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The following notes and comments are prepared to provide some
guidance for your reading of Professor Carlen’s notes. We may also
occasionally refer to the textbook Calculus, Early Transcendentals, 3rd
edition by Jon Rogawski and Colin Adams, to be denoted as [RC].



Chapter 1

Geometry, Algebra and Analysis in
Several Variables

We plan to cover this chapter using 4 lectures.

Lec. 1 Read 1.1.1-1.1.5.

Lec. 2 Read 1.2.1-1.2.2, 1.1.6.

Lec. 3 Read 1.1.7 - 1.1.8, 1.2.3.

Lec. 4 Read 1.3.1-1.3.4.

1.1 Algebra and Geometry in Rn

1.1.1 Geometry, Algebra and Calculus

As remarked by Professor Carlen in the second paragraph on p.2, our strategy is to
use the visualization in two and three dimensions to set up algebraic algorithms to
compute quantities involving functions of multi-variables, and then generalize these
algorithms to do computations when the number of variables is more than three.

1.1.2 Vector variables and Cartesian coordinates

Several commonly used notions in this course are introduced here:

• vectors

• reference system, and a base point

3
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• ordered list of numbers

• Cartesian coordinates (rectangular coordinates)

• length (or magnitude, or norm) of a vector

• unit vector

The concept of vectors originates from describing displacements, velocities, and
forces, which have the attributes of both magnitude and direction. Vectors of the
same kind have a natural operation of addition and scalar multiplication. For in-
stance, displacement 1 + displacement 2 can be defined as the combined effect of
displacement 2 followed by displacement 1. This addition can be described as fol-
lowing the parallelogram law. Scalar multiplication of a vector by a scalar is defined
in a geometrically obvious way.

Once a rectangular coordinate system is set up (in the three dimensional space),
each vector v can be represented by an ordered list of three (real) numbers, called
coordinates (or components), (x, y, z), and we identify v = (x, y, z). Then the vector
addition is encoded as (x, y, z) + (x′, y′, z′) = (x + x′, y + y′, z + z′), and the scalar
multiplication of the vector (x, y, z) by the scalar c follows c(x, y, z) = (cx, cy, cz). It
turns out that the geometric parallelogram law of vector addition is encoded in this
algebraic law of vector addition.

The geometric length of the vector v with coordinates (x, y, z) is given by
√
x2 + y2 + z2

based on two successive applications of Pythagorean theorem, and we write this as
||v|| =

√
x2 + y2 + z2 (please construct two right triangles associated with a given v

to understand how Pythagorean theorem is applied to lead to ||v|| =
√
x2 + y2 + z2

).
Note that (geometric) vector addition and scalar multiplication are defined in-

dependent of their rectangular coordinate representation, that a vector has different
coordinate representations in different rectangular coordinates (just as the movement
of an aircraft has different coordinates by different flight control towers), and that
the length of a vector and the angle between two vectors should be independent of
the coordinates used to represent the vectors. This will be verified algebraically later
in this course. In particular we will study the relations between different coordinate
representations in different rectangular coordinates of the same vector.

But one can also represent vectors in terms of their polar coordinates (r, θ) (in
two dimension) or spherical polar coordinates (r, θ, φ) (in three dimension), and vector
addition would not be represented as the component-wise addition of their coordinates
here. E.g., if v1 has polar coordinates r = 1 and θ = 0, and v2 has polar coordinates
r = 1 and θ = π

2
, then the vector v1 + v2 does not have polar coordinates r = 1 + 1

and θ = 0 + π
2
.
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Many other quantities have the same attributes as two dimensional or three di-
mensional vectors, but may not have a simple geometric representation as the two
dimensional or three dimensional vectors. Vectors are often defined as ordered lists of
n (real) numbers, for a certain natural number n. General vector addition and scalar
multiplication will be defined in 1.1.4; the length of a vector is defined in 1.1.5, using
a natural generalization of the above algebraic properties.

There are also many other quantities that can be represented by ordered lists of n
(real) numbers, but may not have a naturally defined addition or scalar multiplication.
For example, the weather data at any location is described in terms of (temperature,
barometric pressure, relative humidity), which is an ordered list of three numbers.
Although there is a natural meaning to the difference of two such data points (at
the same location over two different times, or at the same time over two different
locations), which would measure the difference of temperature, barometric pressure,
and relative humidity, how does one make sense of the addition of two such data
points? — if one uses the same addition rule, what does it mean to say 55% relative
humidity + 60% relative humidity = 115% relative humidity?

Math texts rarely discuss the contexts in which the vector operations are appropri-
ate. Some texts, such as [RC], do distinguish between using n-tuple ordered numbers
to represent the “state” of a certain entity and using them to represent the “change”,
or “increment”, of the same entity. The latter has the attributes of vectors and the
associated vector addition and scalar multiplication, while the former does not.

After raising awareness of this issue, we will also follow most texts not to make
strict distinction between using n-tuple ordered numbers to represent the “state” of
a certain entity and using them to represent the “change”, or “increment”, of the
same entity, which would be a vector. For instance, regarding the weather data as a
function of location and time, the weather data is not a vector properly, we still call
it a vector-valued function, and will use vector calculus to analyze it.

Another commonly ignored issue in math texts is the use of units on different
components of a vector. Using the same weather data example, if one would like to
design a quantitative measure of difference of weather data, then it seems that√

(t1 − t2)2 + (p1 − p2)2 + (h1 − h2)2

may be a good candidate for measuring how close the two pieces of weather data
(t1, p1, h1) and (t2, p2, h2) are. But these components have different units, and quanti-
ties of different units can’t be added! Using the proposed formula, a difference of 2◦F
in temperature seems to be regarded as causing a bigger difference than a difference
of 80% difference in relative humidity (assuming other data are kept the same). The
proper way to handle this in applications is to first pre-process the data, i.e., to nor-
malize the data. Namely, choosing appropriate unites T, P,H for the temperature,
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barometric pressure, relative humidity, respectively, and use ( t
T
, p
P
, h
H

) as coordinate
representation for the weather data. A mathematically equivalent way to describe
this is that, in computing the “lengths”, one places different weights on different
components.

1.1.3 Parameterization

This subsection discusses how to obtain a parametrization of the round sphere, and
how to use the parametrization to obtain the “tangent plane” to the round sphere
at a particular point. The discussion is through a particular example, leaving out
many details (e.g. equation for a plane, “best fit” plane) to be introduced soon.
The example used gives rise to spherical polar coordinates of points in the three
dimensional space.

Try to get an intuitive understanding for the concept of the tangent plane and
how it is computed in this particular context. Don’t get bogged down by the details
of computations which you may not fully follow — we will do the discussion in more
detail later on.

The main take-away is that, in multi-dimensions, there is often a need to study the
geometry of an equation (or equations) via a parametric representation, even in the
simplest case of a straight line in three or higher dimensions, but often one needs more
than one parametric representation to describe the geometry of an equation. There
will be no systematic way of finding a parametric representation of an arbitrary given
equation, but polar spherical representation of a round sphere centered at the origin
is so often used that a student needs to become proficient with using it.

Particular attention is drawn to

• equation of a plane in R3 on p.7 vs its parametric form on p.8.

• how a tangent plane to the round sphere at a point is obtained on pp.7-8.

• a graph as a parametric surface, as illustrated on p.9.

The earliest way to describe a surface is in terms of the graph of a function of two
variables z = f(x, y). Here one needs to specify the domain of definition of f in terms
of (x, y). In the case of the unit round sphere centered at the origin (0, 0, 0), as given
by {(x, y, z) : x2 + y2 + z2 = 1}, we could solve for z in terms of (x, y). It is given
as z = ±

√
1− x2 − y2. One point of attention is the choice of ±, i.e., for each (x, y)

(such that x2 + y2 < 1), there are two choices of z; and when x2 + y2 = 1, the two
formulae give the same points (x, y, 0); furthermore, no single graph can represent
the entire sphere.

In general, one single equation in three variables (x, y, z) of the form F (x, y, z) = 0
seems to represent a surface, as one can imagine solving one variable in terms of the
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other two, so that solution is given in terms of the graph of a function of two variables.
The precise conditions which make this process valid are spelled out in the Implicit
Function Theorem. One often uses this kind of reasoning in theoretical discussions,
but rarely carries out this procedure explicitly, as it is often not as easy as the case
for the round sphere.

Another approach to describe a surface is that each coordinate is represented as a
function of a common set of two variables on a common domain; these two variables
are called parameters of the surface in this context, and such a representation of a
surface is called a parametric representation.

In the case of the unit round sphere centered at the origin (0, 0, 0), as given by
{(x, y, z) : x2 + y2 + z2 = 1}, the notes give a discussion which leads to

x = x(θ, φ) = cos θ sinφ

y = y(θ, φ) = sin θ sinφ

z = z(θ, φ) = cosφ

for (θ, φ) ∈ (−π, π]× [0, π].
The domain of definition of this parameter representation is relatively simple, a

rectangle. Each of the three functions is easy to understand and manipulate: keeping
one variable fixed, each is an infinitely times differentiable function of the other vari-
able. One technical complication of this parameter representation is that the map
X(θ, φ) := (x(θ, φ), y(θ, φ), z(θ, φ)) is not one-to-one on this domain: two different
sets of parameter values may map to the same point on the unit sphere. For example,
X(θ, 0) = X(θ′, 0) for any θ, θ′ ∈ (−π, π]. If one changes the domain of this paramet-
ric representation to (−π, π]× (0, π) to avoid this issue, then the modified map is no
longer onto: no parameters in the domain (−π, π] × (0, π) can represent the north
and south pole of the unit sphere (x, y, z) = (0, 0,±1). This is a common issue in
studying surfaces: it’s often impossible to use a single parametric representation to
describe a surface in a one-to-one and onto fashion.

Note that a surface given as the graph of a function z = f(x, y) can also be treated
as having a parametric representation, a particularly simple one in fact: X(u, v) =
(u, v, f(u, v)), namely, x = x(u, v) = u, y = y(u, v) = v, and z = z(u, v) = f(u, v). In
order to avoid introducing unnecessary new variables, we simply identify u with x, v
with y, and write X(x, y) = (x, y, f(x, y)).

Remark 1.1.1

One of the complications of multi-variable calculus is that, often, the domain
of definition of a function, or of a parametric representation of a surface, is
not as simple as a rectangle; one can sometimes restrict attention to functions
defined on simple domains such as rectangles, but then one often needs multiple
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parametric forms of a given surface—imagine how one would represent the
surface of a donut.

Characterization of a surface and a plane Although we meet surfaces in many
contexts, it is not that easy to give a good characterization of a surface. We observe
two main features of a surface: (a) it is a “two-dimensional” object, and (b) it is mostly
“smooth”, except along some edges or corners. One possible candidate definition of
a surface in Rn is that it is given as the graph of several coordinates as functions of
two of the coordinates, say, x3, . . . , xn each as a function of (x1, x2) : xk = fk(x1, x2),
for k = 3, . . . , n, over a certain domain D in R2. But this definition would be too
restrictive, and would not be able to describe a sphere or a donut, which, in its entity,
can’t be described as a single graph.

A definition of surface which has the flexibility of describing commonly encoun-
tered surfaces is parametric representation, namely, it is in terms of n functions of two
common parameters, say, (s, t), in a domain D of R2: x1 = x1(s, t), . . . , xn = xn(s, t),
(s, t) ∈ D. The notion of a smooth surface is related to the notion that each of the
function xi(s, t) is a (smooth) “differentiable” function of the two variables (s, t) ∈ D;
however, this notion is not entirely correct, for at least two reasons: (i) even if each
xi(s, t) is a “differentiable” function of the two variables (s, t) ∈ D, the resulting sur-
face could still have sharp edges or corners, such as in the case of x = s2, y = s3, z = t;
(ii) the set of functions may not represent a surface, even though there are two free
parameters s and t at play, such as in the case of x = s+ t, y = 2(s+ t), z = 3(s+ t)—
this set of functions will represent a one-dimensional object, a straight-line, instead
of a two-dimensional surface. The notion of a differentiable function of more than
one variables will be discussed in Chapter 4.

However, a (two-dimensional) plane is relatively easy to characterize. It is “flat”
in the sense that, given two “independent” directions u and v in a plane, and a
reference point P0 on it, any other point P in this plane can be arrived at from P0 by
following “a linear combination” of the two directions u and v: P = P0 + su + tv,
for some scalars s and t.

Example 1.1.1

Take u = (1
2
, 1

2
,−1

2
), v = (−1

2
, 1

2
, 0), P0 = (1

2
, 1

2
, 1√

2
), P = (x, y, z), then

(x, y, z) = (
1

2
,
1

2
,

1√
2

) + s(
1

2
,
1

2
,−1

2
) + t(−1

2
,
1

2
, 0) (s, t) ∈ R2

gives a parametric representation of a plane through P0 = (1
2
, 1

2
, 1√

2
).
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For the general situation, with u = (u1, u2, u3), v = (v1, v2, v3), and P0 =
(x01, x02, x03), we then get

(x, y, z) = (x01, x02, x03) + s(u1, u2, u3) + t(v1, v2, v3).

Given (x, y, z), this can be regarded as a system of 3 linear equations in s, t. If one
can solve s, t in terms of x, y from the first two equations, then it turns out that s, t
are also linear expressions in x, y: s = αx+ βy+ s0, t = γx+ δy+ t0 for some scalars
α, β, γ, δ, s0, t0. Then one substitutes these linear expressions into the third equation,
one would obtain z expressed as a linear expression in terms of x, y: z = ax+ by− d
for some scalars a, b, d—this z agrees with the given z only if the given point (x, y, z)
lies on the plane. This is a non-parametric form, or graph form, of the equation of a
plane. It can be written in the form of ax + by − z = d, and is a particular case of
the general graph form of the equation of an plane in R3.

Remark 1.1.2

The parametric form of a two-dimensional plane still works in Rn, n > 3, while
the graph form,

a1x1 + · · ·+ anxn = d,

represents a hyperplane, rather than a two-dimensional plane. Namely, if u
and v are two “linearly independent” vectors in Rn, P0 ∈ Rn, then

(s, t) ∈ R2 7→ P0 + su + tv ∈ Rn

still represents a two-dimensional plane in Rn, while an equation of the form
a1x1 + a2x2 + . . .+ anxn = d (not all the coefficients ai’s are 0) would represent
a hyperplane, instead of a plane, in Rn, as one can solve one of them, say, xn
(assuming an 6= 0), in terms of the other variables, x1, . . . , xn−1, to obtain a
graph of a function of n−1 variables—it would represent an (n−1)-dimensional
hyperplane, where n− 1 > 2 if n > 3.
Note that a non-parametric form of a plane (or hyperplane) is given in terms
of a linear function of the coordinates x1, . . . , xn, and a parametric form of a
plane is given in terms of several “linear functionsa” of two free parameters.
However, some nonlinear functions in parametric form may also give rise to a
flat plane. Here is a simple example: (x, y, z) = s3(1, 2, 3) + t(−1,−11).

aInformally, a linear function of several variables s1, . . . , sm is a function of the form
a1s1 + . . .+ amsm + c for some coefficients a1, . . . , am, and c; but later on, we will call such
functions affine functions, and reserve the name linear functions for those affine functions
such that c = 0. We still call an equation like a1s1 + . . .+ amsm + c = 0 a linear equation.
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Remark 1.1.3

Likewise, a straight-line in Rn, n ≥ 3, is best described in parametric form: it
is described as the set of points obtained from a reference point on it by adding
some scalar multiple of a fixed direction vector. Namely, if P0 = (x01,, . . . , x0n)
is a reference point on this straight-line, and v = (v1, . . . , vn) is its direction
vector, then any point P = (x1, . . . , xn) on this straight-line can be expressed
as P = P0 + tv for some scalar t. Note that, in this form, if P is given and
we need to find the corresponding parameter t, then we would need to solve a
system of linear equations in t. This parametric form of a straight-line is often
the simplest to work with, but a straight-line can also arise from nonlinear
functions of a parameter, such as when describing the motion of a particle
along a straight-line whose spatial position is not a linear (or rather affine)
function of the time variable t.

Reading Quizzes/Questions:

1. How do you determine a direction vector of a straight-line from knowing two
points on it? If a straight-line is given as the intersection of two planes in
R3, how would you find a direction vector and a parametric equation for the
straight-line? Can you formulate a similar strategy or question in R4? (Don’t
get discouraged if you have no idea how to deal with the higher dimensional
cases; we will gradually discuss the relevant ideas in this course.)

2. Do you have an interpretation for the coefficients a, b, and c in the non-parametric
form of equation for a plane in R3? Can you determine them by knowing two
points on the plane? Can you determine them from a parametric form of the
plane?

3. What kind of equations, or systems of equations, would you have to solve to
find the set of intersection of two or more planes in R3? Can you identify the
possible intersections of two or more planes in R3? Can you adapt your analysis
to Rn when n > 3? (Hint: Always start your analysis with a concrete and as
simple as possible case. For example, how to adapt your analysis to the n = 4
case?)

4. What kind of equations, or systems of equations, would you have to solve to
find the set of intersection of two or more straight-lines in Rn for n = 2, 3, or
bigger? Can you identify the possible intersections of two or more straight-lines
in Rn?
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5. Can you summarize Professor Carlen’s discussion for computing the tangent
plane of the round sphere in your own interpretation? Can you redo the compu-
tation treating the sphere as a graph over the (x, y) coordinates, when (x0, y0, z0)
is not on the equator? Can a portion of the sphere near (x0, y0, z0) still be treated
as a graph when it is on the equator?

A former TA for this course, Blair Seidler has some work sheets 2, 3 and 4 for
his summer 2020 section of 251, which contain a set of good problems to test your
understanding of the material in the first three subsections.

1.1.4 The vector space Rn

Here in the absence of interpreting a vector in Rn as a quantity with magnitude and
direction, we can still define vector addition and scalar multiplication of a vector in
purely algebraic fashion. The key new concepts are linear combination of vectors and
span of a given set of vectors. You should study carefully the proof of Theorem 1 and
Example 5.

In subsection 1.2.2 we will see that a plane in Rn passing through the origin is
characterized as the span of two vectors, none of which is a multiple of the other.

Reading Quizzes/Questions:

1. Can a ray (namely, a half-line) be the span of some vector?

2. Can the first quadrant of R2 be the span of some set of vectors? Is the union
of the x and y axes the span of some set of vectors?

3. Is the span of two vectors in R3 always a plane?

4. Can every vector in R2 be written as a linear combination of {v1 :=
(1, 1)√

2
,v2 :=

(−1, 1)√
2
}?

Given x = (x1, x2), how would you (s, t) such that x = sv1 + tv2?

5. Can every a plane in Rn be characterized as the span of two vectors, none of
which is a multiple of the other?

https://sites.math.rutgers.edu/~bas312/SU2020M251/worksheet/WS02.pdf
https://sites.math.rutgers.edu/~bas312/SU2020M251/worksheet/WS03.pdf
https://sites.math.rutgers.edu/~bas312/SU2020M251/worksheet/WS04.pdf
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1.1.5 Geometry and the dot product

This is the first section in which the higher dimensional linear algebra enters in a
significant way. We may no longer visualize the geometry of parallelogram law, or
triangle inequality, or vector projection (to be discussed in the next subsection), but
we should still use the two-dimensional and three-dimensional geometry to guide us.
In particular, we should learn how the geometric behavior is captured using certain
concepts and language of linear algebra.

Points of attention are drawn to

• the interchangeable usage of the concepts of distance and metric∗, and the usage
of the concept of length of a vector (in some texts, the length of a vector is also
called its norm).

• how Theorem 3 (Cauchy-Schwarz inequality) is needed to make sense of the
notion of angle between vectors in Rn.

• how Theorem 4 (Triangle inequality) is related to the geometry of a triangle.

• how the proof of Theorem 4 encodes the Pythagorean Theorem in Rn for a pair
of orthogonal vectors a and b: ‖a± b‖2 = ‖a‖2 + ‖b‖2 when a · b = 0.

Remark 1.1.4

Note that the Cauchy-Schwarz inequality |a · b| ≤ ‖a‖‖b‖ encodes the more
complicated looking inequality

|
n∑
i=1

aibi| ≤

√√√√ n∑
i=1

|ai|2

√√√√ n∑
i=1

|bi|2, (1.1)

and the triangle inequality ‖a + b‖ ≤ ‖a‖+ ‖b‖ encodes√√√√ n∑
i=1

|ai + bi|2 ≤

√√√√ n∑
i=1

|ai|2 +

√√√√ n∑
i=1

|bi|2.

∗In the context of points in Rn, the distance between two points (vectors) is given in terms of
the length of a vector; but the distance between two points can be defined in more general context,
such as for points lying on a surface, where it may not be most appropriate to define the distance
in terms of the length of a vector.
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Remark 1.1.5

Note that the Euclidean distance in Definition 7 is derived from the Dot
Product: ‖x‖ =

√
x · x. But there are other notions of distance on Rn which

may be more suitable for certain problems, which may not be related to the
notion of dot product, and in those contexts it would not have the notion of
angle between vectors. One such example is the Taxi-cab metric ρTC(x,y) :=
‖x − y‖TC :=

∑n
i=1 |xi − yi|. The name is due to the reason that a Taxi-cab

can’t travel from x to y along the straight line from x to y, but has to travel
along either horizontal or vertical streets from x to y. Triangle inequality still
holds for such a distance: ‖x± y‖TC ≤ ‖x‖TC + ‖y‖TC .
As mentioned earlier, there are many contexts in which the norm of a vector and
the dot product between vectors need to be weighted differently on different
components. E.g. if w = (w1, . . . , wn), where each wi > 0, represents the
weights on different components, then a dot product weighted by w can be
defined as

a ·w b :=
n∑
i=1

wiaibi,

so the corresponding weighted norm is given by ‖a‖w :=
√∑n

i=1wi|ai|2. Note
that proofs for (1.17) and (1.20), etc. in [EC] still work, simply replacing · by
·w, and the corresponding Cauchy-Schwarz inequality |a ·w b| ≤ ‖a‖w‖b‖w still
holds, and encodes the more complicated looking inequality

|
n∑
i=1

wiaibi| ≤

√√√√ n∑
i=1

wi|ai|2

√√√√ n∑
i=1

wi|bi|2.

If you are still not very comfortable with the more abstract proofs for (1.20) in
[EC], you can derive this one from the standard version (1.1) by treating

√
wiai

as ai, and
√
wibi as bi in (1.1) and applying (1.1) directly.

Reading Quizzes/Questions:

1. Given v = (1, 2, 3, 4), can you find w in w = (−2, 0, 2, w) such that v is or-
thogonal to w? How about choosing w such that v and w form an angle of 3π

4

radian? How about choosing w such that ‖v‖ = ‖w‖?

2. Can you construct two vectors v and w in R4 such that v · w = −10, and
‖v‖ = ‖w‖ = 3?
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3. Prove that if a, b, c > 0, then 3 ≤
√
a+ b+ c

√
a−1 + b−1 + c−1.

1.1.6 Parallel and orthogonal components

Understand how parallel and orthogonal components of x with respect to a (non-
zero) vector u are constructed geometrically and algebraically, and then verify that
the same algebraic construction produces vectors x‖ and x⊥ with the same property
that

x = x‖ + x⊥ with x‖ ‖ u, and x⊥ · u = 0.

We will use this decomposition to provide another proof of the Cauchy-Schwarz
inequality. Suppose that y 6= 0, and set u = y/‖y‖, then x‖ = (x · u)u. By the
Pythagorean Theorem, ‖x‖2 = ‖x‖‖2 + ‖x⊥‖2 ≥ ‖x‖‖2. This implies

‖x‖ ≥ ‖x‖‖ = |x · u| = |x ·
(

y

‖y‖

)
| = |x · y|

‖y‖
.

We thus conclude that ‖x‖‖y‖ ≥ |x · y|. Equality would imply that x⊥ = 0. But
x⊥ = x− x‖, so this means that

x = x‖ = (x · u)u =
(x · y)

‖y‖2
y,

namely, x is a scalar multiple of y.

Reading Quizzes/Questions:

1. If v is a non-zero multiple of u, how do the parallel and orthogonal components
of x with respect to v relate to those of u?

2. Suppose that x and y are orthogonal to each other, and let x⊥ and y⊥ denote,
respectively, the orthogonal components of x and y with respect to some non-
zero vector u. Are x⊥ and y⊥ necessarily orthogonal to each other?
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1.1.7 Orthonormal subsets of Rn

Pay particular attention to Theorem 6 (Fundamental Theorem on Orthonormal Sets
in Rn) and its implications. One key implication is that the Pythagorean theorem
in the form of ‖x‖2 =

∑n
i=1(x · ui)2 holds for any set of n orthonormal vectors

{u1, . . . ,un} in Rn.

Reading Quizzes/Questions: Suppose that {u1, · · · ,uk} is a set of orthonormal
vectors in Rn, n > k, is it true that every vector x in Rn satisfy x =

∑k
i=1(x ·ui)ui?

1.1.8 Householder reflections and orthonormal bases

Pay particular attention to

• How the definition of the Householder reflection (1.28) is related to the geometric
mirror reflection in the plane orthogonal to u.

• (1.27) would show a more geometric interpretation if paired with x = x‖ + x⊥,
namely hu(x) simply flips the sign of the term x‖: hu(x) = −x‖ + x⊥. It also
follows from this that, if y = y‖ + y⊥, then hu(y) = −y‖ + y⊥, and

hu(x) · hu(y) = (−x‖ + x⊥) · (−y‖ + y⊥) = x‖ · y‖ + x⊥ · y⊥ = x · y,

as x‖ · y⊥ = 0 = x⊥ · y‖.

• The most significant theoretical property of a Householder reflection, as de-
scribed by (1.30); as a consequence, if {u1, . . . ,ur} is a set of orthonormal
vectors, and h is any Householder reflection (in fact, any transformation of Rn

satisfying (1.30)), then {h(u1), . . . ,h(ur)} is a set of orthonormal vectors—this
is used in the proof of Lemma 1.

More specifically, if {u1, . . . ,ur} is a set of orthonormal vectors in Rn, and if
ur = en, then we will take h to be the identity transformation; otherwise, one
can construct a Householder transformation h such that h(ur) = en. Since
h(ui) · h(uj) = ui · uj = 0 for i 6= j; in particular, taking i < j = r, we find
h(ui) · en = 0. Thus we can treat {h(u1), . . . ,h(ur−1)} as vectors in Rn−1. If
r > n, these would be r − 1 > n − 1 orthonormal vectors in Rn−1, and an
induction argument shows that this is impossible.
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1.2 Lines and planes in R3

1.2.1 The cross product in R3

Pay particular attention to

• the geometric motivation of definition for the cross product in R3.

• the geometric interpretation of triple product (Theorem 8) as the signed volume
of the parallelepiped with a, b, and c as its adjacent edges.

• Lagrange’s identity (Theorem 12).

To a physicist or an engineer, the most familiar properties of the cross product
between two vectors a and b in R3 are (i) a×b ⊥ to both a and b, (ii) the length of
a×b equals the area of the parallelogram formed with a and b as its adjacent edges,
and (iii) {a,b, a× b} obey the right-hand rotation rule.

For computations and derivations, the most important rules are those algebraic
properties given by Theorem 7. They do not all follow easily from the physicists’
definition of the cross product, but the latter follows more easily from the algebraic
definition of cross product and Theorem 7.

If we reverse the logic of reasoning, and aim to define a product operation which
obey the properties above, we can see that the defining formula,

a× b = (a2b3 − a3b3, a3b1 − a1b3, a1b2 − a2b1),

also follows from the above properties, for, if we write a = a1e1 + a2e2 + a3e3, and
b = b1e1 + b2e2 + b3e3, then

a× b =(a1e1 + a2e2 + a3e3)× (b1e1 + b2e2 + b3e3)

=a1b1e1 × e1 + a1b2e1 × e2 + a1b3e1 × e3+

a2b1e2 × e1 + a2b2e2 × e2 + a2b3e2 × e3+

a3b1e3 × e1 + a3b2e3 × e2 + a3b1e3 × e3

=(a2b3 − a3b3)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3,

using e1 × e1 = e2 × e2 = e3 × e3 = 0, and e1 × e2 = −e2 × e1 = e3, e2 × e3 =
−e3 × e2 = e1, and e3 × e1 = −e1 × e3 = e2.
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Here is another consideration which leads to the concept of cross product (and determi-
nant)∗. Given three vectors a,b, c in Rn, we can construct a parallelepiped with them as
adjacent edges. The volume of this parallelepiped is a function of these three vectors. How
do we determine a formula for this volume in terms of the three vectors?

