0.07500000000, 0.4,0.0750000000, 0.0750000000, 0.07500000000], 0.0500000000, 0.6, 0.0500000000, 0.05000000000], 0.0500000000, 0.0500000000, 0.6, 0.05000000000], 0.0500000000, 0.0500000000, 0.0500000000, 0.6]] (10)0.102564102564107, 0.102564102564107, 0.153846153846160, 0.153846153846160, 0.153846153846160], [0.0769230769230801, 0.0769230769230801, 0.0769230769230801,0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160, 0.153846153846160, 0.153846153846160], [0.0769230769230801, 0.0769230769230801, 0.0769230769230801,0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160, 0.153846153846160, 0.153846153846160], 0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160, 0.153846153846160, 0.153846153846160], [0.0769230769230801, 0.0769230769230801, 0.0769230769230801,0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160, 0.153846153846160, 0.153846153846160], [0.0769230769230801, 0.0769230769230801, 0.0769230769230801,

0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846153846160, 0.153846153846160, 0.153846153846160], [0.0769230769230801, 0.0769230769230801, 0.0769230769230801, 0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160, 0.153846153846160, 0.153846153846160], [0.0769230769230801, 0.0769230769230801, 0.0769230769230801, 0.102564102564107, 0.102564102564107, 0.102564102564107, 0.153846153846160, 0.153846153846160, 0.153846153846160], [0.0769230769230801, 0.0769230769230801, 0.0769230769230801, 0.153846153846160, 0.153846153846160], [0.0769230769230801, 0.0769230769230801, 0.0769230769230801, 0.153846153846160, 0.153846153846160], [0.0769230769230801, 0.0769230769230801, 0.0769230769230801, 0.153846153846160, 0.153846153846160], [0.0769230769230801, 0.0769230769230801, 0.0769230769230801, 0.153846153846160, 0.153846153846160]]