General Comments Only three students got both questions completely, I am really impressed! Quite a few were on the right track, but I realized that I didn't describe all the steps of the Joyal mappings carefully. Hopefully the detailed solutions below would help clarify them.

One student asked me for a reference. The origial proof is in Joyal's paper (in French) in the journal Advances in Mathematics v. 42 (1981), pp 1-82, available via IRIS to Rutgers students and faculty.

1. Apply the Joyal bijection that inputs sequences in $\{1, \ldots, n\}^{n}$ and outputs a doubly rooted labeled tree on $\{1, \ldots, n\}$. To the following sequence (with $n=9$)

$$
471611827
$$

Indicate clearly ROOT A and ROOT B. Draw the output, but also write it as a set of edges.
Sol. to 1: We first write the sequence in two-line notation

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
4 & 7 & 1 & 6 & 1 & 1 & 8 & 2 & 7
\end{array}\right)
$$

Next we draw the graph of the function, i.e. a graph whose directed edges are

$$
1 \rightarrow 4 \quad 2 \rightarrow 7 \quad 3 \rightarrow 1 \quad 4 \rightarrow 6 \quad 5 \rightarrow 1 \quad 6 \rightarrow 1 \quad 7 \rightarrow 8 \quad 8 \rightarrow 2 \quad 9 \rightarrow 7 .
$$

We see that we have two cycles:

$$
1 \rightarrow 4 \rightarrow 6 \rightarrow 1 \quad 2 \rightarrow 7 \rightarrow 8 \rightarrow 2
$$

whose participants are $\{1,2,4,6,7,8\}$. This induces a permutation in two-line notation (remember that we have to order the top row:

$$
\left(\begin{array}{llllll}
1 & 2 & 4 & 6 & 7 & 8 \\
4 & 7 & 6 & 1 & 8 & 2
\end{array}\right)
$$

Going back to one-line notation we look at the bottom line, and see that the skeleton is:

$$
4 \rightarrow 7 \rightarrow 6 \rightarrow 1 \rightarrow 8 \rightarrow 2
$$

This immediately gives that $A=4$ and $B=2$. Finally we reinstate the trees (possibly trivial) "hanging out" from our picture, the only non-trivial ones being

$$
\{3 \rightarrow 1 \quad, \quad 5 \rightarrow 1\} \quad \text { and } \quad\{9 \rightarrow 7\}
$$

So the set of edges of labeled tree is
$\{47,67,16,18,28,13,15,79\}$

Ans.: Set of Edges of the tree: (in lexicographic order) $\{13,15,16,18,28,47,67,79\}$
Root A: 4 Root B: 2
2. Apply the Reverse Joyal bijection that inputs a doubly rooted labeled tree on $\{1, \ldots, n\}$ and outputs a sequence in $\{1, \ldots, n\}^{n}$, with $n=9$.

Set of Edges of the tree: $\{13,18,19,25,34,35,36,57\}$ Root $A=1$, Root $B=2$.
Sol. of 2: We first write down the skeleton

$$
1 \rightarrow 3 \rightarrow 5 \rightarrow 2
$$

and note the "hanging-trees" around its members:
Around 1: $\{9 \rightarrow 1,8 \rightarrow 1\}$
Around 3: $\{6 \rightarrow 3,4 \rightarrow 3\}$
Around 5: $\{7 \rightarrow 5\}$
Around 2: trivial tree only consisting of the vertex 2 .
We now look at the skeleton 1352 and rewrite it in two-line notation where the top line is the sorted version of it

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 5 \\
1 & 3 & 5 & 2
\end{array}\right)
$$

We now draw the graph of this partial function with edges consisting of the cycles $1 \rightarrow 1$ and $2 \rightarrow 3 \rightarrow 5 \rightarrow 2$. Finally we reinstate the above trees at the right places, yielding the function from $\{1, \ldots, 9\}$ to $\{1, \ldots, 9\}$

$$
f(1)=1, f(2)=3, f(3)=5, f(4)=3, f(5)=2, f(6)=3, f(7)=5, f(8)=1, f(9)=1
$$

i.e., in two-line notation

$$
\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 3 & 5 & 3 & 2 & 3 & 5 & 1 & 1
\end{array}\right)
$$

Finally, since the top line is $1 \ldots 9$ it can be dropped and we get the sequence
Ans.: 135323511