It turns out that the task becomes easier if we consider signed volume. Namely, we
allow the volume to be negative; and if one of the vectors is flipped to its opposite, while
the other two remain the same, then the signed volume would flip a sign as well. In other
words, if we label this function as V (a,b, c), then

V (−a,b, c) = −V (a,b, c), V (a,−b, c) = −V (a,b, c), etc.

It certainly makes sense to generalize this property to

V (ta,b, c) = tV (a,b, c), V = (a, tb, c) = tV (a,b, c), etc.

for any scalar t.

For n = 3, this function V (a,b, c) has the additional property that

V (a + a′,b, c) = V (a,b, c) + V (a′,b, c), (*)

for any vectors a,a′,b, c, as well as similar properties for b and c (this property is not true
if n > 3, as explained below).

This is because, if we treat the parallelogram with b, c as adjacent edges as a base of
the parallelepiped, then the dependence of V (a,b, c) on a is only through its height with
respect to the above parallelogram.

In R3, the plane containing the above parallelogram has a one dimensional normal, so
the height with a+a′ replacing a = the height with a as edge + the height with a′ replacing
a, if we consider signed volume, as this allows the possibility of two edges on the opposite
sides of the plane containing the above parallelogram to cancel out in this consideration.

Using (*), and writing a = a1e1 + a2e2 + a3e3, etc., we have

V (a,b, c) = a1V (e1,b, c) + a2V (e2,b, c) + a3V (e3,b, c)

= (a1, a2, a3) · (V (e1,b, c), V (e2,b, c), V (e3,b, c))

= a · (V (e1,b, c), V (e2,b, c), V (e3,b, c))

This vector (V (e1,b, c), V (e2,b, c), V (e3,b, c)) has the property

b · (V (e1,b, c), V (e2,b, c), V (e3,b, c)) = V (b,b, c) = 0,

and

c · (V (e1,b, c), V (e2,b, c), V (e3,b, c)) = V (c,b, c) = 0,

∗The discussions in small fonts are supplemental material for interested students.
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as the “heights” in both cases collapse to 0. So this vector is ⊥ to both b and c, and points
in the direction (up to a sign) of the normal to the plane containing the base parallelogram.
We relabel it as b× c. Thus

V (a,b, c) = a · (b× c) , with b× c = (V (e1,b, c), V (e2,b, c), V (e3,b, c)).

Since
V (a,b, c) = a · (b× c) = |a||b× c| cos θ,

where θ is the angle between b× c (parallel to normal) and a, and |a| cos θ gives the height
of the parallelepiped with respect to the above parallelogram base, we see that |b × c| is
the area of the parallelogram base. In conclusion, b × c is ⊥ to both b and c, and has
length equal to the area of the parallelogram with b and c as adjacent edges. The final step
is to stipulate that V (u1,u2,u3) > 0, in fact = 1, when {u1,u2,u3} forms a right-handed
orthonormal basis. Thus

V (e1, e2, e3) = V (e2, e3, e1) = V (e3, e1, e2) = 1.

We claim that this leads to

b× c = (b2c3 − b3c2, b3c1 − b1c3, b1c2 − b2c1).

This follows from

V (e1,b, c) =b1V (e1, e1, c) + b2V (e1, e2, c) + b3V (e1, e3, c)

=b2V (e1, e2, c) + b3V (e1, e3, c) as V (e1, e1, c) = 0

=b2 [c1V (e1, e2, e1) + c2V (e1, e2, e2) + c3V (e1, e2, e3)] +

b3 [c1V (e1, e3, e1) + c2V (e1, e3, e2) + c3V (e1, e3, e3)]

= b2c3 − b3c2.

Similarly, V (e2,b, c) = b3c1 − b1c3, V (e3,b, c) = b1c2 − b2c1. We thus complete our proof
of the claim.

Based on this interpretation of a · (b× c) as the signed volume of the parallelepiped
with a,b, c as it adjacent edges, it follows that

a · (b× c) = b · (c× a) = c · (a× b) ,

as the latter two expressions simply compute the volume by taking the base as the paral-
lelograms with c,a, or a,b, respectively, as its edges.

We will later identify V (a,b, c) = a · (b× c) as the determinant of the matrix with the
vectors a,b, c ∈ R3 as its rows (or columns) in that order.

When n > 3, vectors orthogonal to both b and c are no longer parallel to each other,
namely, given in terms of scalar multiplication of one vector—this amounts to solving x·b =
x · c = 0, which is a system of 2 linear equations in n unknowns; we will see that it has at
least n − 2 > 1 free variables in its solution. Thus the heights of the parallelepipeds with
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the parallelogram formed by b and c as its edges, and with a, a′, and a+a′ as its 3rd edge,
respectively, are no longer parallel, so we may no longer have (*) in such cases!

An analogy which can be visualized is the signed area A(a,b) of the parallelogram with
a and b as its adjacent edges. In two dimension, vectors perpendicular to b are parallel to
each other, we thus can establish

A(a + a′,b) = A(a,b) +A(a′,b). (**)

In the three dimensional space R3, when b 6= 0, a is not parallel to a′, the heights of
the parallelograms formed by a,b, respectively, by a′,b, and a + a′,b are not in the same
direction, so we may no longer have (**). This explains why the algebraic behavior of
A(a,b) is different in Rn when n > 2.

Similarly V (a,b, c) behaves differently in Rn when n > 3, and this also explans why cross

product is not defined in Rn when n > 3 (however, a more complicated extension, exterior

product, can be defined, for any n vectors a1,a2, · · · ,an in Rn, the signed n-dimensional

volume V (a1,a2, · · · ,an) is defined and is the determinant of the matrix with these vectors

as columns).

Lagrange’s identity may look intimidating and hard to grasp. But there is also
a reasonable explanation for the appearance of the terms on the right hand side.
a× (b×c) ⊥ b×c, and in R3, vectors ⊥ b×c must be a linear combination βb+γc
of b and c for some scalars β and γ. What remains is to find how β and γ are
determined in terms of a,b, and c.

One way to make it easier is to think of two of the three vectors, say b and c as
fixed, and treat both sides as a function of the remaining vector, a, in this set up:

L(a) := a× (b× c), R(a) := (a · c)b− (a · b)c.

Note that

L(a1 + a2) = L(a1) + L(a2), and L(ta1) = tL(a1),

R(a1 + a2) = R(a1) +R(a2), and R(ta1) = tR(a1),

for any vectors a1 and a2, and scalar t. The two shared properties of L and R are
called linearity properties, and they are essential for the derivation below as well as
for the method in Professor Carlen’s notes.

If one of {b, c} is a scalar multiple of the other, then b× c = 0, and one can also
see easily that R(a) = 0, and L(a) = R(a) in such a case.

If none of vectors in {b, c} is a scalar multiple of the other, then a modification
of the proof for Theorem 6 shows that any vector of R3 is a linear combination of
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the vectors {b, c,b× c}. Thus, to verify that L(a) = R(a) for any vector a in R3, it
suffices to check it for a to be any one of the vectors {b, c,b × c}. That is a much
easier task to complete. For example, if we take a = b× c, then L(b× c) = 0, while

R(b× c) = ((b× c) · c)b− ((b× c) · b)c = 0,

so L(b× c) = R(b× c); while if we take a = b, then L(b) = b× (b× c) is ⊥ to both
b and b × c, so it must be a linear combination of b and c perpendicular to b. Its
length equals ‖b‖‖b × c‖ = ‖b‖2‖c⊥‖, where c⊥ is the perpendicular component of
c along b. But

‖R(b)‖ = ‖ (b · c) b− ‖b‖2c‖
= ‖b‖2‖ (u · c) u− c‖
= ‖b‖2‖‖c⊥‖,

recalling that c⊥ = c−(u · c) u, with u := b/‖b‖ being the unit vector in the direction
of b. Now that both L(b) and R(b) are linear combinations of b and c perpendicular
to b and with the same length, we must have L(b) = R(b) or L(b) = −R(b). It
remains to rule out the latter case. It will then establish L(a) = R(a) in all cases.

This strategy of reducing the proof of a general vector identity to simpler cases
often works in other settings dealing with cross product. Professor Carlen’s proof
uses a somewhat different, but also very useful reduction. The key idea there is to
express a, b, and c in terms of a set of orthonormal basis {u,v,u× v} with u being
the unit vector in the direction of b, and v being the unit vector in the direction of
c⊥ := c− (c · u)u.

Reading Quizzes/Questions: Suppose that x0 is a solution to a × x = b. Can
you describe the set of all solutions x to a× x = b?

1.2.2 Lines and planes in R3

Study carefully Examples 12-13, 15-16, 17 on the equations for a plane and a line in
R3, in particular, the multi-viewpoints in analyzing Example 15. Keep in mind that
both involve linear equation(s), and that a plane equation should have precisely two
free variables(parameters), but a line should have a single free variable.

Reading Quizzes/Questions:

• How does one set up a procedure to find the intersection of two planes given by
non-parametric equations?
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• What if the two planes, or one of them, is given by parametric equations? E.g.,
what would be the intersection of two planes, one of which is given by x+ 2y+
3z = 6 and the other given by (x, y, z) = (1, 2, 1) + s(1,−1, 0) + t(1, 0,−1)?

• How does one set up a procedure to find the intersection of two lines? What do
you expect for the possible set of solutions?

• To what extent can the problem and its solution be adapted to Rn for n > 3?

Below are some discussions, through examples, to the setting of Rn for n > 3. We
will see that the solution set to the system of 2 linear equations in 4 variables{

x1 + 3x2 − x3 + 5x4 = 6

x1 + 2x2 + x3 − 3x4 = −2

can be interpreted as a two-dimensional plane in R4, as one can eliminate x1 first by
subtracting the two sides of the equations to obtain x2−2x3 +8x4 = 8, thus can treat
x3 and x4 as free variables, and solve x2 in terms of them to obtain x2 = 2x3−8x4 +8,
and finally substitute this into any of the two equations to get x1:

x1 = −2x2 − x3 + 4x4 − 2

= −2(2x3 − 8x4 + 8)− x3 + 4x4 − 2

= −5x3 + 20x4 − 18.

We can then write the solution in vector form

(x1, x2, x3, x4) = (−5x3 + 20x4 − 18, 2x3 − 8x4 + 8, x3, x4)

= (−18, 8, 0, 0) + x3(−5, 2, 1, 0) + x4(20,−8, 0, 1).

Thus we can interpret (−18, 8, 0, 0) as a base point on this plane, and (−5, 2, 1, 0),
(20,−8, 0, 1) as two independent directions of this plane.

In the same vain, the solution of the system
x1 + 3x2 − x3 + 5x4 = 6

x1 + 2x2 + x3 − 3x4 = −2

x2 − x3 + 6x4 = 0

can be interpreted as a one-dimensional line, as a similar procedure will show that
x3 = 2x4 − 8, so we can treat x4 as the free variable, and obtain the solution as

(x1, x2, x3, x4) = (22,−8,−8, 0) + x4(10,−4, 2, 1).
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So (22,−8,−8, 0) is a base point on this line, and (10,−4, 2, 1) is a direction vector
of this line.

So in Rn, n > 3, it is natural to define a line in parametric form as x = x0 + su
for s ∈ R and some non-zero direction vector u (often taken as a unit vector), and
define a plane in in parametric form as x = x0 + su + tv for s, t ∈ R and some non-
zero vectors u,v which are not multiples of each other. Each equation of the form
a1x1 + · · ·+anxn = d, where not all ai are 0, represents a hyperplane in Rn, which has
n− 1 free variables. The intersection of a number of hyperplanes may produce a line
or a plane, depending on how whether we end up getting one or two free parameters
in the solutions.

1.2.3 Distance problems

Three distance problems are discussed in this subsection:

(a). distance from a point to a line;

(b). distance from a point to a plane; and

(c). distance between two lines in R3.

The distance formula may take a different form in the three cases, but all involve the
parallel or orthogonal component of a vector. The usage of cross product, which is
only for R3, is not essential for the discussion of this subsection.

All three problems are examples of a more general minimization problem: given
two sets X and Y of Rn, find the minimum ‖x− y‖ among x ∈ X and y ∈ Y . The
solution to this general problem requires a more careful formulation of the problem.
In some problems (see the discussion on least squares problems in the next section),
one is interested in not only the minimum value, but also the point(s) x∗ in X and
y∗ in Y that attain the minimum value.

One can solve these problems by either applying tools of calculus or using geo-
metric arguments.

In the case of (a), suppose the line is given in parametric form x(s) = x0 + su,
with u being a unit direction vector of the line, and p is a given point in R3. Then
one needs to find the minimum distance using the relevant data x0,u,p.

Here is a geometric approach. Let y and z denote the parallel and orthogonal
components of the vector p− x0 with respect to the direction vector u of the line:

p− x0 = y + z, y ‖ u, z ⊥ u.
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Then pL = x0 + y is a point on L, and for any point x(s) on this line,

p− x(s) = p− x0 − (x(s)− x0) = z− (x(s)− x0 − y),

with z · u = 0, and (x(s)− x0 − y) a scalar multiple of u, as each of x(s)− x0 and y
is a scalar multiple of u. Now by the Pythagorean theorem,

‖p− x(s)‖2 = ‖z‖2 + ‖x(s)− x0 − y‖2 ≥ ‖z‖2 = ‖p− x0‖2 − ‖y‖2,

and equality is attained if and only if x(s)−x0−y = 0. This shows that pL = x0 +y
is the unique closest point to p on the line, and the shortest distance is the square
root of ‖p− x0‖2 − ‖y‖2, with y = (p− x0) · u (using u as a unit vector; when u is
not a unit vector, this should be appropriately adjusted.)

This shortest distance squared turns out to be

‖(p− x0)− y‖2 = ‖z‖2 = ‖p− x0‖2 − |(−p− x0) · u|2.

Note that the derivation uses y, z, but the final solution avoids computing these
vectors explicitly: one only needs to compute p− x0 and (p− x0) · u.

If we use calculus tools, we would set up the squared distance from x(s) to p as
a function of s : f(s) = ‖p − x(s)‖2. If f(s) attains a minimum at some s∗, then
f ′(s∗) = 0. But we can write f(s) = (p− x(s)) · (p− x(s)), and using x′(s) = u and
product rule of differentiation, we find

f ′(s∗) = −2(p− x(s∗)) · u = −2 [(p− x0) · u− s∗] = 0, using u · u = 1.

Geometrically, this means that p − x(s∗) ⊥ u. One can then use the s∗ found here
and Pythagorean Theorem to evaluate f(s∗) as above. A missing detail is to show
that the f(s) indeed attains a minimum value on R.
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In the case of (b), suppose that the plane is given by the equation n · (x−x0) = 0,
where n is a unit vector (a normal to the plane). Consider now the parallel and
orthogonal components of x0−p with respect to n: x0−p = δn+v for some scalar δ
and vector v such that v · n = 0 (I didn’t have time to create a diagram to illustrate
the geometry, but you should draw some diagrams to illustrate the computations
below.). Then for any x on this plane,

x− p = x− x0 + x0 − p = x− x0 + δn + v,

where we know that (x − x0) · n = 0. Set x − x0 + v as w. Then n · w = 0, and
x− p = δn + w. By Pythagorean theorem

‖x− p‖2 = ‖δn‖2 + ‖w‖2 ≥ ‖δn‖2 = ‖x∗ − p‖2,

where x∗ = x0−v is a point on the plane, as (x∗−x0) ·n = 0. Thus the distance from
p to the plane is given by ‖x∗ − p‖ = |δ|, which can be calculated as |(x0 − p) · n|.

Suppose that in the situation of R3, the equation of the plane is given in the form
of ax+ by+ cz = d. No base point x0 is given, but any point x0 on the plane satisfies
ax0 + by0 + cz0 = d. In vector form, we need to identify n = (a, b, c)/

√
a2 + b2 + c2,

and the equation can be written as n ·x = d/
√
a2 + b2 + c2, or n · (x−x0) = 0. Then

the distance from p = (p1, p2, p3) to the plane is

|(x0−p)·n| = |x0 · (a, b, c)− p · (a, b, c)|√
a2 + b2 + c2

=
|d− p · (a, b, c)|√
a2 + b2 + c2

=
|d− (ap1 + bp2 + cp3)|√

a2 + b2 + c2
.

Remark 1.2.1

A common theme in both solutions is to construct some x∗ in the line (plane)
such that for any x in the line (plane), (p− x∗) · (x− x∗) = 0; in other words,
(p − x∗) ⊥ to every direction vector in the line (plane). This x∗ is called the
orthogonal projection of p in the line (plane). This idea will show up in more
general problems.
The above procedure works in any dimensions. A plane in Rn, n > 3, can also
be described as x0 + sv1 + tv2 for some vectors v1 and v2 in Rn which are not
multiples of each other. To find the distance from p to this plane, we need to
find the minimum of

‖x0 − p + sv1 + tv2‖2 over s, t ∈ R.

When the minimum is attained at some x∗ = x0 + s∗v1 + t∗v2 for some s∗, t∗,
then

(x∗ − p) · vi = 0 for i = 1, 2. (1.2)
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This amounts to solving{
0 = (x0 − p + s∗v1 + t∗v2) · v1 = (x0 − p) · v1 + s∗v1 · v1 + t∗v2 · v1

0 = (x0 − p + s∗v2 + t∗v2) · v2 = (x0 − p) · v2 + s∗v1 · v2 + t∗v2 · v2.

It is clear that this system is easy to solve when v1 · v2 = 0 (and v1 · v1 =
v2 · v2 = 1, but this is less crucial). This is one reason why we are interested
in constructing an orthonormal set of vectors from a spanning set.

In the case of (c), suppose that the two lines are given by x1(s) = x1 + sv1, and
x2(t) = x2 + tv2. Let f(s, t) = ‖x1(s) − x2(t)‖2 be the squared distance between
x1(s) and x2(t). Observe that f(s, t) = ‖x1(s)− x2(t)‖2 = ‖x1 − x2 + sv1 − tv2‖2 is
the squared distance from x2 − x1 to sv1 − tv2 in the plane spanned by v1 and v2

(assuming we are in the case that v1 and v2 are not parallel to each other; otherwise,
we would be looking at the distance from x2 − x1 to a line). Thus the minimum
possible value of f(s, t) is the squared distance from x2 − x1 to the plane spanned by
v1 and v2, for which we already have a solution from case (b).

In R3, we can take the unit vector n in the direction of v1 × v2 as the normal
to the plane, and carry out the analysis. The distance is found from (b) to be

|(x2 − x1) ·
(

v1×v2

‖v1×v2‖

)
|. But the orthogonality criterion (1.2) for the solution of the

distance problem applies in any Rn.

Professor Carlen’s approach, in particular his (1.57), is a more algebraic way of
describing the orthogonal projection approach as explained for case (b). We will dis-
cuss another solution after having discussed the Gram-Schmidt algorithm to produce
an orthonormal set of vectors {u1,u2} which produces the same span as {v1,v2};
that method will work for higher dimensional problems, which arise from many ap-
plications.

Example 1.2.1

Consider two lines parametrized by x1(s) = (1, 2, 3, 4)+s(1, 4, 5, 6), and x2(t) =
(2,−1, 1, 3) + t(−2,−1, 1, 0). The formula in terms of cross product is not
applicable here. To find the distance between these lines, we need to find s∗
and t∗ such that{

(1, 4, 5, 6) · [(1, 2, 3, 4)− (2,−1, 1, 3) + s∗(1, 4, 5, 6)− t∗(−2,−1, 1, 0)] = 0,

(−2,−1, 1, 0) · [(1, 2, 3, 4)− (2,−1, 1, 3) + s∗(1, 4, 5, 6)− t∗(−2,−1, 1, 0)] = 0.
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This amounts to {
78s∗ + t∗ = −26,

−s∗ − 6t∗ = 1.

This system has a unique solution, which is used to compute the distance
between these two lines.

Reading Quizzes/Questions: The discussions so far mostly focus on finding the
shortest distance. Do the method also give the point(s) which attains the shortest
distance? Is there an efficient way to find the shortest distance without having to
compute the point(s) which attains the shortest distance?

Summary: A common theme for these distance problems is to find the minimum of

‖s1v1 + · · ·+ skvk − q‖ among s1, · · · , sk ∈ R,

where {v1, · · · ,vk} is a set of vectors in Rn, and q is some vector in Rn. If the mini-
mum is attained at some (s∗1, · · · , s∗k), then we still have the orthogonality criterion:

(s∗1v1 + · · ·+ s∗kvk − q) · vj = 0, 1 ≤ j ≤ k.

We will discuss the theory for solving such system of linear equations later on.
But there is a simpler solution if {v1, · · · ,vk} is a subset of an orthonormal basis

{v1, · · · ,vn} for Rn. For then, by Theorem 6 we can write

q = q1v1 + · · ·+ qnvn

for some coefficients q1, · · · , qn, and

s1v1 + · · ·+ skvk − q = (s1 − q1)v1 + · · ·+ (sk − qk)vk − qk+1vk+1 − · · · − qnvn,

and by the Pythagorean Theorem,

‖s1v1 + · · ·+ skvk − q‖2

=(s1 − q1)2 + · · ·+ (sk − qk)2 + q2
k+1 + · · ·+ q2

n

≥q2
k+1 + · · ·+ q2

n

with equality if and only if s1 − q1 = · · · = sk − qk = 0. Thus the minimum distance
squared is

q2
k+1 + · · ·+ q2

n = (q · vk+1)2 + · · ·+ (q · vn)2,
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which can be computed directly from q and {vk+1, · · · ,vn} without having to solve
any additional equations.

For the case of n = 3 and k = 2, we just take v3 to be a unit normal to the plane
without having to work out v1,v2, while for the case of n = 3 and k = 1, the above
discussion relies on the construction of some orthonormal v1,v2,v3, but our earlier
solution took advantage that v1 can be taken as a unit direction vector of the line,
and without knowing v2,v3, we can still obtain

q2
2 + q2

3 = ‖q‖2 − q2
1 = ‖q‖2 − (q · v1)2 .

In any case the above discussion motivates the need for constructing appropriate
set of orthonormal basis of Rn, which the Gram-Schmidt Orthonormalization Algo-
rithm addresses.

1.3 The Gram-Schmidt Orthonormalization Algo-

rithm

Theorem 2 describes the fundamental property of the standard basis, and Theorem 6
describes a key property of orthonormal set. Note that a set of orthonormal vectors
in the setting of Theorem 6 is as useful as the standard basis, as illustrated in proving
the Lagrange identity, and in several arguments of the previous section in Carlen’s
notes. The Gram-Schmidt Orthonormalization Algorithm is a tool used to construct
such a set of orthonormal vectors from a given set of vectors.

In the words of Professor Carlen, the algorithm is used to extract a maximal
orthonormal set from any collection of m vectors in Rn for arbitrary m and n which
will have certain relations with the given collection of vectors.

1.3.1 The Gram-Schmidt Orthonormalization Algorithm in
R3

Actually the algorithm here works for m = 2 vectors {v1,v2} in Rn for any n. We
first assume v1 6= 0. We can set u1 to be the unit vector in the direction of v1:
u1 = v1/‖v1‖. Let w2 = v2 − (v2 · u1)u1 be the orthogonal component of v2 with
respect to u1. Then w2 · u1 = 0.

If w2 6= 0, then we can set u2 to be the unit vector in the direction of w2:
u2 = w2/‖w2‖, then u2 · u1 = 0, and {u1,u2} forms an orthonormal set such that
Span(v1,v2) = Span(u1,u2).

If w2 = 0, then v2 = (v2 · u1)u1, which also means that v2 is a scalar multiple of
v1.
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The first two steps can be best summarized as
v1 = ‖v1‖u1,

w2 = v2 − (v2 · u1)u1,

u2 = w2/‖w2‖, when w2 6= 0.

(1.3)

When this algorithm can be carried out, the relations between {v1,v2} and
{u1,u2} can be best summarized as{

v1 = ‖v1‖u1,

v2 = (v2 · u1)u1 + ‖w2‖u2.
(1.4)

Here the given vectors {v1,v2} are written on the left, and the newly constructed
vectors {u1,u2} (u2 can be constructed under the condition that v2 is not a scalar
multiple of v1), are written on the right.

1.3.2 The Gram-Schmidt Orthonormalization Algorithm in
general

This procedure can be carried out for a set of m vectors {v1, . . . ,vm}. The simplest
case is when no vj is a linear combination of the vectors {v1, . . . ,vj−1} for j =
1, . . . ,m; this implies that none of vj is 0. We still take u1 = v1/‖v1‖. Then we
construct w2 as above and know that w2 6= 0, so can construct u2 as above.

Now let

w3 = v3 − (v3 · u1)u1 − (v3 · u2)u2.

Then w3 · u1 = w3 · u2 = 0. Note that P (v3) := (v3·u1)u1+(v3·u2)u2 ∈ Span{u1,u2} =
Span{v1,v2} is the “orthogonal projection” of v3 in the plane Span{v1,v2}, charac-
terized by the two conditions:

(a) P (v3) ∈ Span{v1,v2};

(b) v3 − P (v3) ⊥ v for any v ∈ Span{v1,v2}.

Remark 1.3.1

When this orthogonal projection process was carried out to {v1,v2} to produce
w2 = v2 − (v2 · u1)u1, the orthogonal component of v2 with respect to u1, the
parallel component (v2 · u1)u1 is the orthogonal projection of v2 in Span{v1}.
Notice the different usage of the terminology orthogonal component and or-
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thogonal projection.

Note also that P (v3) is constructed using the newly constructed u1,u2, instead
of v1,v2.

Under our assumption, we know w3 6= 0, as, otherwise, v3 would be a linear
combination of {u1,u2}, which, in turn, becomes a linear combination of {v1,v2}. So
we can set u3 to be the unit vector in the direction of w3, and the relation between
v1,v2 and {u1,u2,u3} becomes

v3 = (v3 · u1)u1 + (v3 · u2)u2 + ‖w3‖u3.

Figure 1.1: Final Outcome of the Gram-Schmidt Orthogonalization of {u1,u2,u3}.
Image from the Wolfram Demonstrations Project due to Abby Brown. The code
here labels the given vectors as {u1,u2,u3}, and labels the constructed orthogonal
vectors as {v1,v2,v3}, and the normalized ones as {q1,q2,q3}, respectively.

Reading Quizzes/Questions: Can you identify the orthogonal projection of u3

into the span of {u1,u2} from the figure above?

This procedure can be carried out recursively for any j ≤ m, namely, assuming
that {u1,u2, . . . ,uj−1} has been constructed according to the rule that for each 1 ≤
i ≤ j − 1,

wi = vi − [(vi · u1)u1 + . . .+ (vi · ui−1)ui−1] , (1.5)

and set ui to be the unit vector in the direction of wi, which is not 0 under our
assumption, then this relation is rewritten as

vi = (vi · u1)u1 + . . .+ (vi · ui−1)ui−1 + ‖wi‖ui; (1.6)

https://demonstrations.wolfram.com/GramSchmidtProcessInThreeDimensions/
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further, we set

wj = vj − [(vi · u1)u1 + . . .+ (vi · uj−1)uj−1] ,

then wj 6= 0, and we set uj to be the unit vector in the direction of wj. The outcome
is a collection of orthonormal vectors {u1, · · · ,um} such that, for any 1 ≤ l ≤ m,
Span({u1, · · · ,ul}) = Span({v1, · · · ,vl}).

If we don’t make the assumption that no vj is a linear combination of the vectors
{v1, . . . ,vj−1} for j = 1, . . . ,m, then it is possible that some wi becomes 0 in this
process. When this happens, we drop this vi as a non-pivotal vector, as wi = 0 meant
that vi can be written as a linear combination of the vectors ahead of it in the list,
and we simply move on to the next vector in the list to repeat this procedure.

In the end we end up with certain r indices p1 < p2 < . . . < pr such that wi 6= 0
only when i = pl for some 1 ≤ l ≤ r, and obtain a set of r orthonormal vectors
{u1, . . . ,ur} based on {wp1 , . . . ,wpr}. The corresponding vectors {vp1 , . . . ,vpr} are
called pivotal vectors. For any j /∈ {p1, p2, . . . , pr}, assume pi < j < pi+1 for some
i, then vj is a linear combination of {vp1 , . . . ,vpi}. We still have for any 1 ≤ l ≤ r,
Span({u1, · · · ,ul}) = Span({vp1 , · · · ,vpl}).

Remark 1.3.2

Note that the number r of pivotal vectors among {v1, · · · ,vm} is the same as the
number of orthonormal vectors {u1, . . . ,ur} that this Gram-Schmidt procedure
has produced. Carlen’s approach focuses on the so-called orthonormal basis
such as {u1, . . . ,ur}; in standard, more leisurely discussions in linear algebra,
one also works with the pivotal vectors {vp1 , . . . ,vpr} as a basis.

Example 23 illustrates this algorithm. Take the given vectors there: v1 =
(1, 2, 3),v2 = (1, 2, 1),v3 = (2, 1, 1), and v4 = (0, 1, 1). The algorithm finds that

p1 = 1, p2 = 2, v3 non-pivotal, and p3 = 4. Furthermore u1 =
1√
14

(1, 2, 3),

u2 =
1√
142

(5, 4, 1), and u3 =
1√
3

(1, 1, 1). The computations in the Gram-Schmidt

algorithm give the relations between {v1,v2,v3,v4} and {u1,u2,u3} as follows

v1 =
√

14u1,

v2 =
6√
14

u1 +
2
√

42

7
u2,

v3 =
3√
14

u1 +
15√
42

u2,

v4 =
1√
14

u1 +
5√
42

u2 +
2√
3
u3.
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The coefficients may look complicated to the human eyes, but this orthogonalization
process turns out to be very useful in many contexts. For instance, if we need to
solve x1, x2, x4 such that x1v1 + x2v2 + x4v4 = f for arbitrarily given f , then using
the above relations, it is equivalent to solving

x1

[√
14u1

]
+ x2

[
6√
14

u1 +
2
√

42

7
u2

]
+ x4

[
1√
14

u1 +
5√
42

u2 +
2√
3
u3

]
= f ,

which in turn is equivalent to[√
14x1 +

6√
14
x2 +

1√
14
x4

]
u1 +

[
2
√

42

7
x2 +

5√
42
x4

]
u2 +

[
2√
3
x4

]
u3 = f .

Using the orthonormal property of {u1,u2,u3} and Theorem 6, we find that we must
have 

√
14x1 +

6√
14
x2 +

1√
14
x4 = u1 · f ,

2
√

42

7
x2 +

5√
42
x4 = u2 · f ,

2√
3
x4 = u3 · f .

For any given f , we can first solve x4 from the last equation, then substitute it into
the equation above to solve for x2, and finally substitute both x2 and x4 into the first
equation to find x1. One advantage of this approach∗ is that once the Gram-Schmidt
orthogonalization is carried out, the result can be used for arbitrary f ; if one applies
an elimination of variables method to solve x1v1 + x2v2 + x4v4 = f , then one has to
repeat the elimination process for each f .

If we include v3 into consideration and ask to solve x1v1 +x2v2 +x3v3 +x4v4 = f ,
then we can pick any value of x3 and solve x1v1 + x2v2 + x4v4 = f − x3v3 as above.
This leads to the above procedure is modified into

√
14x1 +

6√
14
x2 +

1√
14
x4 = u1 · (f − x3v3) = u1 · f −

3√
14
x3,

2
√

42

7
x2 +

5√
42
x4 = u2 · (f − x3v3) = u2 · f −

15√
42
x3,

2√
3
x4 = u3 · (f − x3v3) = u3 · f ,

∗After we introduce matrices and multiplication between matrices, this set up can be written in
a compact matrix form, called the QR factorization.
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using u3 · v3 = 0. After solving for x4 from the last equation, we can substitute it
into the second equation, solve for x2 in terms of x3 and the value of x4 from the last
equation. The same is done to solve for x1. In other words, x3 is a free variable in
this solution process. There is a general pattern: all variables corresponding to the
non-pivotal vectors are free variables, and the variables corresponding to the pivotal
vectors are solved in terms of them.

The outcome of the Gram-Schmidt algorithm can also be used in solving the
problem of distance from a point to a plane. For instance, consider the plane Π
spanned by v1 and v2 above. In parametric form it is given by x = sv1 + tv2.
Suppose we need to find the distance from p = (0, 1, 1) to Π. Then similar to our
discussion in the previous subsection in obtaining (†) and (‡), we need to find s and
t such that {

[sv1 + tv2 − p] · v1 = 0,

[sv1 + tv2 − p] · v2 = 0.

But Span(v1,v2) = Span(u1,u2), so sv1 + tv2 can also be written as xu1 + yu2 for
some x and y, and in terms of this formulation, we would need to solve for x and y
such that {

[xu1 + yu2 − p] · u1 = 0,

[xu1 + yu2 − p] · u2 = 0.

Recall the characterization of the orthogonal projection of p in Π, which identifies
xu1 + yu2 as that projection, so

xu1 + yu2 = (p · u1)u1 + (p · u2)u2.

This can also be obtained directly using the orthonormality of {u1,u2}: the above
system can be solved directly from{

x− p · u1 = 0,

y − p · u2 = 0.

This leads to x = 1√
14

and y = 5√
14

. Thus 1√
14

u1 + 5√
14

u2 is the point on Π closest to

p, and the distance from p to Π is ‖p−
[

1√
14

u1 + 5√
14

u2

]
‖. We took p to be the same

as v4 in Example 23, and it’s clear from the computations using the Gram-Schmidt

algorithm that p−
[

1√
14

u1 + 5√
14

u2

]
= 2√

3
u3, thus the distance from p to Π is 2√

3
.

If we are specifically interested in the values of s and t which gives the closes point
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in Π to p, then we can modify the procedure to get
[sv1 + tv2 − p] · u1 = s(v1 · u1) + t(v2 · u1)− p · u1 =

√
14s+

6√
14
t− 1√

14
= 0,

[sv1 + tv2 − p] · u2 = s(v1 · u2) + t(v2 · u2)− p · u2 =
2
√

42

7
t− 5√

42
= 0.

We can now solve for t from the last equation, and substitute it into the first equation
to solve for s.

Remark 1.3.3

Although we formulated the problem as a geometric problem of finding the
distance from a point to a plane (or distance between two lines or two planes),
the underlying mathematics shows up in many applications. They typically
show up as a problem of least squares. For instance, one may deal with three
variables X, Y, Z in a certain modeling problem, and believes that there are
coefficients s and t such that sX + tY would predict the value of Z well,
perhaps not exactly. One runs a series of n observations to obtain data points
(Xi, Yi, Zi) for i = 1, . . . , n, and would like to use the data points to find
values of s and t which would give the “best prediction”, namely, to make∑n

i=1(sXi+tYi−Zi)2 the smallest. Setting X̂ = (X1, . . . , Xn), Ŷ = (Y1, . . . , Yn),

and Ẑ = (Z1, . . . , Zn), the problem is the same as finding s and t which minimize
‖sX̂+tŶ −Ẑ‖2. But ‖sX̂+tŶ −Ẑ‖ is the distance from Ẑ to the point sX̂+tŶ
in the plane spanned by X̂ and Ŷ . So we are really solving a problem of finding
the distance from a point Ẑ ∈ Rn to a plane.

1.3.3 Subspaces of Rn

After introducing the definition of a subspace of Rn, the focus turns to finding a
set of orthonormal vectors {u1, . . . ,ur} in a subspace V which is not {0}, such that
V = Span({u1, . . . ,ur}), using the Gram-Schmidt algorithm.

The concept of dimension of a subspace is based on the following property∗. Sup-
pose that V a subspace which is not {0}, and V = Span({u1, . . . ,ur}) = Span({v1, . . . ,vs})
for two sets of orthonormal vectors {u1, . . . ,ur} and {v1, . . . ,vs}, then r = s. This
number r is then called the dimension of V , and each set {u1, . . . ,ur} and {v1, . . . ,vs}
is called an orthonormal basis of V . This is a generalization of Theorem 6; it also

∗The approach here is different from those in standard linear algebra textbooks, which typi-
cally develops properties of bases of a subspace which are not necessarily orthonormal, and uses
those properties to define the notion of dimension. The approach here relies only on the notion of
orthonormal bases.
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implies that there does not exist a set of m orthonormal vectors {u1, . . . ,um} in Rn

for some m < n such that Span({u1, . . . ,um}) = Rn—This is part of Theorem 17.
Here is a sketch of proof of the above statement in more plain language. Since

each v ∈ V can be written as v = (v · u1)u1 + . . .+ (v · ur)ur, we map each v to its
coordinate vector (v · u1, . . . ,v · ur) ∈ Rr. This is called C(v) in Professor Carlen’s
notes. The key property is (1.76), C(v) · C(w) = v · w for all v, w ∈ V . It follows
from this that {C(v1), . . . , C(vs)} is orthonormal in Rr. But according to Lemma 1,
Rr can’t have more than r orthonormal vectors. Thus s ≤ r. Reversing the role of
{u1, . . . ,ur} and {v1, . . . ,vs}, we see that r ≤ s, and conclude that r = s.

Reading Quizzes/Questions:

1. Is the following statement correct? The set of vectors in any line in R3 forms
a subspace.

2. Edit the following statement to make it correct: Any two sets of orthonormal
vectors in a subspace V have the same number of vectors.

1.3.4 Orthogonal Complements

We did not have time to cover this section in the lecture. A line through the origin in
R2 has a one dimensional set of vectors as its normal, but a line in R3 does not have
a one dimensional set of vectors as its normal; its normals form a two dimensional
plane. Likewise, a plane in R3 has a one dimensional set of vectors as its normal,
but a plane in Rn, n > 3, has an n− 2 dimensional set of vectors as its normal. The
notion of orthogonal compliment is used to characterize these properties.

Reading Quizzes/Questions: Is it true that S⊥ = (Span(S))⊥?

1.3.5 Higher dimensional analogs of lines and planes

Suppose that V is an r-dimensional subspace of Rn, then it is an analog of a line or
plane through the origin in R3. If we translate V by a fixed vector x0, namely, if we
define W = {x ∈ Rn : x = x0 + v for some v ∈ V }, then we say that W is an affine
space of dimension r. W is not necessarily a subspace of Rn, because, for two vectors
x,y ∈ W , x + y may no longer be in W ; but we always have x− y ∈ V , namely, the
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displacement between any two vectors in W is along a vector in V . An affine space
is an analog of the a line or plane in R3 not necessarily passing through the origin.

Such affine spaces arise when we solve systems of linear equations. The set of
solutions of a given system of linear equation forms an affine space.
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Chapter 2

Description of Motion

2.1 Functions from R to Rn and the description of

motion

2.1.1 Continuity of functions from R to Rn

The underlying mathematics of this chapter is the analysis of vector valued functions
of a single variable, t 7→ x(t) = (x1(t), . . . , xn(t)), t ∈ (a, b) ⊂ Rn. This is done in
2.1.1. Most of the analysis is done as for a real valued function of a single variable,
with little difference.

For instance, the continuity of x(t) at t = t0 requires that for any ε > 0, there is
a real number δε > 0 such that

|t− t0| < δε =⇒ ‖x(t)− x(t0)‖ < ε.

(Professor Carlen’s notes use ≤ instead of < in (2.2); convince yourself that the two
formulations are equivalent.) Since

|xi(t)− xi(t0)| ≤ ‖x(t)− x(t0)‖ =

√√√√ n∑
j=1

|xj(t)− xj(t0)|2 ≤
√
n max

1≤j≤n
|xj(t)− xj(t0)|,

it follows from this that the continuity of x(t) at t = t0 is equivalent to the continuity
of each of its coordinate function t 7→ xi(t) at t = t0.

Here are some details for the more subtle direction: suppose that each of the
coordinate functions xi(t) is continuous at t = t0, and we need to show that x(t) is
continuous at t = t0 (Reflect on why this direction is considered more subtle). Using
the continuity of xi(t) at t = t0, we find, for a given ε > 0, some δε,i > 0, such that

37
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when |t−t0| < δε,i, we have |x(t)−x(ti)| < ε/
√
n. Since there are only a finite number

of such i : 1 ≤ i ≤ n, let δε = min1≤i≤n δε,i, then δε > 0, and when |t − t0| < δε, we
have |x(t)−x(ti)| < ε for all 1 ≤ i ≤ n, therefore ‖x(t)−x(t0)‖ < ε. This shows that
continuity of x(t) at t = t0.

Remark 2.1.1

When we study the continuity at a point of a function (either scalar or vector
valued) of more than one variables, we will see that it is different from the
continuity at that point of its restriction to any one-dimensional line through
that point. For example, take

f(x, y) =

{
x2y
x4+y2

(x, y) 6= (0, 0),

0 (x, y) = (0, 0),

then its restriction along the one-dimensional line (x, y) = t(u, v), for some
(u, v) 6= (0, 0), becomes a function of a single variable t as

g(t) =

{
tu2v

t2u4+v2
t 6= 0,

0 t = 0.

This is obviously a continuous function of t. But the continuity of f at (0, 0)
would require

|f(x, y)− f(0, 0)| = |x2y|
x4 + y2

< ε

for all (x, y) such that ‖(x, y)‖ =
√
x2 + y2 < δε, where δε > 0 is chosen

depending on ε > 0 and f . If we choose y according to y = x2 we find

|f(x, x2)− f(0, 0)| = 1

2
,

which can’t satisfy |f(x, x2)− f(0, 0)| < ε if ε < 1
2
, no matter how small |x| is.

This shows that this f is not continuous at (0, 0), even though its restriction
to any line through (0, 0) is continuous. The reason is that there are infinitely
many lines through (0, 0), and having control of the behavior along any such
line, once it is fixed, is different from having control of the behavior in the
two-dimensional neighborhood.
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2.1.2 Differentiability of functions from R to Rn

For differentiability of x(t) at t = t0, we mimic the definition in one variable calculus:
there exists a linear function of t of the form, x(t0) + (t − t0)v, for some vector v,
such that it approximates x(t) near t = t0 in the sense that, the remainder

Rm(t) := x(t)− [x(t0) + (t− t0)v]

satisfies ‖Rm(t)‖/|t− t0| → 0 as t→ t0. We summarize this as

x(t) = x(t0) + (t− t0)v + Rm(t); ‖Rm(t)‖/|t− t0| → 0 as t→ t0.

In one variable calculus, this is often reformulated as defining the derivative through

looking at the limit of the difference quotient
x(t)− x(t0)

t− t0
:∣∣∣∣x(t)− x(t0)

t− t0
− v

∣∣∣∣ =
‖Rm(t)‖
|t− t0|

→ 0 as t→ t0.

As for the continuity of a vector-valued function of a single variable, x(t) is differ-
entiable at t = t0 if and only if each of its coordinate function xi(t) is differentiable
at t = t0, and x′(t0) = (x′1(t0), · · · , x′n(t0)) in such a situation.

We will see soon that the differentiability of a function of more than one variables
will need to be treated differently. Even for a real valued function f of y = (y1, . . . , yn)
defined in a neighborhood of y0, a linear function of y would take the form of f0 +
a1(y1 − y01) + a2(y2 − y02) + . . .+ an(yn − y0n), so we would need to examine

Rmf (y) := f(y)− [f0 + a1(y1 − y01) + a2(y2 − y02) + . . .+ an(yn − y0n)]

as y → y0. But there is no good way of making sense of the difference quotient
f(y)− f(y0)

y − y0

; neither does it make sense to look at
Rmf (y)

y − y0

as we can’t divide by

a vector. Also, y → y0 in infinitely many directions, and we may choose to let
y → y0 only along the coordinate axis directions, namely, for each 1 ≤ i ≤ n, we
examine y such that its coordinates in the j axis for j 6= i stay the same as those of
y0, but yi → y0i—in the case i = 1, we would have y = (y1,y02, . . . ,y0n), then we

will be looking at ‖Rmf (y)

yi − y0i

‖. This will give rise to the notion of partial derivatives.

This is related to differentiability, but is not equivalent to differentiability. For (full)
differentiability, what we will do, instead, is to require ‖Rmf (y)‖/‖y − y0‖ → 0 as
‖y − y0‖ → 0.

The usual rules of differentiation (or derivatives) of functions of a single variable,
such as for computing the derivatives of a sum or difference of two vector valued
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differentiable functions, or dot product or cross product of two vector valued differ-
entiable functions taking values in the same Rn (and n = 3 for the cross product)
follow the usual rules, as given by (2.11)–(2.13). One rule not stated in 2.1.1 is a
version of the chain rule.

Suppose that x(t) defined for t ∈ (a, b) is differentiable at t0 ∈ (a, b), and τ ∈
(α, β) 7→ t = φ(τ) ∈ (a, b) is differentiable, with φ(τ0) = t0. Then the composition
x◦φ(τ) is differentiable at τ = τ0, and (x ◦ φ)′(τ0) = φ′(τ0)x′(t0) ; more appropriately,

d(x ◦ φ)

dτ
(τ0) =

dφ

dτ
(τ0)

dx

dt
(t0).

A casual proof would examine

x ◦ φ(τ)− x ◦ φ(τ0)

τ − τ0

=
x(φ(τ))− x(φ(τ0))

φ(τ)− φ(τ0)

φ(τ)− φ(τ0)

τ − τ0

.

But it is possible that φ(τ) − φ(τ0) = 0 for some τ near τ0, so the above analysis is
flawed. A more careful proof goes by examining

x(t) = x(t0) + x′(t0)(t− t0) + Rmx(t), ‖Rmx(t)‖/|t− t0| → 0, as t− t0 → 0;

φ(τ) = φ(τ0) + φ′(τ0)(τ − τ0) +Rmφ(τ), |Rmφ(τ)|/|τ − τ0| → 0, as |τ − τ0| → 0;

and substituting the second into the first to obtain

x ◦ φ(τ) = x(t0) + x′(t0)(φ(τ)− φ(τ0)) + Rmx(φ(τ))

= x(t0) + x′(t0)(φ′(τ0)(τ − τ0) +Rmφ(τ)) + Rmx(φ(τ))

= x(t0) + x′(t0)φ′(τ0)(τ − τ0) +Rmφ(τ)x′(t0) + Rmx(φ(τ)).

We see now that x(t0) + x′(t0)φ′(τ0)(τ − τ0) is a linear function of τ , and that we
should treat Rmx◦φ(τ) := Rmφ(τ)x′(t0) + Rmx(φ(τ)) as the remainder term, and
ask whether we have ‖Rmx◦φ(τ)‖/|τ − τ0| → 0 as τ → τ0. Since

‖Rmx◦φ(τ)‖
|τ − τ0|

≤ |Rmφ(τ)|‖x′(t0)‖
|τ − τ0|

+
‖Rmx(φ(τ))‖
|τ − τ0|

,

we see that for any ε > 0, we can find δ1 > 0 such that

|Rmφ(τ)|‖x′(t0)‖
|τ − τ0|

< ε/2 for all τ such that |τ − τ0| < δ1;
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and can find δ2 > 0 such that ‖Rmx(t)‖ ≤ ε
2M
|t− t0| for all t such that |t− t0| < δ2,

where M > 0 is chosen such that M > |φ′(τ0)|+ 1; and finally, using the differentia-
bility of φ at τ = τ0, can find δ3 > 0 such that |φ(τ) − φ(τ0)| < M |τ − τ0| for all τ
such that |τ − τ0| < δ3. We now set δ = min{δ1, δ2/M, δ3}. Then δ > 0, and for all τ
such that |τ − τ0| < δ, we have |φ(τ)− φ(τ0)| < M |τ − τ0| < δ2, thus

‖Rmx(φ(τ)‖ ≤ ε

2M
|φ(τ)− φ(τ0)| ≤ ε

2
|τ − τ0|,

and finally
‖Rmx◦φ(τ))‖
|τ − τ0|

≤ ε.

2.1.3 Velocity and acceleration

Some most commonly encountered vector valued functions are functions of a time
variable. The remainder of this chapter carries out detailed analysis of such functions.
If one treats the vector valued functions as representing the position x(t) of a particle
as a function of time t, then one identifies x′(t) as the velocity, ‖x′(t)‖ as the speed,
and x′′(t) as the acceleration. If one is interested in the geometry of the path traced
out by t 7→ x(t), then the notion of curvature and torsion plays a prominent role if
x(t) is R3-valued, and some regularity and non-deneracy conditions are assumed.

The two approaches above are related, but also differ. The curvature of the curve
represented by a twice differentiable function x(t) should not depend on how fast a
particle traverses along the curve; in other words, it should be independent of the
reparameterization of the curve: if t = φ(τ) is a (differentiable) reparameterization
with t0 = φ(τ0), then x(t) and x ◦ φ(τ) := x(φ(τ)) should give the same curvature
computed through x(t) at t = t0 and x ◦ φ(τ) at τ = τ0 (discussed in 2.1.5).

Due to time constraint, we will focus on a few main results. You would learn a
lot by working through the examples worked out by Professor Carlen, but you need
not be concerned with memorizing the many formulae discussed—you only need to
understand well how the curvature and torsion are defined.

1. Unit tangent vector, parallel and orthogonal components of acceler-
ation a(t).

If the speed v(t) := ‖x′(t)‖ > 0 at some t, then define T(t) := x′(t)/‖x′(t)‖.
T(t) is a unit vector, and

x′(t) = v(t)T(t). (2.1)
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The guiding principle below will be to write all subsequent derivatives x′′(t),x′′′(t),
etc., in terms of a set of orthonormal frame adapted to the curve, with the first
vector being T(t), and the second vector being the unit vector in the direction
of the orthogonal component of x′′(t) with respect to x′(t) obtained through
the Gram-Schmidt algorithm applied to {x′(t),x′′(t)} when both are pivotal
vectors.

Since T(t) ·T(t) ≡ 1, it follows by taking derivatives with respect to t on both
sides that to get

2T′(t) ·T(t) = 0, i.e., T′(t) ⊥ T(t).

But T′(t) could be 0. If T′(t) 6= 0, then set N(t) = T′(t)/‖T′(t)‖, so

T′(t) = ‖T′(t)‖N(t).

We then define

B(t) = T(t)×N(t),

and call N(t) the principal normal vector to the curve at x(t), B(t) the binormal
vector to the curve at x(t). We will express all vector quantities associated to
the curve in terms of this set {T(t),N(t),B(t)} of orthonormal vectors.

The first task is to look at the decomposition of x′′(t) as its component a‖
parallel to T(t) (also parallel to x′(t)), and its component a⊥ orthogonal to
T(t):

x′′(t) = a‖ + a⊥.

a‖ can be computed as [x′′(t) ·T(t)]T(t), but we can also take derivative in (2.1)
to obtain

a(t) := x′′(t) = v′(t)T(t) + v(t)‖T′(t)‖N(t). (2.2)

Since T(t) ⊥ N(t), we see that v′(t)T(t) is the parallel component a‖ of a(t)
(along T(t)), and v(t)T′(t) = v(t)‖T′(t)‖N(t) is the orthogonal component a⊥
of a(t).

To summarize,

a‖ = v′(t)T(t), a⊥ = v(t)T′(t), v′(t) = x′′(t) ·T(t) =
x′′(t) · x′(t)
‖x′(t)‖

. (2.3)
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Remark 2.1.2

From (2.2) we can see that the condition that T′(t) 6= 0 is equivalent to
the condition that a⊥ 6= 0, which is also equivalent to the condition that
x′′(t) is not a scalar multiple of x′(t). Finally in R3 another equivalent
condition is that x′(t)×x′′(t) 6= 0—this condition encodes both x′(t) 6= 0
and T′(t) 6= 0.

2. Curvature. When v(t) = 1, namely, when x(t) moves at a unit speed at t,
‖T′(t)‖ is called the curvature at x(t) of the curve represented by t 7→ x(t),
and is denoted as κ. It measures the rate of change of the unit direction of the
curve per unit length along the curve; without the constraint v(t) = 1, ‖T′(t)‖
would measure the rate of change of the unit direction of the curve per unit
time, so does not represent the “curviness” of the curve in space. For a general
parametrized curve, the curvature should be defined as

κ :=
‖T′(t)‖
v(t)

. (2.4)

Using (2.1), for a curve in R3, we have

x′(t)× x′′(t) = v(t)‖T′(t)‖x′(t)×N(t) = v(t)2‖T′(t)‖T(t)×N(t), (2.5)

and since T(t) and N(t) are unit vectors orthogonal to each other, we know
‖T(t)×N(t)‖ = 1, so

κ =
‖T′(t)‖
v(t)

=
‖x′(t)× x′′(t)‖

v(t)3
. (2.6)

The above discussion assumes the existence of N(t), which requires T′(t) 6= 0.
Even when T′(t) = 0, we still use (2.4) to define the curvature κ (which would
be 0), so we always have

‖a⊥‖ = v(t)‖T′(t)‖ = v(t)2κ, and ‖a‖2 = [v′(t)]2 + v(t)4κ2. (2.7)

We also record

T′(t) = v(t)κN(t) when T′(t) 6= 0 so N(t) is defined. (2.8)
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Remark 2.1.3

The condition v(t) = ‖x′(t)‖ > 0 for t ∈ (a, b) eliminates curves x(t)
which are given by differentiable functions (even as many times as one
would like), but which trace out a path with corners or cusps. x(t) =
(t3, t2) for t ∈ R is such an example. Both t3 and t2 are infinitely many
times differentiable, but the path traced out by t 7→ (t3, t2) has a cusp at
x(0) = (0, 0). v(t) = ‖x′(t)‖ becoming 0 at t = 0 allows the unit tangent
vector T (t) to make an abrupt change of direction at x(0) (from pointing
downward when t < 0 to pointing upward when t > 0), even though
x′(t) = v(t) = (3t2, 2t2) changes continuously across t = 0.

Remark 2.1.4

We already saw that if we allow x′(t) = 0 at some t, this could allow
the traced out path to have a corner or cusp (such as the case at t = 0
when x(t) = (t3, t2)). If we allow T′(t) = 0 at some t, or equivalently,
x′′(t) a scalar multiple of x′(t), this could cause the constructed N(t) to
be discontinuous in t.
A simple example is x(t) = (t, t3) ∈ R2 for t ∈ R. x′(t) = (1, 3t2),
x′′(t) = (0, 6t). Geometrically this curve is concave downward when t < 0
so N(t) should point downward there, while it is concave upward when
t > 0 so N(t) should point upward there. This will cause a discontinuity
of N(t) at t = 0. Computationally, N(t) is to be defined as the unit vector
in the direction of

x′′(t)−
(

x′′(t) · x′(t)
x′(t) · x′(t)

)
x′(t) = (0, 6t)− 18t3

1 + 9t4
(1, 3t2) =

t

1 + 9t4
(−18t2, 6),

so we have

N(t) =

{
− (−18t2,6)√

364t4+36
, if t < 0,

(−18t2,6)√
364t4+36

, if t > 0.

As t→ 0−, we see that N(t)→ −(0, 1), but as t→ 0+, N(t)→ (0, 1).
It is our desire to obtain a continuously varying principal normal vector
N(t) through the Gram-Schmidt Algorithm that we require the condition
that x′′(t) not become a scalar multiple of x′(t), which then guarantees
a continuously varying principal normal vector N(t), and implies that
κ > 0.
For a curve in R2, we may choose to define N(t) such that {T(t),N(t)}
is right-handed, instead of relying on the Gram-Schmidt Algorithm as
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applied to {x′(t),x′′(t)}. We still have T′(t) = κN(t) for some scalar κ in
such a formulation, but the κ here could be positive or negative, reflecting
the curve being curving to the left or right as the particle moves ahead.

3. Arc-length and arc-length parametrization. The length of the curve
t 7→ x(t) when a ≤ t ≤ b is

∫ b
a
v(t)dt =

∫ b
a
‖x′(t)‖dt.

A notion related to that of a curve is a path. A path is that traced out by a
curve, removing possible redundancies when a curve traverses a portion multiple
times. Analytically, a curve allows t 7→ x(t) to be non-injective, while a path
requires this parametrization to be injective. In other words, a curve emphasizes
x(t) as a function of t, while a path treats x(t) as a geometric object in space,
with t playing only the role of a parameter — other parameters can be used as
well.

For example, the curve x(t) = (cos(2πt2), sin(2πt2)) for 0 ≤ t ≤ 2, traverses the
unit circle centered at the origin four times as t runs from 0 to 2; the latter is
the path traced out by this curve. The length traveled would be

∫ 2

0
‖x′(t)‖ dt,

while the length of the path is
∫ 1

0
‖x′(t)‖ dt, because this curve traces out the

unit circle exactly once when t runs from 0 to 1.

The usage of these two terminologies is not universal, so one has to watch out
for the context to get the precise meaning.

The length of the curve x(t) from t = a to t = t is

s(t) :=

∫ t

a

‖x′(τ)‖dτ. (2.9)

If follows that, if v(t) = ‖x′(t)‖ > 0 for t ∈ (a, b), then t 7→ s(t) is strictly
increasing, differentiable, with a differentiable inverse, and it introduces a repa-
rameterization in terms of s; furthermore,

d

dt
=
ds

dt

d

ds
= v(t)

d

ds
. (2.10)

Thus any derivative with respect to the arc-length parameter s is equivalent to
v(t)−1 times the derivative with respect to t, and the curvature formula becomes
κ = ‖T′(t)‖/v(t) = ‖dT

ds
‖.

To study the geometry of a path traced out by a curve x(t), it is conceptually
advantageous to use the arc length parametrization, although in doing compu-
tations, one rarely carries out this parametrization explicitly.
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2.1.4 Torsion and the Frenet-Serret Formula for a curve in
R3.

In (2.8) we obtain a formula for the rate of change of T(t). It’s also interesting
to obtain a formula for the rate of change of N(t), when it is well defined. Since
N(t) ·N(t) ≡ 1, we also have N′(t) ·N(t) ≡ 0. Namely, N′(t) ⊥ N(t).

Note that N′(t) must be a linear combination of T(t) and B(t):

N′(t) = αT(t) + βB(t) for some scalars α and β.

Using the orthogonality between T(t) and B(t), we find α = N′(t) · T(t). But
N(t) ·T(t) ≡ 0, so taking derivatives in t gives us

N′(t) ·T(t) + N(t) ·T′(t) = 0,

which gives

α = N′(t) ·T(t) = −N(t) ·T′(t) = −v(t)κ(t).

If t is the arc length parameter, then v(t) = 1, the coefficient β is called the torsion of
the curve at x(t), and is denoted as τ(t); so in the general case we have β = v(t)τ(t).
Furthermore

B′(t) = T′(t)×N(t) + T(t)×N′(t)

= v(t)κ(t)N(t)×N(t) + T(t)× v(t) [−κ(t)T (t) + τB(t)]

= v(t)τ(t)T(t)×B(t)

= −v(t)τ(t)N(t).

(2.11)

To summarize, we have obtain the formulae for the rate of change of T(t),N(t),B(t),
under the assumption that v(t), κ(t) > 0 (to guarantee the existence of T(t),N(t)):

T′(t) = v(t)[κ(t)N(t)]

N′(t) = v(t)[−κ(t)T(t) + τ(t)B(t)]

B′(t) = v(t)[−τ(t)N(t)].

(2.12)

These are called the Frenet-Serret equations.
The plane through x(t) with B(t) as its normal is called the osculating plane of the

curve x(t) at x(t). Since ‖B′(t)‖ = |v(t)τ(t)|, the torsion τ(t) is the rate of turning
of the unit normal B(t) of the osculating plane per unit length along the curve.

Note that if τ(t) = 0 for t ∈ (a, b), then B′(t) ≡ 0 for t ∈ (a, b). It follows that
B(t) is a constant vector for t ∈ (a, b). This implies that the curve x(t) stays in a
fixed plane with B(t) as its normal.



2.1. FUNCTIONS FROM R TO RN AND THE DESCRIPTION OF MOTION 47

It is not easy to compute τ(t) from the discussion above. We now derive a formula
for computing τ(t). From

x′′(t) = v′(t)T(t) + v(t)2κ(t)N(t)

we differentiate in t one more time to obtain

x′′′(t) = v′′(t)T(t) + v′(t)T′(t) + [v(t)2κ(t)]′N(t) + v(t)2κ(t)N′(t)

= [v′′(t)− v(t)3κ(t)2]T(t) + [v(t)v′(t) + [v(t)2κ(t)]′]N(t) + v(t)3τ(t)B(t)

and take the dot product of both sides above with B(t), to obtain, using (2.5)

τ(t) =
B(t) · x′′′(t)

v(t)3
=

(x′(t)× x′′(t)) · x′′′(t)
v(t)6κ2(t)

. (2.13)

Remark 2.1.5

It is not so much interesting to compute τ(t); rather it is more interesting to
learn what role it plays in determining the geometry of a curve. Professor
Carlen discusses this issue via Example 34 and Theorems 26, 28, as well
the Darboux vector.
(2.12) indicates that the movement of the orthonormal frame {T(t),N(t),B(t)}
is determined by v(t), κ(t), and τ(t).
A deeper theorem in differential geometry says that two thrice differentiable
curves with their curvature non-vanishing anywhere, both parametrized by
their arc length parameter, such that they start at the same point in the same
direction, and their curvatures and torsions agree with each other at their re-
spective points corresponding to the same arc length parameter (κ1(s) = κ2(s),
τ1(s) = τ2(s)), then the two curves coincide.
Conversely, given any continuous κ(s) > 0 and τ(s), and any initial point and
initial tangent and principal normal directions, one can construct a (unique)
curve, parametrized by arc length parameter, such that it starts at the initial
point and its initial tangent and principal normal directions agree with the
assigned ones, and its curvature and torsion at the point corresponding to the
arc length parameter value s are equal to κ(s) > 0 and τ(s), respectively. In
other words, curvature and torsion together determine the geometry of a curve
in R3 completely, after the initial tangent and principal normal directions are
assigned.
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Remark 2.1.6

One motivation for defining the osculating plane to the curve x(t) at x(t0) to be
the plane through x(t0) containing the vectors T(t0) and N(t0) is the following
consideration. If one does a Taylor expansion of x(t) at t = t0, which can be
done as in one variable calculus,

x(t) = x(t0) + x′(t0)(t− t0) +
1

2
x′′(t0)(t− t0)2 + Rmx(t),

where ‖Rmx(t)‖/|t− t0|2 → 0 as t→ t0, one notes that

x(t0) + x′(t0)(t− t0) +
1

2
x′′(t0)(t− t0)2

=x(t0) + v(t0)(t− t0)T(t0) +
(t− t0)2

2

[
v′(t0)T(t0) + v(t0)2κ(t0)N(t0)

]
=x(t0) +

[
v(t0)(t− t0) +

(t− t0)2v′(t0)

2

]
T(t0) +

[
(t− t0)2v(t0)2κ(t0)

2

]
N(t0).

This is a plane curve in the plane through x(t0) and containing the vectors T(t0)
and N(t0) (the same plane as containing x′(t0) and x′′(t0)). In other words,
up to order (t − t0)2, the behavior of the curve x(t) is that of the plane curve
above; any spatial behavior of x(t) is reflected only through Rmx(t), which
is of order higher than (t − t0)2. It is for this reason that the plane through
x(t0) containing the vectors T(t0) and N(t0) is called the osculating plane to
the curve x(t) at x(t0).

Remark 2.1.7

The Frenet-Serret formulas has a geometric interpretation in terms of the Dar-
boux vectora. Let x(t) be a twice differentiable curve with non-zero speed and
curvature at each t in some open interval so that T(t),N(t) and B(t) are all
defined on this interval. The Darboux vector ω(t) is defined on this interval by

ω(t) = τ(t)T(t) + κ(t)B(t).

Carlen states that for small h > 0, the orthonormal basis
{T(t+ h),N(t+ h),B(t+ h)} is, up to errors of size h2 , what one would get
by applying a rotation of angle v(t)‖ω(t)‖ about the axis of rotation in the
direction of ω(t).
This is seen based on the following
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• When a vector x(t) is moving along a circle of radius r at an angular speed
of ω, then its instantaneous rate of motion is rω and its direction of motion
is orthogonal to the radius vector from the center of the circle to x(t). This
is seen by setting up coordinates such that x(t) = (r cos(ωt), r sin(ωt), 0),
so x′(t) = rω(−sin(ωt), cos(ωt), 0).

• ω(t) has the property that

ω(t)×T(t) = κN(t), ω(t)×N(t) = −κT(t)+τB(t), ω(t)×B(t) = −τN(t),

so

T′(t) = v(t)ω(t)×T(t), N′(t) = v(t)ω(t)×N(t), B′(t) = v(t)ω(t)×B(t).

• ω(t) × T(t) is perpendicular to both ω(t) and T(t), with its magnitude
equal to ‖ω(t)‖ sin θ, where θ is the angle between ω(t) and T(t). Since
‖T(t)‖ = 1 for all t, T(t) moves as a vector on the unit sphere in R3

with 0 as center; and since T′(t) ⊥ ω(t) by the equations above, this
means that T(t) is moving in a circle with ω(t) as its normal. And T(t)
rotating with ω(t) would have sin θ as the radius of the circle in which
the rotation takes place, and since ‖T′(t)‖ = v(t)‖ω(t)‖ sin θ, this means
that T(t) is rotating with ω(t) as its axis of rotation and at an angular
speed v(t)‖ω(t)‖. The same interpretation applies to N(t) and B(t).

aThis discussion is optional.

2.1.5 Integration of vector valued functions of a single vari-
able.

Integration of vector valued functions of a single variable is not discussed formally, ex-
cept in the discussion on geodesics in 2.1.8. If x(t) = (x1(t), . . . , xn(t)) is continuous
on t ∈ [a, b], then we define the integration of x(t) over [a, b] component wise:

∫ b

a

x(t)dt =

(∫ b

a

x1(t)dt, . . . ,

∫ b

a

xn(t)dt

)
.

The usual properties such at
∫ b
a
[cx(t) + dy(t)]dt = c

∫ b
a

x(t)dt+ d
∫ b
a

y(t)dt hold. The
following inequality looks similar to the one for integration of real valued functions,
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but requires a more careful proof.

‖
∫ b

a

x(t)dt‖ ≤
∫ b

a

‖x(t)‖dt. (2.14)

When written out in the components, in encodes the following√∣∣∣ ∫ b

a

x1(t)dt
∣∣∣2 + . . .+

∣∣∣ ∫ b

a

xn(t)dt
∣∣∣2 ≤ ∫ b

a

√
|x1(t)|2 + . . .+ |xn(t)|2dt,

which is not easily seen to hold without using the underlying dot product structure
here. If one interprets x(t) as the velocity at time t of a particle moving in Rn,

then
∫ b
a

x(t)dt = (
∫ b
a
x1(t)dt, · · · ,

∫ b
a
xn(t)dt) stands for the actual displacement of the

particle from t = a to t = b, which is effectively measuring displacement along straight
lines, but

∫ b
a
‖x(t)‖dt accounts for the total length of the path that the particle has

traveled, so (2.14) has a geometric interpretation that displacement measured along
straight lines is shorter than along any other paths—although an analytical proof, to
be given below, is not that easy to conceive.

Lemma. Suppose y ∈ Rn is such that y · v ≤ A‖v‖ for all v ∈ Rn, then ‖y‖ ≤ A.

The proof is simply by taking v = y to obtain y · y ≤ A‖y‖, from which the
conclusion follows.

Proof of (2.14). Set y =
∫ b
a

x(t)dt and take any v ∈ Rn. Then

y · v =

∫ b

a

x(t) · vdt ≤
∫ b

a

|x(t) · v|dt ≤
∫ b

a

‖x(t)‖‖v‖dt ≤
(∫ b

a

‖x(t)‖dt
)
‖v‖,

where we have used Cauchy-Schwarz inequality |x(t) ·v| ≤ ‖x(t)‖‖v‖. It now follows

from the Lemma that ‖
∫ b
a

x(t)dt‖ = ‖y‖ ≤
∫ b
a
‖x(t)‖dt. Note how we avoid dealing

with ‖
∫ b
a

x(t)dt‖ directly, but reduce this problem of estimating the length of a vector
into a scalar problem by taking a dot product with a (test) vector v.



Chapter 3

CONTINUOUS FUNCTIONS

3.1 Continuity in several variables

As explained in Professor Carlen’s notes, one of the basic motivations for consider-
ing continuous functions of several variables is that for this class of functions it is
meaningful to look for schemes to solve equations of the kind f(x) = b by some
approximation algorithm: one looks for xk such that

(a) f(xk) = bk → b as k →∞, and

(b) xk → x for some x as k →∞.

Then the continuity of f at x would imply f(x) = b and that xk, for k large, is a
good approximation for a solution to f(x) = b.

The above property is in terms of the behavior of f along a sequence of xk → x0.
The formal definition of continuity of a function of several variables at x0, as given in
Definition 34, is in terms of the behavior of f on the continuum set of x such that
‖x − x0‖ ≤ δ, which is almost the same as that for a function of a single variable,
only replacing the absolute values by the lengths (also called norms) of the vectors.
These two characterizations of continuity are equivalent, as proved in Theorem 35.

Definition 34 also defines a function f to be a continuous function on a set S if
it is continuous at every point x0 of S. Note that the δ > 0 in the requirement (3.8)
depends on ε as well as on x0. If one can choose δ > 0 to depend only on ε > 0 but
independent of x0 ∈ S, then we say f is uniformly continuous on S.

A first property of this definition is reflected in Theorem 33, the vector-valued
function f(x) := (f1(x), . . . , fm(x)) is continuous iff each of fj(x) is continuous (either
at a specific point or point wise on a set).

The next property of continuous functions is Theorem 34, the sum and prod-
uct of continuous functions are continuous functions, as are a quotient of two such

51
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functions f(x)/g(x) whenever g(x) 6= 0, and the composition of two such functions,
h ◦ f .

Based on this property, functions constructed using a finite number of these pro-
cedures are continuous at an appropriate domain.

It follows that the one variable function f(x) = 1
x

defined on (0,∞) is continuous
at every point of (0,∞). But it fails to be uniformly continuous on (0,∞), for, in

order for |f(x) − f(x0)| = |x−x0|
xx0

≤ ε, we need |x − x0| ≤ xx0ε, but no matter how
small δ > 0 is taken, we can always find x0 > 0 sufficiently close to 0 such that even
if |x − x0| ≤ δ, we can still find x ∈ (0,∞) such that xx0ε < |x − x0|: just take
x = x0 + δ, and take 0 < δ < 1

2
, 0 < x0 < min{δ/ε, 1

2
}.

A useful property of a continuous function on a bounded and closed interval is
that it is uniformly continuous there and attains the maximum and minimum values
on that interval. One main goal in the several variable setting is to find an analogue
of this property.

Using the same approach we can argue that f(x) := ‖x‖ =
√
x2

1 + · · ·+ x2
n is a

continuous function of x ∈ Rn by recognizing it as the composition of u = g(x) =
x2

1 + · · · + x2
n : Rn 7→ R≥0 with y =

√
u : R≥0 7→ R≥0, where g is the sum of n

continuous functions, and the square root function is also a continuous function on
R≥0. Of course one could argue directly by examining

|‖x‖ − ‖x0‖| ≤ ‖x− x0‖,

which follows as a consequence of the triangle inequality:

‖x‖ ≤ ‖x− x0‖+ ‖x0‖.

It then follows that for any ε > 0, as long as we take δ = ε and ‖x − x0‖ < δ, we
would get |‖x‖ − ‖x0‖| < ε, proving the continuity of f(x) = ‖x‖ at x0.

When the construction involves a quotient of two continuous functions or a root
or logarithm of a continuous function, then special attention needs to be paid in
neighborhoods of points where the denominator or the function under the root or
logarithm become 0, as the resulting function may fail to be continuous there.

Since a quotient of two continuous functions or a root or logarithm of a continu-
ous function may produce points the denominator or the function under the root or
logarithm become 0, we need to investigate the behavior of the resulting function in
a neighborhood of such points in more detail.

For this, one often needs to work with the negation of continuity of a function f at
a point x0. The formal way to describe f not continuous at x0 is that, for some ε > 0,
no matter how small a δ > 0 one takes, one can always find some x with ‖x−x0‖ ≤ δ,
such that ‖f(x)− f(x0)‖ > ε.
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Taking a sequence δk > 0, δk → 0, as k → ∞, one finds a sequence xk such that
‖xk − x0‖ ≤ δk, but ‖f(xk) − f(x0)‖ > ε. This produces a sequence xk → x0 with
‖f(xk)− f(x0)‖ > ε. This is what one needs to do in order to show that some f not
continuous at x0.

One simple example is

f(x, y) =

{
xy

x2+y2
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)
(3.1)

where if (xk, yk) = ( 1
k
, 1
k
), we would get f(xk, yk) = 1

2
, so |f(xk, yk)− f(0, 0)| ≥ 1

2
> ε,

if we take some 0 < ε < 1
2
.

In the other direction, Theorem 35 characterizes the continuity of f at a point
x0 through limxk→x0 f(xk) = f(x0) for any sequence {xk} such that xk → x0. This
gives another criterion for f to be not continuous at x0: if there are two sequences
xk → x0 and yl → x0 such that limk→∞ f(xk) 6= liml→∞ f(yl).

One can use this approach to see that the f above is not continuous at (0, 0), as
for (xk, yk) = ( 1

k
, 1
k
), we would get f(xk, yk) = 1

2
, while for xk, yk) = ( 1

k
, 0), we would

get f(xk, yk) = 0.
For a function of one variable of the form f(x)/g(x), where both f(x) and g(x)

are continuous, but f(x0) = g(x0) = 0, whether limx→x0 f(x)/g(x) exists (therefore
making it possible to extend f(x)/g(x) as a continuous function on a domain including
x0), one can apply l’Hospital rule or Taylor expansions to both the numerator and
denominator to try to draw conclusions.

But for a function of several variables of the form f(x)/g(x), the above method
is not directly applicable. One often carries out some preliminary study by following
one or both of the following approaches:

(i) Study f(x)/g(x) along any straight-line passing through x0, namely, consider
the line x = x0 +vt for some fixed direction v, and study f(x0 +vt)/g(x0 +vt)
as a function of one variable t; one can then apply tools from one variable
calculus; in the case of x ∈ R2 and when x0 = 0 and v is a unit vector,
this amounts to studying the function f(x)/g(x) in polar coordinates in z :=
x− x0 = (t cos θ, t sin θ) = t(cos θ, sin θ).

(ii) Freeze all the components of x but one of them, and study f(x)/g(x) as a
function of the (unfrozen) free single variable. This is related to the notion of
separate continuity given in Definition 35.

However, the above two approaches are merely preliminary examinations; a func-
tion can have separate continuity at a specific point or even if at every point in a
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neighborhood of a point but fails to be continuous as a function of the joint variables.
The function in (3.1) is one simple example.

Furthermore, even if f(x)/g(x) converges to f(x0)/g(x0) (or has a common limit)
as x→ x0 along each such path, it does not guarantee that f(x)/g(x) is continuous
at x0. One needs to find a way to verify the condition in the definition of continuity
which is not affected by how x→ x0.

Example 46 is such an example. It shows that, even if f(vr)/g(vr)→ 0 as r → 0,
for each fixed unit direction vector v, the function f(x)/g(x) may not have 0 as its
limit as x→ 0. For, with v = (a, b) and (x, y) = r(a, b),

x2y

x4 + y2
= r

a2b

a4r2 + b2
,

which → 0 as r → 0: when b 6= 0, a2b
a4r2+b2

→ a2

b
and the factor r would make the

fraction → 0; when b = 0, the fraction = 0 for all r, so certainly → 0 as r → 0. But,
if one does not fix (a, b), allowing its adjustment as r → 0, e.g., taking b = rsa2 for
some fixed s, then

r
a2b

a4r2 + b2
=

s

1 + s2
,

which does converge to 0 as r → 0 for s 6= 0. The condition b = rsa2 is equivalent to
y = sx2, so if (x, y) → (0, 0) along the parabola y = sx2, the function f(x, y) would
take the constant value s

1+s2
6= 0 for s 6= 0. Thus this f(x, y) is not continuous at

(0, 0).

The condition b = rsa2 is motivated by examining how big the fraction a2b
a4r2+b2

can attain as r → 0 and adjusting (a, b): the smallness of a4r2 tends to make the
fraction large, but it plays that role only when b2 is comparable to a4r2; equivalently
when b is comparable to ra. More formally, for any r > 0 small but fixed, by varying
(a, b) = (cos θ, sin θ), one examines the maximum value of

a2b

a4r2 + b2
=

cos2 θ sin θ

r2 cos4 θ + sin2 θ
=

sin θ cos−2(θ)

r2 + (sin θ cos−2(θ))2 ,

which equals 1
2r

for each r > 0 by taking sin θ cos−2(θ) = r, thus r a2b
a4r2+b2

= 1
2

along
such a path, and fails to → 0.

Remark 3.1.1

Examples illustrating possible behavior of the quotient of two continuous func-
tions both vanishing at a common point are mostly based on modifying the
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function in Example 45:

f(x, y) =

{
xy

x2+y2
(x, y) 6= (0, 0),

0 (x, y) = (0, 0).

For example, the function in Example 46 is obtained by replacing x with x2,
so the behavior along y = kx there is now reflected as along y = kx2; although
this modified function now approaches 0 along each straight line segment of the
form y = kx.
The central requirement for continuity of f(x) at x0 is, for appropriate δ(ε) > 0
depending on ε > 0,

‖x− x0‖ < δ(ε) =⇒ |f(x)− f(x0)| < ε,

so it is natural to try to express f(x)− f(x0) in terms the polar coordinates in
z := x− x0, namely, using r = ‖z‖ and ω = (cos θ, sin θ) = z/r.
Sometimes it may not be easy to see directly that one can make |f(x)−f(x0)| <
ε; but if it is possible to get |f(x)− f(x0)| ≤ g(x) for some function g(x), and
it is easier to insure that g(x) < ε, we can draw the needed conclusion on f .
This approach is called the Squeeze Principle.

In some situation, such as in Example 48, the function
x5

x4 + y6
becomes r

(
cos5 θ

cos4 θ + r2 sin6 θ

)
,

and the fraction

∣∣∣∣ cos5 θ

cos4 θ + r2 sin6 θ

∣∣∣∣ ≤ | cos θ| ≤ 1 after dropping the r2 sin6 θ term in

the denominator. Because this bound is uniform independent of θ, unlike in the situ-

ation of Example 46, we can conclude, using the Squeeze Principle, that
x5

x4 + y6
→ 0

as (x, y)→ (0, 0).

Another similar example is x2y
x2+y2

for (x, y) 6= (0, 0). Since 0 ≤ | x2y
x2+y2

| ≤ |y| (by

dropping the y2 in the denominator), and |y| → 0 as (x, y)→ (0, 0), we conclude that
x2y
x2+y2

→ 0 as (x, y)→ (0, 0).
If we modify the function in Example 46 into

f(x, y) =

{
1

4
√
x2+y2

x2y
x4+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0),

then in polar coordinate, when (x, y) = r(cos θ, sin θ) 6= (0, 0), f(x, y) =
√
r

(
cos2 θ sin θ

r2 cos4 θ + sin2 θ

)
,

which still → 0 as r → 0, for each fixed θ. However, along the curve r cos θ cot θ = s,
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f(x, y) =
s√

r(s2 + 1)
, which→∞ as r → 0 for s > 0, and→ −∞ as r → 0 for s < 0.

This function f(x, y) is separately continuous along each vertical line x = a or each
horizontal line y = b, as well as on each straight-line through the origin, yet it fails
to be bounded near (0, 0). In particular, considering it as a function defined in the
disc {(x, y) : x2 + y2 ≤ 1}, it does not attain a maximum or minimum value.

We would like a continuous function of several variables to maintain an important
and useful property of a continuous function of a single variable defined on a closed
interval: it attains its maximum and minimum value in that interval. It is for this
reason that we work with the definition of continuous function as given, instead of the
separate continuity, and we need to find the right notion in multi-dimensions which
corresponds to a closed interval in one-dimension. The appropriate notion turns out
to be that of a bounded closed set of Rn—the formal name for a bounded closed set
of Rn is a compact set.

Reading Quizzes/Questions:

1. If f(x, y) is continuous at (x0, y0), does it imply that for any xk → x0, f(xk, y0)→
f(x0, y0)?

2. If for any xk → x0, f(xk, y0) → f(x0, y0), and for any yk → y0, f(x0, yk) →
f(x0, y0), does this imply that f(x, y) is continuous at (x0, y0)?

3. If for any xk → x0, f(xk, y0)→ f(x0, y0), and there exists some L > 0 such that
|f(x, y) − f(x, y0)| < L|y − y0| for all (x, y) near (x0, y0), does this imply that
f(x, y) is continuous at (x0, y0)?

3.2 Continuity, compactness and maximizers∗

In one variable calculus, we mostly deal with functions defined on an open interval,
or a closed interval, or half-open and half-closed intervals. The most direct gener-
alizations of these objects to multi-dimensions would be an open rectangular box of
the form {(x1, . . . , xn) : ai < x < bi, for each 1 ≤ i ≤ n}, or a closed rectangular
box of the form {(x1, . . . , xn) : ai ≤ x ≤ bi, for each 1 ≤ i ≤ n}, or generalization
of the notion of half-open and half-closed intervals. However, these domains are too
restrictive for applications; they don’t even include domains in the shape of balls.

∗Due to time constraint, our discussion of the material of this section will be very selective.
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The appropriate extensions which include most domains we encounter in applications
are the open or closed subsets in Rn.

The following are three basic properties from one-variable calculus∗ that will be
the basis for their extensions to multi-dimensions.

(I) (Bolzano-Weierstrass Theorem) Any bounded sequence in R has a convergent
subsequence.

(II) Any Cauchy sequence in R is convergent. (A sequence {xi} is called a Cauchy
sequence, or simply Cauchy, if for any ε > 0 there exists N such that for all
i, j ≥ N , |xi − xj| < ε. This notion can be easily extended to Rn, simply
replacing |xi − xj| < ε by ‖xi − xj‖ < ε.)

(III) Any continuous function of a single variable defined on a closed intelrval attains
its maximum and minimum value in that interval.

A bounded and closed set in Rn is called a compact set of Rn.
Theorem 38 is a generalization of (I) to multi-variables in the context of a

bounded closed set.

Theorem. 38 (The Bolzano-Weierstrass Theorem) Let K be a compact subset
of Rn. Then for every sequence {xk} in K, there is a subsequence {xkl} and a z ∈ K
such that liml→∞ xkl = z. On the other hand, if K is not compact, then there exists
a sequence {xk} in K that has no subsequence convergent in K.

Theorem 39 (Continuity and Maximizers) is a generalization of (III).

The proof for Theorem 38 in Professor Carlen’s notes uses (II) while his proof
for Theorem 39 uses the notion of the least upper bound of a subset of R.

A subset X of R is said to be bounded from above if there exists a real number b
such that x ≤ b for all x ∈ X; such a number b is called an upper bound of X.

∗These properties are properties of the set of all real numbers, and are usually discussed in details
only in undergraduate analysis courses, not in a single variable course. These properties are subtle
in that none of them would be valid if we confine ourselves working with functions defined on the set
of rational numbers or taking values among rational numbers—even if we enlarge the set of rational
numbers by including roots of polynomials with rational numbers as coefficients. Even though our
daily usage of numbers are almost always limited to decimal numbers that have a finite number of
digits, theoretical discussions require that limits of sequences of such numbers (such as when taking
the integral of a function) are accounted for; without including these numbers and properties such
as (I) and (II), we wouldn’t be able to discuss the integral of some of the basic functions such as∫ 2

1
1
x dx or solutions of the one of the most basic differential equations y′(x) = y(x).
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Note that if b is an upper bound of X, then any number greater than b is also an
upper bound of X, but a number smaller than b may no longer be an upper bound
of X.

For any subset X of R which is bounded from above, as a consequence of (II)∗,
there exists a real number β such that (i) x ≤ β for all x ∈ X (namely, β is an upper
bound of X), and (ii) for any ε > 0, β − ε is no longer an upper bound of X, namely,
there exists some x′ ∈ X such that β− ε < x′. This β is called the least upper bound
of X (also commonly called the supremum of X), and is denoted as either l.u.b(X) or
supX—when such a number β exists, properties (i) and (ii) imply that it is unique.
When a subset X of R which is not bounded from above, it makes sense to define its
least upper bound as ∞.

This is a property of the set of real numbers; if one restricts oneself to working
with only rational numbers, for instance, then a subset of rational numbers may not
have a rational number as its least upper bound. In fact, none of (I–III) holds if one
restricts oneself to working only with (continuous) functions defined on some set of
rational numbers or taking values only on the set of rational numbers.

The notion of the least upper bound of a set of numbers is a proper generalization
of the notion of the maximum of a finite set of numbers. A set of infinite numbers
may not have a maximum value within the set, even if it is bounded from above;
but always has a well defined least upper bound. For example, if we define X =
{x is a rational number such that x2 < 2}, then we can see that X is bounded from
above. But X has no value which is greater than any of the other values of X: for
any rational x such that x2 < 2, we can always find some other rational number y
such that y2 < 2 and x < y. X does have a least upper bound in the set of real

∗The assertion that the least upper bound of X exists is a crucial property of the set of real
numbers, whose proof relies on the Bolzano-Weierstrass property of real numbers, or an equivalent
formulation. Carlen begins his proof of Theorem 39 with “Let B be the least upper bound of f on
C”, which means that he is using this assertion, although his notes are not spelling this out explicitly.
Here is a sketch of above assertion in the case that f is bounded from above on C. Let b1 be an
upper bound of {f(x) : x ∈ C}. If there exists some x0 ∈ C such that f(x0) = b1, then b1 is the least
upper bound of f on C. It remains to study the case where this does not happen. Set a1 = f(x1)
for some x1 ∈ C. Then a1 < b1. Let c = (a1 + b1)/2. If c is still an upper bound of {f(x) : x ∈ C},
we define b2 = c and a2 = a1, then repeat this procedure with a2 and b2; otherwise, there must be
some x2 ∈ C such that c < f(x2), then we let a2 = c, b2 = b1 and repeat this procedure with a2
and b2. This generates a sequence of intervals [ak, bk] for k ∈ N such that ak ≤ ak+1 < bk+1 ≤ bk,
and (bk − ak) = (b1 − a1)/2k−1 → 0 as k → ∞. The sequence of numbers {ak} is monotone non-
decreasing, and bounded. By the Bolzano-Weierstrass property, it has a subsequence {akl

} and a
limit B such that akl

→ B as l → ∞. It follows also that bkl
→ B as l → ∞. This B is then the

least upper bound of f on C. For, any x ∈ C satisfies f(x) ≤ bkl
, so f(x) ≤ B = liml→∞ bkl

; and
for any ε > 0 and all sufficiently large l, B − ε < akl

, but by construction of ak, there exists some
xkl

such that akl
< f(xkl

), making B − ε not an upper bound of f on C. Thus B satisfies both
criteria of the least upper bound of f on C.
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numbers, and that number is labeled as
√

2.
If X is not bounded from above, namely, for any real number b, there exists some

x ∈ X such that x > b. By taking b = k ∈ N, we would get a sequence {xk} in X
such that xk > k for all k ∈ N. In this way, we get a sequence {xk} in X which tends
to ∞ as k →∞.

If X has a finite least upper bound β, then, similarly, one can find a sequence
{xk} in X such that xk > β − 1

k
for all k ∈ N, while x ≤ β for all x ∈ X.

Similarly, any subset X of R which is bounded from below has a greatest lower
bound, denoted as either g.l.b(X) or inf X, and characterized by the properties (a)
x ≥ inf X for all x ∈ X, and (b) for any ε > 0, inf X + ε is no longer a lower bound
of X, namely, there exists some x′ ∈ X such that inf X + ε > x′.

Below is a different proof of Theorem 38 using (I). Let {xi} be a sequence in
the compact set K of Rn. Since K is compact, it must be bounded, namely, there
exists some R > 0 such that ‖x‖ ≤ R for all x ∈ K. In particular, ‖xi‖ ≤ R for
all i. Write each xi = ((xi)1, . . . , (xi)n), then |(xi)k| ≤ R for all i and 1 ≤ k ≤ n.
First we apply (I) to {(xi)1}, the sequence consisting of the first components of xi, to
obtain a subsequence {(xij1 )1} which converges to some z1 ({ij1} is a subsequence of
{1, 2, 3, . . .} indexed by j1, which goes from 1, 2, . . .); then we apply (I) to {(xij1 )2}
to obtain a subsequence which converges to some z2. The notation is becoming cum-
bersome; let’s agree to use the generic notion {xij} to denote this new subsequence.
By now we have (xij)1 → z1 and (xij)2 → z2 as j →∞. We do this for (n− 2) more
times to obtain a final subsequence, which we still denote as {xij}, which has the
property that (xij)k → zk for each 1 ≤ k ≤ n as j → ∞. It remains to prove that
xij → z = (z1, . . . , zn). But this follows from

‖xij − z‖ =

√√√√ n∑
k=1

[(xij)k − zk]2 ≤
√
nmax

k
[(xij)k − zk]2 ≤

√
nmax

k
|(xij)k − zk|,

and each |(xij)k − zk| → 0 as j →∞.
Theorem 39 is the main property of continuous functions of interest to us. It

does not give us an algorithm to find the maximum value or locations where the
maximum values may be attained; it merely assures that the maximum value is
attained somewhere in the compact domain of a continuous function.

Example 3.2.1

Let I = {(s, 0) ∈ R2 : 0 ≤ s < 1} and define ρ(x, I) = inf{|x − (s, 0)| :
(s, 0) ∈ I} be the distance from x = (x, y) ∈ R2 to the set I. Then for each
x ∈ R2, ρ(x, I) is well-defined, although, due to I being non-compact (why?),
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for some particular x ∈ R2, there may not be some (s∗, 0) ∈ I attaining ρ(x, I)
in the sense that ρ(x, I) = |x−(s∗, 0)| (Can you identify such x?—for this part,
0 ≤ s < 1 is the variable).
One the other hand, we can prove that this ρ(x, I) is a continuous function of
x ∈ R2, without having any formula for this function. For, given any x0 ∈ R2

and any ε > 0, according to the property of ρ(x0, I), first of all, there exists
some (s∗, 0) ∈ I such that

|x0 − (s∗, 0)| < ρ(x0, I) +
ε

2
.

Then for any x ∈ R2, by the triangle inequality, we have

|x− (s∗, 0)| ≤ |x0 − (s∗, 0)|+ |x− x0| < ρ(x0, I) +
ε

2
+ |x− x0|,

which implies that

ρ(x, I) ≤ |x− (s∗, 0)| < ρ(x0, I) +
ε

2
+ |x− x0|; (3.2)

secondly, for any (s, 0) ∈ I, by the triangle inequality, we have

|x− (s, 0)| ≥ |x0 − (s, 0)| − |x− x0| ≥ ρ(x0, I)− |x− x0|,

which implies that
ρ(x, I) ≥ ρ(x0, I)− |x− x0|. (3.3)

Combining this inequality with (3.2), we get

ε

2
+ |x− x0| > ρ(x, I)− ρ(x0, I) ≥ −|x− x0|,

thus for x such that |x− x0| < ε, we would get |ρ(x, I)− ρ(x0, I)| < ε, proving
the continuity of ρ(x, I) at x0.
In fact, we can reverse the role between x0 and x in proving (3.3) to get

ρ(x0, I) ≥ ρ(x, I)− |x− x0|, (3.4)

Another way to prove (3.4) is to note that, for any x and x0, (3.2) holds for
arbitrary ε, so as a consequence, we must have

ρ(x, I) ≤ ρ(x0, I) + |x− x0|.

(Why? Why can’t we keep the strict <?) Combining (3.4) with (3.3), we get

|ρ(x, I)− ρ(x0, I)| ≤ |x− x0|.

This proves the Lipschitz continuity of ρ(x, I).
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Question. Although in general it is impossible to find an explicit formula for the
distance from a point to a general set, in this particular case, one can use geometric
arguments to find an explicit formula for ρ(x, I). Can you work this out?
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Chapter 4

DIFFERENTIABLE FUNCTIONS

Continuous functions have many desired properties, but in applications we often
demand more: we want to be able to approximate a function by the simplest possible
functions: linear functions in the independent variables. In the one variable setting,
a linear function takes the form a + b(x − x0)—written this way with the b(x − x0)
term so that itself is a linear approximation to the constant term a when x is near
x0, and a function f(x) can be approximated by a+ b(x− x0) near x0 if

|f(x)− [a+ b(x− x0)] |
|x− x0|

→ 0 as x→ x0,

namely, the error |f(x)− [a+ b(x− x0)] | is vanishingly small compared with |x−x0|
as x→ x0.

In the one variable setting, this notion is equivalent to the existence of the deriva-
tive f ′(x0) and b = f ′(x0); geometrically, it means that the graph of y = f(x) has a
tangent line at (x0, f(x0)).

In the multi-variable setting, the linear approximations should be

a+ b1(x1 − (x0)1) + · · ·+ bn(xn − (x0)n) = a+ b · (x− x0),

where b = (b1, · · · , bn) and x0 = ((x0)1, · · · , (x0)n).

It turns out that this notion by linear approximation (called differentiability) is
different from the notion that the function has partial derivatives in each variable,
namely, when treated as a function of a single variable if holding all variables fixed
except for one, it has derivative in that variable. But this latter notion of partial
derivatives is easier to work with in practice. We will discuss what knowledge of
these partial derivatives would make a function differentiable, which would allow us
to use linear approximation on such a function (see Theorems 41, 42).

63
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4.1 Vertical slices and directional derivatives

4.1.1 Directional derivatives and partial derivatives

Carlen’s description of the idea of “slicing” means that we study a function f of
several variables by first focusing on its behavior on any one-dimensional slices (i.e., a
one-dimensional line) so that we can apply our tools from one variable calculus. The
concept of directional derivative comes out of this approach. The directions along the
coordinate axes are special directions, and the directional derivative in the direction
parallel to the xi axis, if it exists, is call the partial derivative of the function f at x
with respect to xi.

There are multiple notations in usage for this quantity. Carlen uses
∂

∂xi
f(x);

one also often sees
∂f

∂xi
(x), or ∂xif(x), of fxi(x). In call these notations, one should

treat the part before (x) as a new function constructed out of f , and the part (x)

means that we are evaluating this new function at x. In such a convention,
∂f

∂xi
(2x)

or ∂xif(2x) would mean evaluating that function at 2x; if we need to work with the
composite function f(2x) and take its partial derivative at x, our notation needs to
make it clear that it is taking the partial derivative of this function at x, not the

partial derivative of f(x) and evaluating it at 2x. In such a setting
∂

∂xi
[f(2x)] or

∂xi [f(2x)] would be a better notation for the former, although this convention is not
universally accepted.

Carlen does not introduce a specific notation for the directional derivative of f at
x in the direction of v, if it exists. A commonly used notation for this quantity is
∇vf(x) or Dvf(x).

Example 4.1.1

Define f(x, y) = xy for x, y > 0. When taking the partial derivative with
respect to x variable, we hold y as a constant, thus ∂xf(x, y) = yxy−1; while
when taking the partial derivative with respect to y variable, we hold x as a
constant, thus ∂yf(x, y) = xy lnx.

Question. For a given function f(x), suppose that its directional derivative exists for
every non-zero (directional) vector v ∈ Rn, are these directional derivatives related
to each other? —Bear in mind that there are infinitely many possible directional
vectors at any x. Theorem 41 gives an answer under some additional conditions on
the partial derivatives of f .
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Remark 4.1.1

The existence of all partial derivatives does not necessarily guarantee the exis-
tence of all directional derivatives, as demonstrated by

f(x, y) =

{
xy

x2+y2
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

Both partial derivatives
∂f

∂x
(x, y) and

∂f

∂y
(x, y) certainly exist for (x, y) 6= (0, 0).

At (0, 0), to examine the existence of
∂f

∂x
(0, 0), we need to examine g(t) :=

f(t, 0) according to the definition, which is 0 for all t, so
∂f

∂x
(0, 0) = g′(0) = 0.

The same is true for
∂f

∂y
(0, 0) = 0. Yet for v = (v1, v2), where v1, v2 6= 0, we

need to examine

g(t) := f(tv1, tv2) =

{
v1v2
v21+v22

, if t 6= 0,

0, if t = 0.

This g(t) is not even continuous as a function of t at t = 0, let alone having
derivative at t = 0! So for such directions v, the directional derivative of f at
(0, 0) does not exist.

4.1.2 The gradient and a chain rule for functions of a vector
variable

Remark 4.1.2

The gradient vector ∇f(x) = (
∂f

∂x1

(x), . . . ,
∂f

∂xn
(x)) is only valid in the rectan-

gular coordinates. We can transform x into polar coordinates when x ∈ R2,

and define
∂f

∂r
(x),

∂f

∂θ
(x) in a similar fashion, but the gradient vector in such

transformed coordinates need to be defined differently.
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Remark 4.1.3

(4.6) and (4.7) require that the partial derivatives be continuous near the point
where the formulae are to be applied. When that condition fails, the formulae
(4.6) and (4.7) may not hold, as illustrated by

f(x, y) =

{
x2y
x2+y2

, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

Similar to an example in the previous subsection,
∂f

∂x
(0, 0) =

∂f

∂y
(0, 0) = 0, and

for any v = (v1, v2), by looking at

g(t) := f(tv1, tv2) =

{
tv21v2
v21+v22

, if t 6= 0,

0, if t = 0.

we see that g′(0) =
v2

1v2

v2
1 + v2

2

, which is ∇vf(0, 0), and not equal to v ·∇f(0, 0) =

v · (0, 0).

Question. Suppose that we know that the partial derivatives of f(x) are continuous
for x ∈ R2 near x0, and, instead of knowing the values of all the partial derivatives
of f(x) at x0, we know the values of ∇vf(x0) for two directional vectors v which are
not multiples of each other. Can we figure out the values of all the partial derivatives
of f(x) at x0? What about the situation for higher dimensions?

4.1.3 The geometric meaning of the gradient

The discussion of (4.8) uses the geometric suggestive notion of angle θ. The underlying
property is the Cauchy-Schwarz inequality: −‖a‖‖b‖ ≤ a · b ≤ ‖a‖‖b‖.

Based on (4.8), if f(x) has continuous partial derivatives near x0, then for any
unit directional vector u, we have

−‖∇f(x0)‖ ≤ ∇uf(x0) = u · ∇f(x0) ≤ ‖∇f(x0)‖,

and ∇uf(x0) = u · ∇f(x0) = ‖∇f(x0)‖ if and only if u points in the same direction
as ∇f(x0). Thus ∇f(x0) points in the direction of steepest increase of f at x0.
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4.1.4 Critical points

In looking for a minimum or maximum point of a function f defined in a domain D,
we need to generalize a theorem from one variable calculus. For the case of D = [a, b],
we have

(A) If f is continuous on [a, b], then f must attain a minimum and a maximum
value on [a, b], as a consequence of the Bolzano-Weierstrass property of the set
of real numbers; but this theorem does not tell us how to find the minimum or
maximum value.

(B) If f is continuous on [a, b] and differentiable in (a, b), and if f attains its mini-
mum or maximum value in [a, b] at an interior point c: a < c < b, then f ′(c) = 0.
In such a situation, we can find the minimum and maximum values of f in [a, b]
by finding all its critical points c in (a, b), and compare the values of f(c) with
f(a) and f(b).

If D is in multi-dimensions, the first task is to define interior and boundary point
of D. A point x ∈ D is an interior point of D, if there exists some δ > 0 such that
the ball Bδ(x) ⊂ D. A point x is a boundary point of D, if for any δ > 0, the
ball Bδ(x) contains points in D and also points in the complement Dc of D. Note
that a boundary point of D may not be in D itself. The set of all boundary points
of D is denoted as ∂D. When D is itself an open ball Br(x0), then every point of
Br(x0) is an interior point of Br(x0), while a point x is a boundary point of Br(x0) iff
‖x− x0‖ = r, namely, iff x is on the sphere ∂Br(x0) of radius r centered at x0. It is
possible for a set to have no interior point at all, as in the case of the sphere ∂Br(x0)
of radius r centered at x0.

When we try to generalize (A)-(B) to multi-dimensions, (A) still holds as given
by Theorem 39; but the generalization of (B) would need to study the values of f
on its boundary points, which are often consisting of infinitely many points!—take
the case when D is the closed ball Br(x0) of radius r centered at x0.

Here we need to

(i). identify all interior critical points c,

(ii). identify the minimum and maximum values of f on the boundary ∂D of D, and

(iii). compare the values of f(c) for all interior critical points c with the minimum
and maximum values of f on the boundary ∂D of D.

(ii) can often be solved using Lagrange multipliers of section 5.2.1.
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Example 4.1.2

To find the minimum and maximum of the function f(x, y) = x2 + xy on the
closed disc D = {(x, y) : x2 + y2 ≤ 1, we first find solutions in the interior of D
of

∂xf(x, y) = 2x+ y = 0

∂yf(x, y) = x = 0

namely, the critical points in the interior of D. The only critical point here is
(x, y) = (0, 0), where f(0, 0) = 0.
Next we need to identify the minimum and maximum of the function x2 + xy
on the boundary ∂D = {(x, y) : x2 + y2 = 1}. We will develop the method of
Lagrange multipliers in section 5.2.1, but we can solve this particular problem
by noting that any point (x, y) ∈ ∂D can be parametrized as (cos θ, sin θ) for

some θ ∈ [0, 2π], and f(x, y) = cos2 θ+cos θ sin θ = cos(2θ)+sin(2θ)+1
2

. We can find
the minimum and maximum of this function of θ over [0, 2π] using one variable
calculus: the minimum is attained when cos(2θ) = sin(2θ) = − 1√

2
, so θ = 5π

8

or 13π
8

, with the minimum value = 1
2
−
√

2; the maximum is attained when

cos(2θ) = sin(2θ) = 1√
2
, so θ = π

8
or 9π

8
, with the maximum value = 1

2
+
√

2.

Finally, we compare the extremal value f(0, 0) in the interior of D with those
on the boundary ∂D to conclude that the minimum of x2 + xy on the closed
disc D is 1

2
−
√

2, and the maximum is 1
2

+
√

2.

Exercise 4.1.1. Find the minimum and maximum of the function f(x, y) = x2 +
xy + x+y

2
on the closed square S = {(x, y) : |x|, |y| ≤ 1}.

Example 63 involves finding the minimum and maximum of the function f(x, y) =
x4 + y4 + 4xy on the unbounded domain R2. We can’t apply Theorem 39 directly;
but find that we can reduce the problem to a situation where Theorem 39 is applica-
ble when we recognize that f(x, y) ≥ 1

2
(‖x‖2−2)2−2, which implies that f(x, y) ≥ 0

when ‖x‖ ≥ 2, but f(ε,−ε) = −ε2(4 − ε2) < 0, for ε > 0 small. So if a minimum
of f exists, it must be < 0, and can’t occur for ‖x‖ ≥ 2. Thus we can reduce the
problem to looking at f on C = {x : ‖x‖ ≤ 2}. On its boundary ∂C, f(x, y) ≥ 0.
All three critical points of f , (0, 0), (−1, 1), (1,−1) are interior points of C, and we
find f(0, 0) = 0, f(−1, 1) = −2, f(1,−1) = −2. This allows us to conclude that the
minimum of f on R2 is −2, and it is attained at (1,−1) and (−1, 1).

On the other hand, when we examine the maximum possible value of f on R2, we
find, using f(x, y) ≥ 1

2
(‖x‖2−2)2−2, that f(x, y) can be greater than any preassigned

value M , by taking ‖x‖ sufficiently large: as long as ‖x‖2 > 2 +
√

4 + 2M , then
f(x, y) ≥ 1

2
(‖x‖2 − 2)2 − 2 > M . So f has no finite maximum value on R2.
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If we change the function f to f(x, y) = x4−y4 +4xy. Then the only critical point
is (x, y) = (0, 0), and f(0, 0) = 0. We can still apply Theorem 39 to any closed
ball Br(0). But the maximum and minimum values of f on Br(0) all occur at a
boundary point of Br(0), instead of at its only critical point (0, 0); and the maximum
and minimum values of f on Br(0) grow unbounded with R, so this f has no finite
maximum or minimum value on R2.

Reading Quizzes/Questions:

(i) If f(x) has continuous partial derivatives in a domain U , and attains its max-
imum on a sub-domain D of U at a point x0 ∈ D, then ∇vf(x0) = 0 for all
v?

(ii) If f(x) attains its maximum on a domain D at an interior point x0, and f(x) has
a well-defined directional derivative ∇vf(x0) for some v, then ∇vf(x0) = 0?

4.1.5 The gradient and tangent planes

It is worthwhile to examine Example 65. One important concept of this subsection is
Definition 48 (Differentiability of functions from Rn to R)—in one variable calculus
the differentiability of a function f at some x is equivalent to the existence of the
derivative of f at x; but for a function of more than one variables, the existence of
all partial derivatives of f at x is not equivalent to the differentiability of a function
f at x.

A key feature of the notion of differentiability of f at x0 is that, instead of focusing
on partial derivatives or directional derivatives of f at x0, we focus on finding a “best
linear approximation” of f(x)− f(x0) at x0, namely, a “linear function”

L(x) = b1(x1 − (x0)1) + · · ·+ bn(xn − (x0)n) = b · (x− x0)

such that the remainder Rmf (x,x0) := f(x)−f(x0)−L(x) vanishes at “higher order
than linear rate of x− x0” in the sense that

|f(x)− f(x0)− L(x)|
‖x− x0‖

→ 0 as x→ x0.

A basic consequence of f(x) being differentiable at x0 is that all directional deriva-
tives of f(x) at x0 exist, and L(x) is uniquely determined as L(x) = ∇f(x0) ·(x−x0).
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This follows by setting x = x0 + hei in x → x0, where 1 ≤ i ≤ n is fixed, then
L(x) = bih, and

|f(x)− f(x0)− L(x)|
‖x− x0‖

=
|f(x0 + hei)− f(x0)− bih|

|h|
=

∣∣∣∣f(x0 + hei)− f(x0)

h
− bi

∣∣∣∣ ,
so it follows that

lim
h→0

∣∣∣∣f(x0 + hei)− f(x0)

h
− bi

∣∣∣∣ = 0,

and bi = limh→0
f(x0+hei)−f(x0)

h
= ∂xif(x0), as a result b = ∇f(x0).

When x ∈ R2, the graph of f(x0) + L(x) is a plane passing through (x0, f(x0)),
and tangent to the graph of z = f(x) at (x0, f(x0)). When x ∈ Rn, n > 2, the
graph of f(x0) + L(x) is a hyperplane in Rn+1 passing through (x0, f(x0)), which is
also called the tangent (hyper)plane to the graph of z = f(x) at (x0, f(x0)). Note
that the equation of the tangent plane y = f(x0) + ∇f(x0) · (x − x0) is equivalent
to ((x, y)− (x0, f(x0))) · (∇f(x0),−1) = 0, from which we see that (∇f(x0),−1) is
a normal vector to the tangent plane.

Theorem 42 says that if all the partial derivatives of f(x) exist for x ∈ U and
these partial derivatives are continuous for x ∈ U , then f(x) is differentiable at every
x ∈ U . In fact, a more precise statement holds: if all the partial derivatives of f(x)
exist for x in some ball B(x0) centered at x0, and that these partial derivatives are
continuous at x0, then f(x) is differentiable at x0.

Example 4.1.3

Here is an illustration of a basic usage of the linear approximation. For f(x, y) =
xy for x, y > 0, we are interested in finding the linear approximation to f(x, y)
near (2, 1) and use it to estimate f(2.1, 0.9). Recall that ∂xf(x, y) = yxy−1

and ∂yf(x, y) = xy lnx, so they are continuous near (2, 1), as a result, xy is
differentiable at (2, 1), and its linear approximation is given by

f(2, 1) + ∂xf(2, 1)(x− 2) + ∂yf(2, 1)(y − 1) = 2 + 1(x− 2) + 2 ln 2(y − 1),

so f(2.1, 0.9) = 2.10.9 can be approximated by 2+0.1−0.2 ln 2 = 1.96, up to an
error which is (vanishingly) small compared with

√
(2.1− 2)2 + (0.9− 1)2 =

0.1
√

2 ≈ 0.14.
Also the equation xy = 2 can be approximated near (2, 1) by 2 + 1(x − 2) +
2 ln 2(y−1) = 2, which is actually the tangent line to the curve xy = 2 at (2, 1).
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Example 4.1.4

Take f(x, y) to be defined by

f(x, y) =

{
x2y
x2+y2

, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

If this f(x, y) is differentiable at x0 = (0, 0), we would have L(x, y) = fx(0, 0)x+
fy(0, 0)y = 0, and

|f(x, y)− f(0, 0)− L(x, y)|
||(x, y)||

=
|f(x, y)|
||(x, y)||

→ 0 as (x, y)→ (0, 0).

But
|f(x, y)|
||(x, y)||

=
|x2y|

(x2 + y2)3/2
= cos2(θ)| sin(θ)|

in terms of the polar coordinates (r, θ) of (x, y), which does not tend to 0 as
r =

√
x2 + y2 → 0. This shows that this given f(x, y) is not differentiable at

(0, 0) (even though all directional derivatives of f(x, y) exist at (0, 0)).
If we define g(x, y) = yf(x, y), then we also have g(0, 0) = 0, and gx(0, 0) =
gy(0, 0) = 0, so if we choose g(0, 0)+gx(0, 0)x+gy(0, 0)y = 0 as the “best linear
approximation” to g(x, y) at (0, 0), we find

|g(x, y)− 0|
||(x, y)||

=
x2y2

(x2 + y2)3/2
= r cos2(θ) sin2(θ),

which tends to 0 as r =
√
x2 + y2 → 0 by the Squeeze Principle. So this g(x, y)

is differentiable at (0, 0).
The differentiability of both f(x, y) and g(x, y) at (x0, y0) 6= (0, 0) follows from
Theorem 42.

Here are the relations among the four related notions: (a) f(x) is differentiable at
x0; (b) all directional derivatives of f(x) exist at x0; (c) all the partial derivatives of
f(x) exist at x0; (d) all the partial derivatives of f(x) exist in some ball containing
x0 and are continuous at x0.

(d) =⇒ (a) =⇒ (b) =⇒ (c).

Theorem 41 was formulated assuming a stronger version of (d); the same conclusion
actually holds only assuming (a).
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Example 4.1.5

Here is an example of a function f(x, y) which is differentiable at some (x0, y0),
in fact differentiable at all nearby points, so its partial derivatives exist at all
nearby points, but the partial derivatives are not all continuous at (x0, y0).

f(x, y) =

{
(x2 + y2) sin 1

(x2+y2)a
, if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0),

where a ≥ 1/2. This example is based on a function in one-variable calculus
which is differentiable everywhere, but has discontinuous derivatives.
The partial derivatives of this f(x, y) are continuous at any (x0, y0) 6= (0, 0),
so its differentiability at any (x0, y0) 6= (0, 0) follows from Theorem 41. It only
remains to check the differentiability at (0, 0). We know that when a function
is differentiable at some (x0, y0), then its linear approximation there is given
by f(x0, y0) + ∇f(x0, y0) · (x − x0, y − y0). In the case here, we can compute
∂xf(0, 0) = ∂yf(0, 0) = 0 by restricting f to the x and y axis. For example

∂xf(0, 0) = lim
h→0

h2 sin 1
h2a

h
= lim

h→0
h sin

1

h2a
= 0.

Thus we only need to examine whether

lim
(x,y)→(0,0)

∣∣∣(x2 + y2) sin 1
(x2+y2)a

− 0− (0, 0) · (x, y)
∣∣∣√

x2 + y2
= 0.

But∣∣∣(x2 + y2) sin 1
(x2+y2)a

− 0− (0, 0) · (x, y)
∣∣∣√

x2 + y2
=

∣∣∣∣(x2 + y2)1/2 sin
1

(x2 + y2)a

∣∣∣∣→ 0

as (x, y)→ (0, 0), so we conclude that this f is differentiable at (0, 0).
For any (x, y) 6= (0, 0), we find

∂xf(x, y) = 2x sin
1

(x2 + y2)a
− 2ax

(x2 + y2)a
cos

1

(x2 + y2)a
,

and as (x, y) → (0, 0), 2x sin 1
(x2+y2)a

→ 0, but 2ax
(x2+y2)a

may approach ∞ when

2a > 1. When 2a = 1, we restrict ∂xf(x, y) to the x-axis to find

∂xf(x, 0) = 2x sin
1

|x|
− x

|x|
cos

1

|x|
,

which does not converge to ∂xf(0, 0) = 0 as x → 0. Thus ∂xf(x, y) is not
continuous at (0, 0).
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Reading Quizzes/Questions:

(i) If f(x) has well-defined directional derivative ∇vf(x0) for every direction vector
v, is f(x) necessarily continuous at x0?

(ii) If f(x) is differentiable at x0, is f(x) necessarily continuous at x0?

(iii) If f(x) has well-defined directional derivative ∇vf(x0) for every direction vector
v, does f(x) necessarily increase in the direction of ∇f(x0)?

(iv) If f(x) has well-defined directional derivative ∇vf(x0) for every direction vector
v, does there necessarily exist a direction v such that ∇vf(x0) = 0?

(v) If f(x) is differentiable at x0, is ∇f(x0) a normal vector to the tangent plane
of the graph of f(x) at (x0, f(x0))?

4.2 Linear functions from Rn to Rm

To generalize the notion of the best linear approximation to a function f : Rn 7→ Rm,
for m > 1, the first step is to study linear functions from Rn to Rm.

In earlier contexts, we tend to call a function such as y = ax+b, or z = ax+by+c,
a linear function, as these functions involve only “linear terms” of the unknown(s).
More properly, these functions should be called affine functions. We will reserve
the name of linear functions to functions such as y = ax or z = ax + by; these
functions exhibit two simple and useful properties that functions such as y = ax+ b,
or z = ax + by + c do not quite have. They are summarized in Professor Carlen’s
notes as (4.22)

f(sx + ty) = sf(x) + tf(y) for all s, t ∈ R and x,y ∈ Rn. (4.22)

(4.22) implies that f is determined completely by knowing f(ei), i = 1, 2, . . . , n—
review (4.24), and these n vectors in Rm can be organized as an m × n matrix, as
described below.

4.2.1 The matrix representation of linear functions

We could describe a linear function in terms of its components, by writing f(x) =
(f1(x), . . . , fm(x)), then f is a linear function when each of its components, fi(x) is
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a linear function of x of the form ai1x1 + ai2x2 + . . .+ ainxn. Putting these together,
we have 

f1(x) = a11x1 + a12x2 + . . .+ a1nxn

f2(x) = a21x1 + a22x2 + . . .+ a2nxn
...

...

fm(x) = am1x1 + am2x2 + . . .+ amnxn

So such an f is determined by the m × n coefficients aij, 1 ≤ i ≤ m, 1 ≤ j ≤ n. It
is conceptually more clear to organize these coefficients as an m × n array, called a
matrix:

Af =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn


Since the matrix Af encodes all information about f , it is natural to associate f(x)
with Afx, where we think of the matrix Af acting, or multiplying, on x to produce
f(x):

f(x) = Afx =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn



x1

x2
...
xn

 =


a11x1 + a12x2 + . . .+ a1nxn
a21x1 + a22x2 + . . .+ a2nxn

...
am1x1 + am2x2 + . . .+ amnxn



=x1


a11

a21
...
am1

+ x2


a12

a22
...
am2

+ · · ·+ xn


a1n

a2n
...

amn

 .
Even if an m×n matrix A is not necessarily associated with a function f , we still

define its product with a vector x ∈ Rn, Ax, as a vector in Rm, which is the linear
combination x1A1 + x1A1 + . . .+ xnAn of the columns of A:

Ax =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn

x = x1A1 + x1A1 + . . .+ xnAn.

Note that this requires that the number of columns of A matches the number of
components of x. This also implies that Aej = Aj, namely, the jth column of A is
the output when A acts on (or multiplies to) ej.
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Remark 4.2.1

Most textbooks make a clear distinction between denoting a vector as a row
vector or as a column vector. Professor Carlen’s notes do not make this dis-

tinction. He treats the row vector (x1, . . . , xn) and the column vector

x1
...
xn


as different representations of the same vector! So you would see in his notes
that for an m× n matrix A, the matrix product A(x1, . . . , xn), which, in most

standard texts, would be denoted as A

x1
...
xn

 or as A

x1
...
xn

.

Note that if we take ej = (0, . . . , 1, . . . , 0) (with the only 1 on the jth slot), then

f(ej) =

f1(ej)
...

fm(ej)

 = Aej =

a1j
...
amj

 ,
which is the jth column Aj of the matrix A. In general, for x = (x1, . . . , xn) =
x1e1 + . . .+ xnen, we have, by (4.22),

f(x) = f(x1e1 + . . .+ xnen) = x1f(e1) + . . .+ xnf(en) = x1A1 + . . .+ xnAn,

so the following equalities summarize the different representations Ax, x1A1 +x2A2 +
. . .+ xnAn of f(x):

a11x1 + a12x2 + . . .+ a1nxn
a21x1 + a22x2 + . . .+ a2nxn

...
am1x1 + am2x2 + . . .+ amnxn

 = f(x) = x1A1 + x2A2 + . . .+ xnAn

=


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn



x1

x2
...
xn

 .
The main theorem of this subsection is Theorem 45: A function f from Rn to Rm

is linear if and only if for some m× n matrix A, f(x) = Ax for all x ∈ Rn.
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4.2.2 Composition of linear functions and matrix multiplica-
tion

Suppose that z itself is a linear function of another vector variable y ∈ Rm: z =
g(y) = (g1(y), . . . , gp(y)) ∈ Rp for y ∈ Rm. Then we can write out

g1(y) = b11y1 + b12y2 + . . .+ b1mym

g2(y) = b21y1 + a22y2 + . . .+ b2mym
...

...

gp(y) = bp1y1 + bp2y2 + . . .+ bpmym

and have a corresponding matrix

B =


b11 b12 . . . b1m

b21 b22 . . . b2m
...

...
...

...
bp1 bp2 . . . bpm


We can verify that the composition g ◦ f(x) is a linear function of x in two ways:
First, we work with the definition of linear functions directly:

(g◦f)(sx+ty) = g(f(sx+ty)) = g(sf(x)+tf(y)) = sg(f(x))+tg(f(y)) = s(g◦f)(x)+t(g◦f)(y);

second, we work with the concrete expressions for each component:

(g ◦ f)i(x) =bi1y1 + bi2y2 + . . .+ bimym

=bi1[a11x1 + a12x2 + . . .+ a1nxn] + bi2[a21x1 + a22x2 + . . .+ a2nxn] + . . .

+ bim[am1x1 + am2x2 + . . .+ amnxn]

= ci1x1 + ci2x2 + . . .+ cinxn,

where

cik = bi1a1k + bi2a2k + . . .+ bimamk =
m∑
j=1

bijajk.

If C is the p×n matrix (cik)i=1,...,p;k=1,...,n, then we define the multiplication of B and
A (in that order) as C = BA, and the above rule gives how the multiplication should
be carried out.

A short-hand way to view the above defining relation is that cik is given by the
dot product between the ith row of B and the kth column of A; again the number of
columns of B has to match the number of rows of A. Denoting the ith row of B by
bi, the jth column of B by Bj, the ith row of C by ci, and the kth column of C by
Ck, we now have three different ways of doing the matrix multiplication C = BA:
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(I) cik = bi ·Ak;

(II) Ck = BAk = a1kB1 + a2kB2 + . . . + amkBm; (Column k of BA is a linear
combination of columns of B, using the entries in the kth column of A as
coefficients in the linear combination;)

(III) ci = biA =
[
bi1 bi2 . . . bim

]
A = bi1a1 + bi2a2 + . . . + bimam. (Row i of BA

is a linear combination of rows of A, using the entries in the ith row of B as
coefficients in the linear combination.)

Note that AB may not equal BA, even if both are defined!

Example 4.2.1

Suppose that

B =

[
1 2 3
0 −4 5

]
, A is a 3× 2 matrix.

If C = BA, then C is a 2 × 2 matrix, and according to (II), row 1 of C
c1 = 1a1 + 2a2 + 3a3, row 2 of C c2 = 0a1 − 4a2 + 5a3; but according to (III),
the two columns of C are

C1 = BA1 = a11

[
1
0

]
+ a21

[
2
−4

]
+ a31

[
3
5

]
,

C2 = BA2 = a12

[
1
0

]
+ a22

[
2
−4

]
+ a32

[
3
5

]
,

Note also that AB is a 3× 3 matrix, with its first row equal to(
a1 ·

[
1
0

]
, a1 ·

[
2
−4

]
, a1 ·

[
3
5

])
and its first column equal to 1Column1(A) + 0Column2(A), etc. AB and BA
are not even of the same size in this case!

Reading Quizzes/Questions:

(i) True or False: If A and B are two matrices such that AB is defined, and
AB = O, where O is a matrix all of whose entries are 0, then either A = O or
B = O. (Here the three matrices O’s could be matrices of different sizes).



78 CHAPTER 4. DIFFERENTIABLE FUNCTIONS

(ii) True or False: If A, B, and C are matrices such that AB and AC are defined,
AB = AC, and A 6= O, then it must be true that B = C.

Remark 4.2.2

Matrix multiplication is defined to describe the composition of linear functions,
so properties of special linear functions are reflected in their matrix repre-
sentations. E.g., a Householder reflection hu has two special properties: (a)
it preserves the dot product of vectors, (b) hu ◦ hu = the identity function
I : Rn → Rn defined as I(x) = x for all x ∈ Rn. As a consequence of (a),
hu(ei) is a unit vector for each i, and hu(ei) · hu(ej) = 0 for i 6= j. Thus the
columns of the matrix representation Ahu are orthonormal. (b) implies that
A2
hu

= In, the identity matrix whose columns are e1, . . . , en.
Note also, since hu(u) = −u, and hu(v) = v for all v such that v ⊥ u, we
must have Ahuu = −u, and Ahuv = v for all v such that v ⊥ u.

4.2.3 Solving the equation Ax = b

An m× n matrix A defines a linear function f : x ∈ Rn 7→ Ax ∈ Rm. Here are some
basic questions that we need to address:

(a) Given a specific vector b ∈ Rm, how do we determine whether there is a solution
x ∈ Rn to Ax = b? If there is one, is there a unique one or there are multiple,
or perhaps infinitely many solutions? Is there a formula or algorithm to find
the solutions?

(b) Is there a criterion, or criteria, that guarantees the solvability of Ax = b for
every b ∈ Rm?

Recall that Ax = b is equivalent to

x1 Col1(A) + x2 Col2(A) + · · ·+ xn Coln(A) = b,

namely, b is in the Column Space Col(A) of matrix A consisting of the span of the
column vectors of the matrix A. So question (a) above is equivalent to whether b is
in the Column Space A, and question (b) is equivalent to whether the Column Space
A is the entire Rm.

The question of uniqueness of solution is related to the Null Space Null(A) of
matrix A consisting of all vectors z ∈ Rn such that Az = 0. If x1 6= x2 are different
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solutions to Ax = b, then A(x1 − x2) = 0, making x1 − x2 a non-zero vector in
Null(A); conversely, if z is a non-zero vector in Null(A), then whenever x solves
Ax = b, x + z is also a solution:

A(x + z) = Ax + Az = b + 0 = b.

Thus Ax = b has non-unique solutions if and only if the null space Null(A) contains
non-zero vectors. As a consequence, if we know all the solutions z to Az = 0, and a
particular solution x0 to Ax0 = b, then the general solution of Ax = b is given by
x0 + z, where z is the general solution to Az = 0.

Note also that x ∈ Null(A) if and only if x is orthogonal to each row of matrix A,
namely, x is in the orthogonal complement of the row space of matrix A.

For an m × n matrix A, the main properties of the solvability of Ax = b is
summarized in the following.

(i). Ax = b has a solution if and only if b lies in the column space of A.

(ii). Ax = b has a solution for every b if and only if the column space of A
is the full Rm, namely, A has m pivotal columns (in the Gram-Schmidt
Orthogonalization process).

(iii). Ax = b has at most one solution if and only if Ax = 0 has x = 0 as the
only solution, namely, the null space of A is {0}.

(iv). If A is n × n, then Ax = b has a solution for every b if and only if the
null space of A is {0}.

(v). If x satisfies Ax = b, and z satisfies Az = 0, then x+z satisfies A(x+z) =
b.

(vi). If x and y satisfy Ax = Ay = b, then x− y satisfies A(x− y) = 0.

(iv) follows from the earlier parts as follows. If the null space ofA is {0}, then every
column of A is a pivotal column, for, otherwise, say column j is not a pivotal column,
then Colj(A) = x1Col1(A) + . . . + xj−1Colj−1(A) for some coefficients x1, . . . , xj−1.
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This then implies that

A



x1
...

xj−1

−1
0
...
0


=

0
...
0

 ,

namely, there is a non-zero vector in the null space of A. Now that we know every
column of A is a pivotal column, and A is assumed to be an n× n square matrix, it
follows that A has exactly n pivotal columns, which span Rn. Thus Ax = b has a
solution for every b.

Conversely, if Ax = b has a solution for every b, it means that A has n pivotal
columns, so for a square n×n matrix A, every column is a pivotal column and Ax = 0
can’t have a non-zero solution: if x = (x1, . . . , xn) is a non-zero solution. Let xj be
the last entries among x1, . . . , xn to be non-zero, i.e., xj 6= 0, but xk = 0 for all k > j.
This then implies that x1Col1(A)+. . .+xj−1Colj−1(A)+xjColj(A) = 0. Since xj 6= 0,
we can solve for Colj(A) in terms of Col1(A), . . . ,Colj−1(A) in the form of

Colj(A) = −x1

xj
Col1(A)− . . .− xj−1

xj
Colj−1(A),

which then means that Colj(A) is not a pivotal column of A.

Remark 4.2.3

The discussion here for solving Ax = b is at a conceptual level; it does not give
an algorithm for computing x when the system has a solution. We will describe
an algorithm in the next subsection using the QR factorization of matrix A. It
is different from the algorithm of doing row reductions to the augmented matrix
of the system, which is often the first algorithm introduced in an elementary
linear algebra course.
When A is either of the following two types, then there are simple algorithms
to find the solutions of Ax = b:

(I). A is a square matrix whose columns are orthonormal;

(II). A is an m× n matrix in a row echelon form, namely, for each 1 ≤ i ≤ m,
either all entries of row i of A are zero, or the first non-zero entry, call the
pivot of this row, occurs in a column j with j ≥ i, and if i < i′, then the
pivot of row i′ occurs at a later column than that of row i. This forces
such a matrix to be of upper triangular form, namely, the entries in (i, j)
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for j < i are all 0. Another consequence is that, if aij is the pivot of row
i of A, then ai′j = 0 for all i′ > i, namely, all entries in positions below a
pivot are 0. Here are some simple examples of such matrices2 −1 0

0 −1 2
0 0 3

 ,
2 −1 0 1 2

0 0 −1 −2 2
0 0 0 1 3


The highlighted entries are the pivots.

If each row of an upper triangular m×n matrix R has a pivot, then n ≥ m,
and the columns of R containing a pivot span Rm, so we can solve Rx = b
for any Rm in such a situation. Furthermore, if, in addition, R has any
column that does not contain a pivot (this would imply n > m), we can
set that variable as a free variable and solve the pivot variables in terms
of these free variables, then there will be no unique solution to Rx = b.

If some row of an upper triangular m × n matrix R has no pivot, then
this row must be 0, and for any b ∈ Rm, whose entry in this row is not
zero, there will be no solution to Rx = b.

The second matrix above as coefficient matrix would correspond to a linear system
with 5 unknowns of the form

2 −1 0 1 2
0 0 −1 −2 2
0 0 0 1 3



x1

x2

x3

x4

x5

 =

b1

b2

b3

 .
We can treat x5 as a free variable and use the last equation to solve for x4 in terms
of x5: x4 = b3 − 3x5, then plug this into the previous equation to solve for x3:
x3 = −2x4 +2x5−b2 = −b2−2b3 +8x5. Finally we treat x2 as a free variable also, and
solve for x1 from the first equation to get x1 = 1

2
(x2−x4−2x5+b1) = 1

2
(b1−b3+x2+x5).

We can write the solution in vector form
x1

x2

x3

x4

x5

 =


1
2
(b1 − b3 + x2 + x5)

x2

−b2 − 2b3 + 8x5

b3 − 3x5

x5

 =


1
2
(b1 − b3)

0
−b2 − 2b3

b3

0

+ x2


1
2

1
0
0
0

+ x5


1
2

0
8
−3
1

 ,
which shows clearly the roles of the free variables x2 and x5. In particular, setting
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x2 = x5 = 0, we get a particular solution, while the vectors
1
2

1
0
0
0

 and


1
2

0
8
−3
1


correspond to the case of b1 = b2 = b30 and setting x2 = 1 and x5 = 0, and respec-
tively, x2 = 0 and x5 = 1, which both satisfy

2 −1 0 1 2
0 0 −1 −2 2
0 0 0 1 3




1
2

1
0
0
0

 =

2 −1 0 1 2
0 0 −1 −2 2
0 0 0 1 3




1
2

0
8
−3
1

 =

0
0
0

 .
This is consistent with (v) and (vi) at the beginning of this subsection. In fact, the
above two vectors form a basis of the null space of the coefficient matrix.

The matrix 2 −1 0
0 −1 2
0 0 0


has two pivots in rows 1 and 2, but no pivot in row 3. The system2 −1 0

0 −1 2
0 0 0

x1

x2

x3

 =

b1

b2

b3


would have no solution unless b3 = 0. When b3 = 0, the system would have infinitely
many solutions, as in such a case, x3 can freely take any value, and we can solve for
x1 and x2 in terms of x3.

Reading Quizzes/Questions: Investigate the following True or False questions.

(a). If Ax = b has a solution for every b, then the null space of A is {0}.

(b). If the null space of A is {0}, then Ax = b has a solution for every b.

(c). If x and y satisfy Ax = Ay = b, then any linear combination of x and y also
solves the same system.

(d). If Ax = b has more than one solutions, then it has infinitely many solutions.
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(e). The matrix 2 −1 0 1 2
0 0 −1 −2 2
0 0 1 1 3


is not upper triangular.

(f). The matrix 2 −1 0 1 2
0 0 −1 −2 2
0 1 0 1 3


is in a row echelon form.

For the case of (I), where A is a square matrix whose columns are orthonormal,
the system Ax = b is equivalent to

x1Col1(A) + x2Col2(A) + . . .+ xnColn(A) = b.

Since {Col1(A),Col2(A), . . . ,Coln(A)} is a set of n orthonormal vectors in Rn, it
forms a basis of Rn by the Fundamental Theorem on Orthonormal Sets in Rn, and
xi = Coli(A) · b. So the vector

x =

x1
...
xn

 =

Col1(A) · b
...

Coln(A) · b


is the unique solution to Ax = b in such a case. Note that in this case, base on
matrix multiplication rules, we can also write x as

x = ATb,

where AT is the transpose of matrix A so that the jth row of AT equals the jth
column of A.

Reading Quizzes/Questions: Verify that with A =

[
1
2
−
√

3
2√

3
2

1
2

]
, the columns of

A form an orthonormal set of vectors in R2, and that[
Col1(A) · b
Col2(A) · b

]
=

[
1
2

√
3

2

−
√

3
2

1
2

]
b = ATb.
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When A is a not square matrix whose columns are still orthonormal, we must
have m > n; we could still form the vector

x =

Col1(A) · b
...

Coln(A) · b


but this x may not solve Ax = b! It turns out that

Ax =
n∑
i=1

(Coli(A) · b) Coli(A)

is the orthogonal projection of b in the columns space of A, and the vector on the
right is closest vector in Col(A) to b. The solution x here is called a least square
(approximate) solution to Ax = b. This notion will be explored in a challenge
problem set. Note also that

n∑
i=1

(Coli(A) · b) Coli(A) = AATb.

Reading Quizzes/Questions: Verify that the columns of the following matrices
are orthonormal, then discuss the solvability Qx = b for various choices of b (e.g.

b =

0
0
1

 in the case of Q2, Q3).

Q1 =

[
1√
2
− 1√

2
1√
2

1√
2

]
, Q2 =

 1√
2
− 1√

2
1√
2

1√
2

0 0

 , Q3 =


1√
2

1√
6

− 1√
2

1√
6

0 − 2√
6

 .
For each Q, compute QTQ and QQT , then discuss features of these matrices.

The next subsection will discuss how to factorize any non-zero m×n matrix A as
QR, where Q is some m × r matrix whose columns are orthonormal (though r may
be < m), and R is an r× n matrix in row echelon form with a pivot in each row. We
will discuss how to combine the above two solution algorithms in the simpler cases
(I) and (II) to study the solvability of Ax = b.
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4.2.4 QR factorization

This is simply a way of organizing the computational outcome of the Gram-Schmidt
Algorithm. Given {u1, . . . ,uk} ⊂ Rm. Apply the Gram-Schmidt Algorithm to
{u1, . . . ,uk}. Let {w1, . . . ,wr} be the resulting orthonormal vectors, with r be-
ing the number of pivotal vectors in {u1, . . . ,uk}. Then r ≤ k, and each ui =
R1iw1 + . . . + Riiwi for some coefficients R1i, . . . , Rii; furthermore, Rii = 0 if ui
is not a pivotal column (as in such a case, ui would be a linear combination of
{w1, . . . ,wi−1}). But these relations are simply encoded in the matrix equation

[
u1 . . . uk

]
=
[
w1 . . . wr

]

R11 R12 . . . R1r . . . R1k

0 R22 . . . R2r . . . R2k
...

... . . .
... . . .

...
0 0 . . . Rrr . . . Rrk


If uj is the ljth pivotal column (e.g. if u3 is the 2nd pivotal column, then l3 = 2),
then lj ≤ j, Rljj > 0, and Rij = 0, for i > lj, and Rlik = 0 for k < j (i.e., Rljj is the
first non-zero entry of R in the ljth row). This shows that R is an echelon form. In
the situation here, each row of R has a pivotal entry. Compare against Lemma 13.
Set Q =

[
w1 . . . wr

]
, and

R =


R11 R12 . . . R1r . . . R1k

0 R22 . . . R2r . . . R2k
...

... . . .
... . . .

...
0 0 . . . Rrr . . . Rrk

 ,
then the columns of Q are orthonormal, which can be encoded in the matrix equation
QTQ = Ir×r, and R is an echelon form. This matrix product QR provides a QR-
factorization of

[
u1 . . . uk

]
: set A =

[
u1 . . . uk

]
, then A = QR.

The factorization discussed above applies to any non-zero matrix A, and we will
use this factorization A = QR to solve for Ax = b. If Ax = b and A+QR, then we
set Rx = y, and it follows that Qy = b. Conversely, if y satisfies Qy = b, and we
can find x such that Rx = y, then x satisfies Ax = b. Thus we have reduced the
solvability of Ax = b to that of two (simpler) systems: Qy = b and Rx = y. Note
that once the first system has a solution, the second one will have a solution using
the echelon form of R, so the key is the solvability of Qy = b.

Note that if A is m × k, then Q is m × r, y ∈ Rr. Qy = b if and only if b is
in the column space of Q, so the question boils down to whether a given b is in the
column space of Q. Suppose it is: b = Qy, then, using QTQ = I and multiplying
to the left of both sides by QT , we find y = QTQy = QT b. We can then solve for x
from Rx = y by back substitution.
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Example 4.2.2

To solve 1 −3 −2
2 0 5
2 6 5

x = b,

we apply the Gram-Schmidt algorithm to the columns of A to obtain
1

3
2
3
2
3

 ,
−2

3

−1
3
2
3

 ,
−2

3
2
3

−1
3


as the output orthonormal vectors. And the algorithm gives the relations1

2
2

 =3

1
3
2
3
2
3

 ,
−3

0
6

 =3

1
3
2
3
2
3

+ 6

−2
3

−1
3
2
3

 ,
−2

5
5

 =6

1
3
2
3
2
3

+ 3

−2
3

−1
3
2
3

+ 3

−2
3
2
3

−1
3

 .
This gives the QR factorization:

A =

1
3
−2

3
−2

3
2
3
−1

3
2
3

2
3

2
3
−1

3

3 3 6
0 6 3
0 0 3

 .
Thus, to solve

Ax =

1
3
−2

3
−2

3
2
3
−1

3
2
3

2
3

2
3
−1

3

3 3 6
0 6 3
0 0 3

x = b,

we first solve y from

Qy =

1
3
−2

3
−2

3
2
3
−1

3
2
3

2
3

2
3
−1

3

y = b,
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then solve for x 3 3 6
0 6 3
0 0 3

x = y.

Since the columns of Q are orthonormal in R3, we obtain

y = QTb =

 1
3

2
3

2
3

−2
3
−1

3
2
3

−2
3

2
3
−1

3

b.

This can also be seen, noting

y1

1
3
2
3
2
3

+ y2

−2
3

−1
3
2
3

+ y3

−2
3
2
3

−1
3

 = b,

so

y1 =

1
3
2
3
2
3

 · b, y2 =

−2
3

−1
3
2
3

 · b, y3 =

−2
3
2
3

−1
3

 · b.
Once y is found, we can find x easily by backward substitution, starting from
solving x3 first.

If k > r, then some of the columns of A are non-pivotal. In solving Rx = y, each
variable xi corresponding to a non-pivotal column can be assigned a value arbitrarily,
so is called a free variable, and we solve for variables corresponding to pivotal columns
in terms of these variables corresponding to a non-pivotal column. In the end we would
obtain a solution containing a certain number of free variables, the number of which
is the number of non-pivotal columns of A.

Example 4.2.3

If we modify the system in the previous example into1 −3 −2 0
2 0 5 3
2 6 5 6

x = b,
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then the QR factorization of the coefficient matrix would give1 −3 −2 0
2 0 5 3
2 6 5 6

 =

1
3
−2

3
−2

3
2
3
−1

3
2
3

2
3

2
3
−1

3

3 3 6 6
0 6 3 3
0 0 3 0

 ,
and the system 1

3
−2

3
−2

3
2
3
−1

3
2
3

2
3

2
3
−1

3

y1

y2

y3

 = b

is still solved in the same way. Once we have found y1, y2, y3, in solving

3 3 6 6
0 6 3 3
0 0 3 0



x1

x2

x3

x4

 =

y1

y2

y3

 ,
we can take x4 to be a free variable, and solve for x1, x2, x3 in terms of x4 so
this system has a one-parameter family of solutions for any given b.

Example 4.2.4

If we modify the system from the earlier example into1 −3 0
2 0 3
2 6 6

x = b,

then the QR factorization of the coefficient matrix would give1 −3 0
2 0 3
2 6 6

 =

1
3
−2

3
2
3
−1

3
2
3

2
3

[3 3 6
0 6 3

]
,

and we would need to solve 1
3
−2

3
2
3
−1

3
2
3

2
3

[y1

y2

]
= b.

If we take b =

 2
2
−1

, the above system would have no solution (why?), so the
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system 1 −3 0
2 0 3
2 6 6

x =

 2
2
−1


has no solution.

The above discussion of solving Ax = b using the QR factorization of A is con-
ditioned on the existence of a solution to Qy = b. If b is not in the column space
of Q, then Qy = b has no solution. Recall that our logic goes as follows. If y solves
Qy = b, then QTQy = QTb, which would lead to y = QTb using QTQ = I. But, if
we set y = QTb, does it solve Qy = b automatically? Not necessarily! If we compute
Qy = QQTb, so unless QQTb = b, we would not know that Qy = b. In such a case,
what do we know about b − QQTb? It turns out that this vector is orthogonal to
each column of Q! This is seen by

QT [b−QQTb] = QTb−QTQQTb = QTb−QTb = O.

Also note that QQTb is in the column space of Q (why?), so it is the orthogonal
projection of b in the column space of Q. In summary,

If the columns of the m × r matrix Q are orthonormal, then, for any given
b ∈ Rm, QQTb is in the column space of Q, and b − QQTb is orthogonal to
each column of Q. As a consequence, for any vector v in the column space of
Q,

‖b− v‖ ≥ ‖b−QQTb‖.

In other words, b⊥ := QQTb is the best approximation to b among vectors in
the column space of Q, and y = QTb is a solution to Qy = b⊥, instead of to
Qy = b. This y is also called the least square solution to Qy = b, with the

square here referring to ‖b − b⊥‖ defined as
√

(b− b⊥) · (b− b⊥). The rule
for finding this y is also simple: it is such that Qy − b is orthogonal to each
column of Q; and this condition is encoded in the matrix equation:

QT (Qy − b) = 0.

This analysis works when Q is replaced by any matrix whose rank equals the
number of its columns.
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Example 4.2.5

Suppose Q =

1
3
−2

3
2
3

2
3

2
3
−1

3

 and R =

[
1 4
0 −2

]
, and we are interested in solving

1
3
−2

3
2
3

2
3

2
3
−1

3

[1 4
0 −2

]
x =

 1
−2

1

 .
We need to set up y =

[
1 4
0 −2

]
x, and try to first solve for y from1

3
−2

3
2
3

2
3

2
3
−1

3

y =

 1
−2

1

 . (4.1)

This is a system of three linear equations for the two components of y. It
has a solution only if the vector on the right hand side is in the column space
of Q. The columns of Q are orthonormal, but there is no direct way to tell
whether a particular vector is in the column space of Q, unless another method
is employed. If the system has a solution y, then multiplying by QT on the left
side of both sides of the equation, and using QTQ = I2, we would get

y = QT

 1
−2

1

 =

[
−1

3

−7
3

]
.

We can now check whether Qy −

 1
−2

1

 = 0. But we find

Qy = Q

[
−1

3

−7
3

]
=

1
3
−2

3
2
3

2
3

2
3
−1

3

[−1
3

−7
3

]
=

 13
9

−16
9
5
9

 6=
 1
−2

1

 .
So the system Qy =

 1
−2

1

 has no solution. The best we can do is to make

‖Qv −

 1
−2

1

 ‖ as small as possible. Our analysis shows that for any vector
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v ∈ R2,

‖Qv −

 1
−2

1

 ‖ ≥ ‖
 13

9

−16
9
5
9

−
 1
−2

1

 ‖,
and equality occurs when v = y = QT

 1
−2

1

 =

[
−1

3

−7
3

]
. In one needs to find x

which gives rise to this least square approximation, one can solve for x from
y = Rx, and it will be called the least square approximate solution to the given
system.
The computation above amounts to checking whether

Qy = QQT

 1
−2

1

 =

 1
−2

1

 .
But

QQT =

1
3
−2

3
2
3

2
3

2
3
−1

3

[ 1
3

2
3

2
3

−2
3

2
3
−1

3

]
=

 5
9
−2

9
4
9

−2
9

8
9

2
9

4
9

2
9

5
9

 ,
and  5

9
−2

9
4
9

−2
9

8
9

2
9

4
9

2
9

5
9

 1
−2

1

 =

 13
9

−16
9
5
9

 6=
 1
−2

1

 .
Note that QQT 6= I3, as a result QQTb 6= b for some vectors b. However,
QQTb = b when b is a vector in the column space of Q (check this when b is
a column vector of Q). QQT is an example of an orthogonal projection matrix.

When a system Ax = b has no solution, it is called inconsistent. In such a case,
one would like to find some x to make ‖Ax− b‖ as small as possible.

Inconsistent systems arise in many applications, in particular in data fitting. One
often expects two variables to have a linear relation; specifically, one proposes a linear
relation of the form y = a+ bx between two variables x and y. But real time data do
not satisfy such a relation strictly; instead, one may obtain a collection of observed
data (x1, y

obs
1 ), · · · , (xn, yobs

n ), where the observed values of yobs
j likely differ from the

predicted values a + bxj. Our task is to find the values of the parameters a and b
which gives the least error sum of squares

E = [yobs
1 − (a+ bx1)]2 + · · ·+ [yobs

n − (a+ bxn)]2
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between the observed data and the data predicted by the linear relation y = a+ bx.

1 2 3 4 5
x

1

2

3

4

5

y
LeastSquare Line Fitting Data

Figure 4.1: Given some data points, find a line which produces the least error sum of
squares

Setting

v1 =


1
1
...
1

 , v2 =


x1

x2
...
xn

 , y =


yobs

1

yobs
2
...

yobs
n

 ,
the above question becomes one of finding a and b which minimizes ||y−(av1 +bv2)||,
the solution to which is given by

A

[
a
b

]
= PW (y), the orthogonal projection of y in W , (4.2)

where A = [v1 v2] and W = Col(A) = Span{v1,v2}, and based on our discussion,

PW (y) = A

[
a
b

]
can be given by the condition

AT
(
A

[
a
b

]
− y

)
= 0,

which is the same type of equation that we discussed above.
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From the point of view of solving a system of linear equations, it is unlikely for
av1 + bv2 = y to have a solution, as a solution would mean that E = 0 and all
observed values of yobs

j match exactly the predicted values a+ bxj.

We now discuss how to find x to make ‖Ax−b‖ smallest possbiel. Note that Ax
is a column vector of A, so if there exists some x such that ‖Ax − b‖ ≤ ‖Av − b‖
for any choice of v, the vector Ax− b must be orthogonal to all columns of A. This
can be encoded into the matrix equation AT (Ax − b) = 0. In summary, if x solves
ATAx = ATb, then Ax provides the least square approximation to b among vectors
of the form Av.

What remains is to develop a good algorithm to solve ATAx = ATb. There are
different approaches to solving this system. For a small matrix A, one can solve
ATAx = ATb directly. Below we discuss how to use the QR factorization of A = QR
to solve ATAx = ATb. Since the column space of A is the same as the column space
of Q, the condition that Ax−b must be orthogonal to all columns of A is equivalent
to Ax−b must be orthogonal to all columns of Q, which can be written in the matrix
equation QT (Ax− b) = 0. Using QTQ = I, we see that QTA = QTQR = R, so the
above system is equivalent to Rx = QTb. Since R is an upper triangular matrix, this
system is easily solved.

Example 4.2.6

The above discussion is for a general matrix with a QR factorization. For the
specific problem of least square fitting line above, the matrix A is an n × 2
matrix with specific column vectors v1,v2, with the properties that

‖v1‖ =
√
n, v1 · v2 = x1 + · · ·+ xn = nx̄,

where x̄ = (x1 + · · ·+ xn) /n is the average of the input data x1, · · · , xn. We
could work directly with the 2 × 2 system ATAx = ATb. But we choose to
illustrate how to use the QR factorization to solve the problem.

u1 =
1√
n

v1 is the unit vector in the direction of v1,

and

u2 is the unit vector in the direction of v2 −
v2 · v1

v1 · v1

v1 = v2 − x̄v1.

Since
‖v2 − x̄v1‖ =

√
(x1 − x̄)2 + · · ·+ (xn − x̄)2 = σx,
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where σx is the standard deviation of the input data x1, · · · , xn. σx = 0 if and
only if each xi = x̄. Let’s assume that we are not in such a situation, so σx > 0,

u2 =
1

σx

x1 − x̄
...

xn − x̄

 ,
and

A =
[
u1 u2

] [√n √
nx̄

0 σx

]
.

Thus we need to solve[√
n
√
nx̄

0 σx

] [
a
b

]
=
[
u1 u2

]T
y =

[
uT1 y
uT2 y

]
.

Note that

uT1 y =
y1 + · · ·+ yn√

n
=
√
nȳ with ȳ =

y1 + · · ·+ yn
n

,

uT2 y =
(x1 − x̄)y1 + · · ·+ (xn − x̄)yn

σx

=
(x1 − x̄)(y1 − ȳ) + · · ·+ (xn − x̄)(yn − ȳ)

σx
= σyCor(x,y),

using (x1 − x̄)ȳ + · · · + (xn − x̄)ȳ = 0, and where σy =√
(y1 − ȳ)2 + · · ·+ (yn − ȳ)2 is the standard deviation of the data y1, · · · , yn,

and

Cor(x,y) =
(x1 − x̄)(y1 − ȳ) + · · ·+ (xn − x̄)(yn − ȳ)

σxσy

is the correlation coefficient between the data x and y.
We can now conclude that

b =
σy
σx

Cor(x,y) and a = ȳ − bx̄.

This results in the best fitting line to be

y = ȳ + b(x− x̄), with b =
σy
σx

Cor(x,y).
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Reading Quizzes/Questions:

(i) Find the least square line of fit to the set of five data points in the figure above:
{(1, 1), (2, 2), (3, 4), (4, 4), (5, 5)}.

(ii) If the columns of Q are orthonormal, and Qy = b, does it necessarily follow
that y = QTb?

(iii) If the columns of Q are orthonormal, and y = QTb, does it necessarily follow
that Qy = b?

(iv) If Ax−b is orthogonal to each column of A, why does it follow that ‖Ax−b‖ ≤
‖Av − b‖ for any v?

(v) In the QR factorization, R has a pivot in each of its rows. If RTu = RTv, does
it necessarily follow that u = v?

The QR factorization A = QR can also be used to read off information about A
from those of R or Q.

(a). Null(A) = Null(R).

(b). Row(A) = Row(R).

(c). Col(A) = Col(Q).

(d). dim Row(A) = dim Row(R) = r = dim Col(A), namely, the dimensions of
the row space and column space of A are equal, which is the fundamental
theorem of linear algebra.

Proof. For (a), if x ∈ Null(R), then x satisfies Rx = 0, and it follows that Ax =
QRx = 0, so x ∈ Null(A). Conversely, if x ∈ Null(A), then Ax = 0, and it follows
that QRx = 0. Multiplying both sides by QT and using QTQ = Ir×r, we obtain
Rx = QTQRx = QT0 = 0. Thus x ∈ Null(R).

For (b), if v ∈ Row(A), then v = x1Row1(A) + . . . + xmRowm(A) for some
coefficients x1, . . . , xm. This is written as v = [x1 . . . xm]A = [x1 . . . xm]QR. Set-
ting [x1 . . . xm]Q = [y1 . . . ym], then v = [y1 . . . ym]R, implying that v is a linear
combination of rows of R. Conversely, if v = [y1 . . . ym]R for some coefficients
y1, . . . , ym, we set [x1 . . . xm] = [y1 . . . ym]QT . Using QTQ = Ir×r again, we have



96 CHAPTER 4. DIFFERENTIABLE FUNCTIONS

[x1 . . . xm]A = [y1 . . . ym]QTQR = [y1 . . . ym]R = v, implying that v is in the two
space of A.

(c) is really a re-statement of one part of the Gram-Schmidt algorithm.

(d) is a direct consequence of (a), (b), and (c), as r = dim Col(A) = # columns
of Q by definition, and dim Row(A) = dim Row(R) = # of pivots in R = # of rows
of R = # columns of Q, which is r. We also see that

n− dim Col(A) = n− r = dim Null(A) = # of free variables in solving Ax = 0.

The discussion on pivots also reveals a useful relation: The columns of A split
into pivotal and non-pivotal ones, the number of pivotal ones corresponds to the rank
of A (also the dimension of the column space of A), while the number of non-pivotal
ones corresponds to the dimension of the null space of A. So

Rank of A + dimension of the null space of A = the number of columns of A.

Reading Quizzes/Questions: Investigate the following True or False questions:

(i). If the columns of Q are orthonormal, then QQT = I.

(ii). If the rank of a matrix A is less than the number of its columns, then its null
space is non-trivial.

(iii). Is it true that a 2× 3 matrix must have a non-pivotal column? Why?

(iv). Can one find 4 pivotal columns in a 3× 5 matrix? Why?

(v). Is it true that Null(A) = Null(ATA) always holds?

(vi). Is it true that Rank(A) = Rank(ATA) always holds?

(vii). Is it true that Rank(AAT ) = Rank(ATA) always holds?

(viii). Is it true that dimension of the null space of AAT = dimension of the null space
of ATA always holds?
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4.2.5 Matrix inverses

Professor Carlen uses the more abstract concept of linear transformations and their
inverse to discuss the inverse of a matrix. He does not give an explicit definition of
the inverse of a matrix; implicit in his discussion is the following

Definition 4.2.1

An n × n matrix A is invertible if there exists an n × n matrix B such that
BA = In and AB = In.

Professor Carlen exploits the first relation BA = In: if {w1, . . . ,wn} denote the
rows of B, and {v1, . . . ,vn} denote the columns of A, then BA = In is equivalent to
wi · vj = 1 for i = j, and = 0 for i 6= j. When such a B exists, he uses an abstract
argument to imply that AB = In automatically holds.

If we exploit AB = In, then, with xj = (x1j, x2j, . . . , xnj)
T denoting the jth

column ofB, AB = In is equivalent to x1jCol1(A)+x2jCol2(A)+. . .+xnjColn(A) = ej,
namely, Axj = ej, for each 1 ≤ j ≤ n. Thus constructing some matrix B satisfy-
ing AB = In is equivalent to solving Axj = ej, for each 1 ≤ j ≤ n. This gives an
algorithm to find whether xj exists and compute it when it exists. This approach
still does not answer whether the B constructed this way, when it exists, also satisfies
BA = In.

That requires a separate argument based on

(i). If there exist n× n matrices B and C such that BA = In, and AC = In,
then B = C.

(ii). If there exists an n × n matrix B such that BA = In, then there exists
an n× n matrix C such that AC = In.

(iii). If If there exists an n× n matrix C such that AC = In, then there exists
an n× n matrix B such that BA = In.

In summary, if A has an inverse, then it has a unique inverse; and B is the
inverse, if and only if it satisfies AB = In or BA = In. Due to the uniqueness
of inverse, when it exists, we denote the inverse of A by A−1.

(i) follows easily: B = BIn = B(AC) = (BA)C = InC = C. For (ii), if there
exists an n × n matrix B such that BA = In, then the span of the rows of A is the
full Rn. By the fundamental theorem of linear algebra, the dimension of the column
space of A is n, which means that we can find an n× n matrix C solving AC = In.

A direct argument for (ii) goes as follows. BA = In implies that the only vector
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x such that Ax = 0 is x = 0, for, Ax = 0 implies B(Ax) = 0, but that means
0 = (BA)x = Inx = x. We now claim that the rank of A is n, namely, each column
of A is a pivot column (in the Gram-Schmidt Orthogonalization process). If A has a
non-pivotal column, say, jth column, then Colj(A) = c1Col1(A)+ . . .+ cj−1Colj−1(A)
for some coefficients c1, . . . , cj−1. But this would mean

A



c1

c2
...
−1

0
...
0


=


0
...
0
...
0

 ,

making Ax = 0 having a non-zero solution! This contradiction shows that the rank
of A is n, therefore we can solve for C such that AC = In.

For (iii), the condition implies that Ax = b always has a solution for any b, for
A(Cb) = (AC)b = Inb = b. It follows that the column space of A is Rn. By
the fundamental theorem of linear algebra (Theorem 50), the row space of A must
also be Rn. So any row vector ei must be a linear combination of row vectors of A:
ei = bi1Row1(A) + . . .+ binRown(A), for i = 1, 2, . . . , n. But these equations precisely
say BA = In, if we use [bi1 . . . bin] as the ith row of B.

Example 4.2.7

Although computing packages can compute the inverse of a matrix easily, it is
important to understand the underlying tasks involved. Based on our discus-

sion, to compute the inverse of

1 −3 −2
2 0 5
2 6 5

, we need to find a 3 × 3 matrix

B such that 1 −3 −2
2 0 5
2 6 5

B =

1 0 0
0 1 0
0 0 1

 .
If the three column vectors of B are x1, x2, and x3, respectively, then we need
to solve1 −3 −2

2 0 5
2 6 5

x1 =

1
0
0

 ,
1 −3 −2

2 0 5
2 6 5

x2 =

0
1
0

 ,
1 −3 −2

2 0 5
2 6 5

x3 =

0
0
1

 .
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We can now use the QR factorization1 −3 −2
2 0 5
2 6 5

 =

1
3
−2

3
−2

3
2
3
−1

3
2
3

2
3

2
3
−1

3

3 3 6
0 6 3
0 0 3


of the coefficient matrix to solve these three systems.
In most elementary linear algebra courses, these systems are solved simulta-
neously using the Gauss-Jordan elimination method by performing elementary
row operations. Carlen takes a different approach, focusing on using the QR
factorization of the coefficient matrix and reduce the problem to solving two
simpler systems, one involving a linear system with an orthogonal matrix as
the coefficient matrix, and another involving a linear system with an upper
triangular matrix in echelon form as the coefficient matrix.
For those who know the Gauss-Jordan elimination method, the direct applica-
tion of the method would require performing elementary row operations every
time the right hand side vector is changed, which wastes a lot of computa-
tional resources. If we carry out the QR factorization of the coefficient matrix,
and store these two factor matrices, then, when Q is full rank, for any given
right hand side vector b, we only need to carry out y = QTb, and solve for x
from Rx = y. A certain computational resources are still needed, but at some
savings.
We also take this opportunity to remind the reader that1

3
−2

3
−2

3
2
3
−1

3
2
3

2
3

2
3
−1

3

−1

=

1
3
−2

3
−2

3
2
3
−1

3
2
3

2
3

2
3
−1

3

T =

 1
3

2
3

2
3

−2
3
−1

3
−2

3
2
3

2
3
−1

3

 ,
and 3 3 6

0 6 3
0 0 3

−1 1
3
−2

3
−2

3
2
3
−1

3
2
3

2
3

2
3
−1

3

−1

=

1 −3 −2
2 0 5
2 6 5

−1

.

When we discuss eigenvalues and eigenvectors later, we need a criterion to char-
acterize when a square matrix A is not invertible. Based on our discussion, A is not
invertible, if and only if A does not have full rank, i.e., it has at least one non-pivotal
column. But that means there exists some coefficients x1, . . . , xn, not all zero, such
that x1Col1(A) + . . .+ xnColn(A) = 0. In summary,



100 CHAPTER 4. DIFFERENTIABLE FUNCTIONS

Matrix A is not invertible, if and only if there exists some x 6= 0 such that
Ax = 0.
Equivalently, A is invertible if and only if the only solution to Ax = 0 is x = 0.

When n = 2, this criterion means that one column of A =

[
a c
b d

]
is a multiple of

the other column. Algebraically this condition can be characterized as ad− bc = 0.
When n = 3, this criterion means that one column of A =

[
v1 v2 v3

]
is a linear

combination of the other two columns, say, v1 = av2 + bv3. A geometric way to
describe this without involving the coefficients a and b (to be worked out) is that
v1 ⊥ v2 × v3. But an algebraic way to express this relation is v1 · (v2 × v3) = 0.
To summarize, A =

[
v1 v2 v3

]
is not invertible, if and only if v1 · (v2 × v3) = 0.

A similar criterion can be formulated in terms of the rows r1, r2, r3 of A, namely,
r1 · (r2× r3) = 0. It turns out that v1 · (v2×v3) = r1 · (r2× r3) for all 3× 3 matrices,
and it is called the determinant of A. Note also that v1 · (v2 × v3) = v3 · (v1 × v2).

Let’s confirm this for a 3×3 matrix A whose entries are labeled as aij, 1 ≤ i, j ≤ 3.
Note that

v2 × v3 =

a12

a22

a32

×
a13

a23

a33

 =

a22a33 − a32a23

a32a13 − a12a33

a12a23 − a22a13

 ,
so

v1 · (v2 × v3) = a11(a22a33 − a32a23) + a21(a32a13 − a12a33) + a31(a12a23 − a22a13).

On the other hand,

r2×r3 =
[
a21 a22 a23

]
×
[
a31 a32 a33

]
=
[
a22a33 − a32a23 a23a31 − a21a33 a21a32 − a22a31

]
,

so

r1·(r2×r3) = a11(a22a33−a32a23)+a12(a23a31−a21a33)+a13(a21a32−a22a31) = v1·(v2×v3).

Example 4.2.8

The 2× 2 matrix [
a b
c d

]
− t
[
1 0
0 1

]
=

[
a− t b
c d− t

]
is not invertible when

det

[
a− t b
c d− t

]
= (a− t)(d− t)− bc = t2 − (a+ d)t+ ad− bc = 0.
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The 3× 3 matrix 3 3 6
0 6 3
0 0 3

− tI3 =

3− t 3 6
0 6− t 3
0 0 3− t


is not invertible when

det

3− t 3 6
0 6− t 3
0 0 3− t

 = (3− t)[(6− t)(3− t)− 0 ∗ 3] = (3− t)2(6− t) = 0.

In the above since the first column only has its first entry non-zero, in computing
r2 × r3, we only need to work out its first entry a22a33 − a32a23.

Two other useful properties about the inverse of a matrix are

If A is invertible, then so is AT , and (AT )−1 = (A−1)T .
If A1 and A2 are invertible n × n matrices, then so is A1A2, and (A1A2)−1 =
A−1

2 A−1
1 .

Reading Quizzes/Questions: Investigate the following True or False questions
about an n× n square matrix A:

(a). A is invertible if and only if Ax = ej has a solution, for each 1 ≤ j ≤ n.

(b). A is invertible if and only if Ax = b has a solution for any vector b ∈ Rn.

(c). If A is invertible, then the column space of A is Rn.

(d). If the column space of A is Rn, then A is invertible.

(e). If the null space of A is {0}, then A is invertible.

(f). If an n× n matrix B satisfies AB = In, then BA = In.

(g). If A1 and A2 are invertible n×n matrices, then so is A1 +A2, and (A1 +A2)−1 =
A−1

2 + A−1
1 .

(h). If A is an n× n matrix, then Ax = λx has a non-zero solution x if and only if
the matrix A− λIn is not invertible.
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4.2.6 Continuity of matrix inverses

Our focus here is to discuss the Frobenius norm of a matrix and its properties. A
norm of a matrix is used to measure its size. There are many ways to define a norm

of a matrix. E.g., for the matrix A =

[
a b
c d

]
, we could use any of the following three

quantities to measure its size:

‖A‖1 := |a|+ |b|+ |c|+ |d|, or

‖A‖2 :=
√
|a|2 + |b|2 + |c|2 + |d|2, or

‖A‖∞ := max{|a|, |b|, |c|, |d|}

They all share the following three properties required for the notion of a norm:

(a). ‖A‖ ≥ 0 for any A, and = 0 only when A = O;

(b). ‖cA‖ = |c|‖A‖ for A and any scalar c;

(c). ‖A+B‖ ≤ ‖A‖+ ‖B‖ for any A,B.

But for matrices, we often would like an additional property:

‖Av‖ ≤ ‖A‖‖v‖ for any matrix A and any vector v such that Av is defined. (4.3)

This then implies that whenever ABv is defined, we have

‖ABv‖ = ‖A(Bv)‖ ≤ ‖A‖‖Bv‖ ≤ ‖A‖‖B‖‖v‖.

In this course we are using the Euclidean norm for vectors. Then ‖A‖2 has this
property. This norm is called the Frobenius norm of matrix A, and is also denoted
as ‖A‖F . This is seen by noting that the i-th component of Av is Rowi(A) · v, and
by the Cauchy-Schwarz inequality, |Rowi(A) · v|2 ≤ ‖Rowi(A)‖2‖v‖|2, so

‖Av‖2 =
m∑
i=1

|Rowi(A) · v|2 ≤
m∑
i=1

‖Rowi(A)‖2‖v‖|2 ≤ ‖A‖2
F‖v‖2,

as ‖v‖2 =
∑m

i=1 ‖Rowi(A)‖2.
It turns out there is a way to define a norm for a matrix using (4.3). For any

m× n matrix A, we define its operator norm, denoted as ‖A‖op, as

‖A‖op := sup
u:‖u‖=1

‖Au‖.
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Then for any v 6= 0, we take u = v/‖v‖, then ‖u‖ = 1, so ‖Au‖ ≤ ‖A‖op. But

‖Au‖ = ‖A( v
‖v‖)‖ = ‖Av‖

‖v‖ , so we see that ‖Av‖ ≤ ‖A‖op‖v‖. From this discussion

we see that ‖A‖op satisfies (4.3), and it is ≤ ‖A‖2. We haven’t checked (a)–(c) for
‖A‖op, but that is fairly routine.

By its definition ‖A‖op measures the maximum stretching factor when A multiplies
to a vector v; it is the optimal number for (4.3) to hold for all v, but we often use
‖A‖2 as the latter can be computed directly, while ‖A‖op is often not easy to compute,
and using ‖A‖2 in the relation ‖A‖op ≤ ‖A‖2 to estimate ‖A‖op often suffices for our
purposes.

Using Theorem 39, we can prove that ‖A‖op is attained by some vector w:
‖Aw‖ = ‖A‖op, and ‖w‖ = 1, so the supu:‖u‖=1 ‖Au‖ is really maxu:‖u‖=1 ‖Au‖. In a
later section, we will see that ‖A‖op is the eigenvalue of a matrix derived from A.

Example 4.2.9

For A1 =

[
1 0
0 1

]
and A2 =

[
1 0
1 0

]
, we see that ‖A1‖2 = ‖A2‖2 =

√
2, ‖A1‖op =

1, but ‖A2‖op =
√

2, since ‖A2v‖ =
√

2|v1| for any v = (v1, v2).

Lastly, using any norm for matrices, we can measure the distance between two
matrices A and B by ‖A − B‖. Since the addition of two m × n matrices is well
defined, so is the scalar multiplication of a matrix, so we can treat the set of all m×n
matrices as the set of vectors with mn components. In fact, we can simply treat it
as Rmn, as the Frobenius norm of an m × n matrix is simply the Euclidean norm
when it is treated as a vector of Rmn. Furthermore, we can discuss continuity, or even
differentiability, of functions defined on the set of matrices.

4.3 Differentiability of functions from Rn to Rm

4.3.1 Differentiability and best linear approximation in sev-
eral variables

The central questions of this subsection are

(i). What does differentiability of f : Rn 7→ Rm at x0 mean?

(ii). What is the derivative or Jacobian matrix of f : Rn 7→ Rm at x0? What
is it used for?

(iii). What is an easy-to-use criterion to check the differentiability of f : Rn 7→
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Rm at x0 ?

The differentiability of f : Rn 7→ Rm at x0 is defined in terms of (4.58), or
equivalently, (4.59). We work it out in the case that m = 2, f(x) = (f1(x), f2(x)).

If (4.59) holds for some matrix A, A would be a 2 × n matrix. Let a1 and a2 be

its two rows, then A(x− x0) =

[
a1 · (x− x0)
a2 · (x− x0)

]
, and

f(x)− f(x0)− A(x− x0) =

[
f1(x)− f1(x0)− a1 · (x− x0)
f2(x)− f2(x0)− a2 · (x− x0)

]
,

so

lim
x→x0

‖f(x)− f(x0)− A(x− x0)‖
‖x− x0‖

= 0,

implies that

lim
x→x0

|fi(x)− fi(x0)− ai · (x− x0)|
‖x− x0‖

= 0,

for i = 1, 2. But this is simply the differentiability of fi(x) at x0.
This computation works for any m. In summary,

f : Rn 7→ Rm is differentiable at x0, then each of its component fi is differ-
entiable at x0, and ∇fi(x0) should be the ith row of the matrix A in (4.58),
namely, the derivative or Jacobian matrix [Df(x0)] of f at x0 is the m × n
matrix whose ith row is simply the gradient vector ∇fi(x0) of fi at x0—review
(4.62), and this discussion also shows how to compute [Df(x0)]. The converse
also holds, namely, if each of its component fi is differentiable at x0, then f is
differentiable at x0.

How does one interpret the columns of the Jacobian matrix [Df(x0)]? The j-

column is simply
∂f

∂xj
, which is the tangent vector to the curve in Rm: t 7→ f(x + tej)

at t = 0, namely, holding all the variables except for the j-th one as constant, and
treating f as a function of its j-th variable alone. The relations among the n column

vectors { ∂f

∂x1

, . . . ,
∂f

∂xn
} would describe how f behaves near x.

The significance of [Df(x0)] is that, when it exists, then L(x) = f(x0)+[Df(x0)](x−
x0) is a linear approximation to f(x) for x near x0, in the sense that, if we set
R(x) = f(x)− L(x), then

lim
x→x0

‖R(x)‖
‖x− x0‖

= 0.
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A typical situation to use such a linear approximation is when y0 = f(x0), and
for y near y0, one would like to solve for x near x0 such that f(x) = y. If we use the
linear approximation f(x0) + [Df(x0)](x− x0) to replace f(x), then this amounts to
solving [Df(x0)](x−x0) = y−y0, which is a linear equation for x−x0 with [Df(x0)]
as the coefficient matrix!—This also shows why we need to understand the solvability
of a general linear system of the form Ax = y.

Example 4.3.1

Suppose that x = (x, y, z) = f(r, θ, φ) = (r sinφ cos θ, r sinφ sin θ, r cosφ) for
(r, θ, φ) ∈ SPC := {0 ≤ r <∞, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π} ⊂ R3 — this f is really
the map sending the spherical polar coordinates (r, θ, φ) of a point in R3 to its
rectangular coordinates (x, y, z). Each component of f has continuous partial
derivatives with respect to (r, θ, φ), so f is differentiable, and we

∇f1 =
[
∂f1
∂r

∂f1
∂θ

∂f1
∂φ

]
=
[
sinφ cos θ −r sinφ sin θ r cosφ cos θ

]
∇f2 =

[
∂f2
∂r

∂f2
∂θ

∂f2
∂φ

]
=
[
sinφ sin θ r sinφ cos θ r cosφ sin θ

]
∇f3 =

[
∂f3
∂r

∂f3
∂θ

∂f3
∂φ

]
=
[
cosφ 0 −r sinφ

]
so the Jacobian matrix of f issinφ cos θ −r sinφ sin θ r cosφ cos θ

sinφ sin θ r sinφ cos θ r cosφ sin θ
cosφ 0 −r sinφ

 .
Note that the three columnssin θ cosφ

sin θ sinφ
cos θ

 ,
−r sinφ sin θ
r sinφ cos θ

0

 ,
r cosφ cos θ
r cosφ sin θ
−r sinφ

 ,
of the Jacobian matrix are

∂x

∂r
,
∂x

∂θ
,
∂x

∂φ
respectively. In the case here, they (the

three tangent vectors induced by the motions of r, θ, and φ respectively) are

orthogonal to each other; ‖∂x

∂r
‖ = 1, ‖∂x

∂θ
‖ = r sinφ, but ‖∂x

∂φ
‖ = r (Why?—

Hint: Think about how x depends r, θ, and φ).
As a consequence, if B is a rectangular box whose edges are along the r, θ,
and φ axes, respectively, with edge lengths ∆r, ∆θ, and ∆φ, respectively, then
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Df(r, θ, φ) maps B into a box whose three edges are still orthogonal to each
other, but with edge lengths equal to 1 ·∆r, r sinφ ·∆θ, and r ·∆φ, respectively,
so its volume would be r2 sin θ∆r∆θ∆φ—we will meet this relation again when
discussing integrals in multi-variables.

Example 4.3.2

Suppose that f(x) = (xyz, x2 + y2 − z2) for x = (x, y, z) ∈ R3. Then

[Df(x)] =

[
∇(xyz)

∇(x2 + y2 − z2)

]
=

[
yz xz xy
2x 2y −2z

]
,

so at x0 = (1,−1,−1), the linear approximation to f(x) is

f(x0) + [Df(x0)](x− x0)

=

[
−1
1

]
+

[
1 −1 −1
2 −2 2

]x− 1
y + 1
z + 1


=

[
−1 + 2(x− 1)− 1(y + 1)− 1(z + 1)
1 + 2(x− 1)− 2(y + 1) + 2(z + 1)

]
=

[
2x− y − z − 5

2x− 2y + 2z − 1

]
.

Theorem 63 provides an easy-to-use criterion to check the differentiability of

f : Rn 7→ Rm at x0 in terms of the continuity of the partial derivatives
∂fi(x)

∂xj
.

4.3.2 The general chain rule

This is used when f : Rn 7→ Rm is differentiable at x0, with y0 = f(x0) ∈ Rm, and
g : Rm 7→ Rl is differentiable at y0, then we can conclude that g ◦ f is differentiable
at x0, with its derivative [D(g ◦ f)(x0)] given by [Dg(y0)][Df(x0)].

Note the following two points in the proof of Theorem 64

(i). In the middle of p.171, Professor Carlen used the inequality
‖[Dg(f(x0))]w‖ ≤ ‖[Dg(f(x0))]‖F‖w‖. This is simply a short-handed
way of saying that, in the case g ∈ R2, so [Dg(f(x0))] is some 2 × n



4.3. DIFFERENTIABILITY OF FUNCTIONS FROM RN TO RM 107

matrix with two rows r1 and r2 in Rn,

‖
[
r1

r2

]
w‖

=‖
[
r1 ·w
r2 ·w

]
‖

=
√

(r1 ·w)2 + (r2 ·w)2

≤
√
‖r1‖2‖w‖2 + ‖r2‖2‖w‖2 using Cauchy-Schwarz inequality

=
√
‖r1‖2 + ‖r2‖2‖w‖,

where
√
‖r1‖2 + ‖r2‖2‖ is called the Frobenius norm of the matrix

[
r1

r2

]
.

(ii). It is natural to work out g ◦ f(x)− g ◦ f(x0) by using the differentiability
of f at x0 and of g at y0 = f(x0): first,

g ◦ f(x)− g ◦ f(x0)

=g(f(x))− g(f(x0))

=Dg(f(x0)) [f(x)− f(x0)] + z(f(x), f(x0))

where ‖z(y,y0)‖/‖y − y0‖ → 0 as y→ y0; next

f(x)− f(x0) = [Df(x0)](x− x0) + w(x,x0),

where ‖w(x,x0)‖/‖x− x0‖ → 0 as x→ x0, so we have

g ◦ f(x)− g ◦ f(x0) = [Dg(f(x0))][Df(x0)](x− x0)

+ [Dg(f(x0))]w(x,x0) + z(f(x), f(x0)).

The differentiability of g ◦ f(x) at x0 is equivalent to

‖[Dg(f(x0))]w(x,x0) + z(f(x), f(x0))‖/‖x− x0‖ → 0 as x→ x0.

Professor Carlen then treated z(f(x), f(x0)) by

‖z(y,y0)‖
‖x− x0‖

=
‖z(y,y0)‖
‖y − y0‖

‖y − y0‖
‖x− x0‖

,

where y = f(x) and y0 = f(x0), and using

‖z(y,y0)‖
‖y − y0‖

→ 0 as y→ y0, and
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‖y − y0‖
‖x− x0‖

=
‖w(x,x0) + [Df(x0)](x− x0)‖

‖x− x0‖

≤‖w(x,x0)‖
‖x− x0‖

+
‖[Df(x0)](x− x0)‖

‖x− x0‖
.

The first term → 0 as x → x0, while the second term is ≤ ‖Df(x0)‖F
as in (i). Thus

‖y − y0‖
‖x− x0‖

≤ 1 + ‖Df(x0)‖F for x sufficiently close to x0.

Using this and the Squeeze Theorem, we see that lim
x→x0

‖z(y,y0)‖
‖x− x0‖

= 0.

But the argument has a small flaw: when x → x0, it may happen that
y − y0 = 0 for certain x, which would void the argument of placing
‖y− y0‖ in the denominator. This can be handled in the same way that
we handled the scalar valued function case on pp.26-27.

When is the Chain Rule most useful? When z = g(y) for y ∈ Rm, and y =
f(x) for x ∈ Rn are both differentiable functions, and we need to produce a linear
approximation for g ◦ f(x) at x0, instead of substituting y = f(x) into z = g(y)
to obtain z as an explicit function of x and computing the Jacobian matrix of that
function, the chain rule allows us to compute Dg(x0) and Df(x0) separately, and
multiply these two matrices to obtain the desired Jacobian matrix.

Example 4.3.3

Suppose that x = f(r, θ, φ) = (r sin θ cosφ, r sin θ sinφ, r cos θ) for (r, θ, φ) ∈
SPC := {0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π} ⊂ R3 is the map sending the
spherical polar coordinates (r, θ, φ) of a point in R3 to its rectangular coordi-
nates (x, y, z). Suppose that g(x) = Ax, where x ∈ R3 and A is a 3×3 matrix.
Then, instead of substituting x in terms of (r, θ, φ) into g(x) and finding its
Jacobian matrix, we use our knowledge that the Jacobian matrix of f issinφ cos θ −r sinφ sin θ r cosφ cos θ

sinφ sin θ r sinφ cos θ r cosφ sin θ
cosφ 0 −r sinφ

 .
while the Jacobian matrix of g is simply A. So the linear approximation to
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g ◦ f = Af at (r0, θ0, φ0) is then given by

g ◦ f(r0, θ0, φ0) + [Dg(f(r0, θ0, φ0))][Df(r0, θ0, φ0)]

r − r0

θ − θ0

φ− φ0


=A

r0 sin θ0 cosφ0

r0 sin θ0 sinφ0

r cos θ0

+ A

sinφ cos θ −r sinφ sin θ r cosφ cos θ
sinφ sin θ r sinφ cos θ r cosφ sin θ

cosφ 0 −r sinφ

r − r0

θ − θ0

φ− φ0

 .

Exercise 4.3.1. Suppose that f(x, y) is differentiable for (x, y) ∈ R2. Let (r, θ) be
the polar coordinates of (x, y), namely (x, y) = P (r, θ) = (r cos θ, r sin θ). Compute
the Jacobian matrix of P and verify that

∂f

∂r
= cos θ

∂f

∂x
+ sin θ

∂f

∂y
,

∂f

∂θ
= −r sin θ

∂f

∂x
+ r cos θ

∂f

∂y
,

In Matrix form, this is written as

[
∂f
∂r

∂f
∂θ

]
=
[
∂f
∂x

∂f
∂y

] [cos θ −r sin θ
sin θ r cos θ

]
Note that we have abused the notation on the left hand side, as the function on the
left hand side really represents the composition f ◦ P of f with P .

Exercise 4.3.2. Suppose that g(u, v, w) = (u/w, v/w, 2/w−1) and f(x, y) = (2x, 2y, 1+
x2+y2). Determine the Jacobian matrices [Df(x, y)], [Dg(u, v, w)], and [D(g◦f)(x, y)].
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Chapter 5

The Implicit Function Theorem
and Its Consequences

5.1 Horizontal slices and contour curves

Given a function of multi-variables, e.g., z = f(x, y), the usual geometric way to study
such a function is to plot its graph over the x-y planar domain. Another approach
is to study the geometry of its level curves, namely, for a given scalar c ∈ R, the set
fc := {(x, y) : f(x, y) = c}. fc is also called a contour curve of f ; along the contour
fc, f takes on the constant value c.

When f is a linear or quadratic polynomial in x and y, one can see that such a set
is often a “smooth curve”, but for certain choices of c, the set fc could have a branch
point, or consist of isolated points, or be empty (Play with the case f(x, y) = x2− y2

or f(x, y) = x2 + y2).

When we choose a range of values of c, and plot the sets fc in the same x-y plane,
we obtain a contour plot for the function f .

5.1.1 Implicit and explicit descriptions of planar curves

The easiest descriptions of (planar) curves are given in parametric form or as a graph:
t ∈ (a, b) 7→ (φ(t), ψ(t)) ∈ R2 for some (differentiable) φ(t) and ψ(t); or y = ψ(x), or
x = φ(y). Note that a graph is a special case of a parametric curve: x 7→ (x, ψ(x) or
y 7→ (φ(y), y).

But often times a planar curve arises from a constrained equation implicitly, such
as given by x2 + y2 = 1 or x2 − y2 = c. We will answer the following questions in the
following discussions.

111



112CHAPTER 5. THE IMPLICIT FUNCTION THEOREM AND ITS CONSEQUENCES

(i). Given a (continuously differentiable) function f(x, y). What is the crite-
rion for fc := {(x, y) : f(x, y) = c} to be a smooth curve?

(ii). When the answer to the above question is positive, how to compute an
equation of the tangent line to the curve fc at a point (x0, y0) on it?

5.1.2 When is the contour curve actually a curve?

Theorem 65 gives an answer to (i) above. In fact, one can give a more specific
answer: since it is assumed that ∇f(x0, y0) 6= (0, 0), at least one of

fx(x0, y0) :=
∂f

∂x
(x0, y0), fy(x0, y0) :=

∂f

∂y
(x0, y0)

is not 0; if fx(x0, y0) 6= 0, then near (x0, y0) the set f(x, y) = f(x0, y0) can be given
in the form of x = ψ(y), namely,

there exist r > 0 and a function ψ(y) defined on some interval (y1, y2), with
y1 < y0 < y2, such that

(a). f(ψ(y), y) = f(x0, y0) for all y ∈ (y1, y2),

(b). ψ(y0) = x0,

(c). |y − y0|2 + |ψ(y)− ψ(y0)|2 < r2 for all y ∈ (y1, y2), and

(d). if f(x, y) = f(x0, y0) and |x− x0|2 + |y − y0|2 < r2, then y ∈ (y1, y2) and
x = ψ(y);

and if fy(x0, y0) 6= 0, then a similar statement holds with x and y interchanged.

Here is a heuristic argument for the above statement. Lf (x, y) := f(x0, y0) +
fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) is the linear approximation to f(x, y) near
(x0, y0) in the sense that R(x, y) = f(x, y)− Lf (x, y) satisfies

lim
(x,y)→(x0,y0)

|R(x, y)|√
(x− x0)2 + (y − y0)2

= 0.

So solving f(x, y) = f(x0, y0) is the same as solving fx(x0, y0)(x−x0) +fy(x0, y0)(y−
y0) + R(x, y) = 0, which is approximated by the tangent line fx(x0, y0)(x − x0) +
fy(x0, y0)(y−y0) = 0. When fy(x0, y0) 6= 0, this tangent line can be given in the form
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of y as a linear function of x, so we expect the solution to f(x, y) = f(x0, y0) in such
a situation can also be given in the form of y = φ(x) for some φ(x); likewise when
fx(x0, y0) 6= 0.

Here is an answer for (ii) above. ∇f(x0, y0) is orthogonal to the curve f(x, y) =
f(x0, y0) at (x0, y0), thus ∇f(x0, y0)⊥ := (−fy(x0, y0), fx(x0, y0)), which is perpendic-
ular to ∇f(x0, y0), is a tangent vector to the curve f(x, y) = f(x0, y0) at (x0, y0). So
an equation for the tangent line can be given either as

fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) = 0 which says (x− x0, y − y0) ⊥ ∇f(x0, y0);

or as in point-slope form when fy(x0, y0) 6= 0.

y − y0 = −fx(x0, y0)

fy(x0, y0)
(x− x0).

Note that the discussion here also reveals that the tangent is horizontal if and only if
fx(x0, y0) = 0, and is vertical if and only if fy(x0, y0) = 0. This piece of information
is useful in identifying or eliminating contour curves of a given function.

Example 5.1.1

In Exercise 5.2, it is asked whether either of the curves in the following figure
could be a contour plot of f(x, y) = x2y + xy − xy2. In the first plot, the two
branches meet at (1, 1). If it is a contour plot of f , then by the Implicit Function
Theorem, we must have ∇f(1, 1) = (0, 0). We compute ∇f(x, y) = (2xy + y −
y2, x2 + x − 2xy), from which we get ∇f(1, 1) = (2, 0). So we can conclude
that the first plot can’t be a contour plot of f . The second plot shows that the
tangent line at (1, 1) is vertical. This can happen only if ∇f(1, 1) = (∗, 0), as
the tangent line would be of the form fx(1, 1)(x−1)+fy(1, 1)(y−1) = 0. Since
∇f(1, 1) = (2, 0), this is consistent with the analysis above, and the second
plot could be a contour plot of this f . If one is given a figure of contours such
as those in Exercises 5.1 or 5.3, then one needs to identify the critical points
and examine whether their positions are consistent with the given contours
(E.g., each closed contour curve of a differentiable function should enclose a
critical point, and any point through which there is not a unique differentiable
curve passing should be a critical point, as implied by the Implicit Function
Theorem.).

Reading Quizzes/Questions:

(i) If f is differentiable at (x0, y0), and ∇f(x0, y0) 6= (0, 0), which vector ∇f(x0, y0)
or ∇⊥f(x0, y0), is tangent to the level curve {(x, y) : f(x, y) = f(x0, y0)}?
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Figure 5.1: Could either plot possibly be a contour curve of x2y + xy − y2x?

(ii) If the contour curve {(x, y) : f(x, y) = f(x0, y0)} has a vertical tangent at
(x0, y0), what can be inferred about fx(x0, y0) or fy(x0, y0)?

5.2 Constrained Optimization in Two Variables

This section gives methods to find maximum and minimum values of a continuously
differentiable function defined on a closed bounded domain with boundary. The key
new ingredient is how to find the maximum and minimum values of a continuously
differentiable function defined along the boundary curve, which is often given im-
plicitly in the form of g(x, y) = c for some continuously differentiable g. And that
criterion is Lagrange’s criterion as given in Theorem 67.

5.2.1 Lagrange’s criterion for optimizers on the boundary

The key ideas in Theorem 67 consist of the following
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(i). If f(x) attains its maximum or minimum at x0 = (x0, y0) on
{x : g(x) = 0}, then ∇f(x0) ·T(x0) = 0, where T(x0) is any tangent vec-
tor to the curve {x : g(x) = 0} at x0. This is because, if (x(t), y(t))
is any differentiable curve lying on the level set {x : g(x) = 0}, with
(x(t0), y(t0)) = x0, then (x′(t0), y′(t0)) is a tangent to the level set
{x : g(x) = 0} at x0, and the one variable function h(t) := f(x(t), y(t))
of t attains is maximum or minimum at t0, so h′(t0) = 0. But h′(t0) =
∇f(x0) · (x′(t0), y′(t0)), so it follows that ∇f(x0) ⊥ (x′(t0), y′(t0)).

(ii). At any point x on {x : g(x) = 0}, ∇g(x) is perpendicular to any tan-
gent at x, as for any differentiable curve (x(t), y(t)) lying on the level
set {x : g(x) = 0}, g(x(t), y(t)) ≡ 0, so taking its derivative in t gives
∇g(x(t), y(t)) · (x′(t), y′(t)) ≡ 0.

Combing (i) and (ii) above, we see that if f(x) attains its maximum or min-
imum at x0 = (x0, y0) on {x : g(x) = 0}, then both ∇f(x0) and ∇g(x0) are
perpendicular to any tangent to {x : g(x) = 0} at x0 = (x0, y0) (one or both
could be the zero vector): when ∇g(x0) 6= 0, all the tangents to {x : g(x) = 0}
at x0 = (x0, y0) lie in a line through x0 = (x0, y0), called the tangent line
to {x : g(x) = 0} at x0 = (x0, y0), and ∇f(x0) ‖ ∇g(x0). This relation can
be expressed as ∇f(x0) = λ∇g(x0) for some multiplier λ, called Lagrange’s
multiplier; when ∇g(x0) = 0, we may not have ∇f(x0) = λ∇g(x0), but such
an x0 is still a candidate for a maximum or minimum of f on the level set
{x : g(x) = 0}.

This argument generalizes readily to higher dimensions. Theorem 67 in Carlen’s
notes formulates the criterion in terms of vanishing of the determinant of the 2 × 2
matrix whose two rows are the gradient vectors of f(x) and g(x) at x0 respectively.
That criterion would not generalize if we need to find a maximizer/minimizer of a
function f(x) subject to the constraint g(x) = 0 when x ∈ Rn and n ≥ 3.

Example 5.2.1

Find the maximizer and minimizer of f(x, y) = x4 + y4 + 4xy on the circle
x2 + y2 = 16.
The constraint x2 + y2 = 16 is given by g(x, y) = x2 + y2 − 16 = 0. ∇g(x, y) =
(2x, 2y), which equals (0, 0) only when (x, y) = (0, 0). So when g(x, y) = 0, we
know ∇g(x, y) 6= (0, 0).
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We also know that the set {(x, y) : g(x, y) = 0} is a bounded and closed set in
R2, and that f(x, y) is a continuous function on R2, so it attains its maximum
and minimum values on the set {(x, y) : g(x, y) = 0}.
If (x, y) attains the maximum or minimum value of f(x, y) on the constraint
{(x, y) : g(x, y) = 0}, then the Lagrange multiplier method implies the existence
of some multiplier λ such that ∇f(x, y) = λ∇g(x, y) and g(x, y) = 0. Written
out in detail, we have 

4x3 + 4y = λ(2x)

4y3 + 4x = λ(2y)

x2 + y2 = 16

This is a system of three nonlinear equations for the three unknowns x, y, λ.
There is no good general method for solving such a system; the basic guideline
is to try to eliminate some variables to reduce to a single equation for a single
variable. Here, one could divide the first two equations to eliminate λ (this
process may involve dividing by 0, so one needs to rule out such a possibility)
to obtain

2y(4x3 + 4y) = 2x(4y3 + 4x),

from which one obtains x3y − xy3 + y2 − x2 = xy(x2 − y2) + (y2 − x2) = 0.
Thus, either x2 − y2 = 0, or xy − 1 = 0. In the former case, combining with
x2 + y2 = 16, one obtains x2 = y2 = 8, so x = ±

√
8 and y = ±

√
8; conversely,

one checks that (±
√

8,±
√

8) satisfy the above two equations for (x, y). In the
latter case, combining with x2 + y2 = 16, one obtains x2 + x−2 = 16, which is a
quadratic equation for u = x2: u+ u−1 = 16 so u2 − 16u+ 1 = 0. Its roots are
given by u = (16 ±

√
162 − 4)/2 = 8 ±

√
63, both of which are > 0. We then

solve for x = ±
√
u = ±

√
8±
√

63 and y = x−1.
In conclusion, we have found eight candidates for the maximizer/minimizer of
f on the constraint x2 + y2 = 16. What remains is to evaluate f at these eight
points, and identify those which give the maximum value and minimum value
respectively.
Note that the multiplier λ is not of interest in the final solution; its role is to
set up the criterion for a maximizer/minimizer.
It turns out that the maximum of this f on the circle x2 +y2 = 16 is attained at

(x, 1/x) when x = ±
√

8±
√

63, with its value equal to 258, while its minimum
on this circle is attained at (−2

√
2, 2
√

2) and (2
√

2,−2
√

2), with its value equal
to 96.

Exercise 5.2.1. Find the maximum and minimum distance from the origin to points
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on the curve x2 + xy + y2 = 16.

Example 5.2.2

Use Lagrange multiplier method to find the distance from x0 ∈ Rn to the
(hyper-) plane n · x = d.
The question is to find the minimum of f(x) = ||x − x0|| subject to g(x) =
n·x−d = 0. We will choose to work with a different function, h(x) = ||x−x0||2,
as the gradient of ||x−x0||2 is easier to work with, and a minimizer for ||x−x0||2
is also a minimizer for ||x− x0||, and vice versa.
We will write out the details for the n = 3 case to make the computations more
concrete. So we may set up n = (a, b, c), x = (x, y, z), and x0 = (x0, y0, z0).
Then h(x) = h(x, y, z) = (x − x0)2 + (y − y0)2 + (z − z0)2, ∇h(x, y, z) =
2(x− x0, y − y0, z − z0), and ∇g(x, y, z) = (a, b, c).
Note that the set {(x, y, z) : g(x, y, z) = 0} is a closed but unbounded set
in R3, so we can’t directly quote Bolzano-Weierstrass Theorem to say that
h(x, y, z) attains its minimum on this set. But we note that h(x, y, z) → ∞
as (x, y, z) → ∞. Technically, we use the triangle inequality in the form of
||x− x0|| ≥ ||x|| − ||x0||, so when ||x|| ≥ ||x0||, we have

h(x) ≥(||x|| − ||x0||)2

=||x||2 − 2||x||||x0||+ ||x0||2

≥||x||2 − 1

2
||x||2 − 2||x0||2 + ||x0||2

≥1

2
||x||2 − ||x0||2 →∞ as ||x|| → ∞.

In the above, we used 2||x||||x0|| ≤ 1
2
||x||2 +2||x0||2, which follows from 2AB ≤

A2 +B2 by identifying A = 1√
2
||x|| and B =

√
2||x0||.

More specifically, we only need to look for a minimizer of h(x) subject to
g(x) = 0 and ||x|| ≤ R for some sufficiently large R > 0. At this point we
can assert that a minimizer x exists, and ||x|| < R. By the criterion for the
Lagrange multiplier, the equations ∇h(x) = λg(x) and g(x) = 0 in the n = 3
case turn into 

2(x− x0) = λa,

2(y − y0) = λb,

2(z − z0) = λc,

ax+ by + cz = d.

From the first three equations, we obtain x = x0 + λa/2, y = y0 + λb/2, z =
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z0 + λc/2. Substituting these into the last equation, we see that

a(x0 + λa/2) + b(y0 + λb/2) + c(z0 + λc/2) = d,

from which we obtain λ = −2[ax0 + by0 + cz0 − d]/[a2 + b2 + c2] = −2[n · x0 −
d]/||n||2. Therefore

x = x0 +
d− n · x0

||n||2
n.

We evaluate h at this x to obtain

||x− x0||2 =
|d− n · x0|2

||n||2
.

So in the n = 3 case the distance from x0 = (x0, y0, z0) to the plane ax+by+cz =

d is |ax0+by0+cz0−d|√
a2+b2+c2

, which is consistent with the result we obtained using vector
dot product.

Exercise 5.2.2. Carry out the details of analysis for the above example for the general
n cases.

Exercise 5.2.3. Find the longest and shortest distances, respectively, from the origin
to points on the ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1.

Example 5.2.3

Prove that, for any m × n matrix A, max ||Ax|| and min ||Ax|| subject to the
constraint ||x|| = 1 are attained, and identify the conditions satisfied by a
maximizer/minimizer.
The set {x ∈ Rn : ||x|| = 1} is a closed and bounded set of Rn, and the function
||Ax|| is a continuous function of x, so it attains its maximum and minimum
values on the constraint set {x ∈ Rn : ||x|| = 1}.
To identify the conditions satisfied by a maximizer/minimizer, we work with
f(x) = ||Ax||2 subject to the constraint g(x) = ||x||2 − 1 = 0, since ||x|| = 1
iff g(x) = 0, and x is a maximizer/minimizer of ||Ax|| iff it is a maxi-
mizer/minimizer of ||Ax||2. The reason we make this choice is that ∇||Ax||2
and ∇||x||2 are easier to work with than ∇||Ax|| and ∇||x||: using ||Ax||2 =
(Ax) · (Ax) = (Ax)T (Ax) = xTATAx, we see that f(x) =

∑n
i,j=1 xibijxj, where

bij is the (i, j) entry of B = ATA. So ∂f(x)
∂xi

=
∑n

j=1 bijxj +
∑n

k=1 bkixk. But
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bki = bik, which follows from BT = (ATA)T = AT (AT )T = ATA = B, so
∂f(x)
∂xi

= 2
∑n

j=1 bijxj. Similarly, ∂g(x)
∂xi

= 2xi, so the Lagrange multiplier equa-
tions are 2

n∑
j=1

bijxj = λ(2xi), i = 1, . . . , n,

||x||2 = 1.

The first set of equations can be written in a matrix equation form: Bx = λx.
A non-zero vector x satisfying Bx = λx is called an eigenvector of the matrix
B, and the corresponding λ is called an eigenvalue of B. Note that for a
maximizer/minimizer x, we have

f(x) = xTBx = xT (λx) = λxTx = λ.

So our task has been reduced to finding all eigenvectors and eigenvalues of
B = ATA.



120CHAPTER 5. THE IMPLICIT FUNCTION THEOREM AND ITS CONSEQUENCES



Chapter 6

CURVATURE AND QUADRATIC
APPROXIMATION

6.1 Quadratic functions

6.1.1 The matrix form of a purely quadratic function

Beyond linear functions, the next simplest functions are purely quadratic functions.
A purely quadratic function of two variables has the form ax2 + 2bxy + cy2 for some
coefficients a, b, c, which are not all 0. When a linear part is included, such as in
ax2 + 2bxy + cy2 + dx + ey + f we call it a quadratic function of (x, y). One of the
basic questions that we are interested in is:

How does such a function behave (whether it has a minimum or a maximum
or saddle)? And how is the behavior affected by the coefficients?

Below are the plots of the purely quadratic functions, 4x2 + 2xy + 16y2, 4x2 +
16xy + 16y2, 4x2 + 32xy + 16y2, respectively. One can see that these functions have
very distinct behavior.

For a quadratic function of two variables, one can study its behavior by various
elementary means, including completion of squares. One natural question is how to
study a quadratic function of more than two variables?

The key here is that a purely quadratic function of n variables takes the form∑n
i,j=1 aijxixj, and can always be arranged such that

121
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Figure 6.1: Graphs of 4x2 + 2bxy + 16y2 for b = 1, 8, 16 respectively

(i). aij = aji for all i, j, and

(ii).
∑n

i,j=1 aijxixj = x ·Ax = (x)TAx, where A = (aij) is a symmetric matrix.

Example 6.1.1

The quadratic function x2 + 4xy + 3y2 can be represented in the form of[
x y

]
A

[
x
y

]
for a 2 × 2 matrix for many different choices of A, but if we

require A to be symmetric, then there is only one such A.

x2+4xy+3y2 =
[
x y

] [1 1
3 3

] [
x
y

]
=
[
x y

] [1 −1
5 3

] [
x
y

]
=
[
x y

] [1 2
2 3

] [
x
y

]
.

We are going to develop tools of linear algebra and matrix algebra, and use them
to study the behavior of such functions.

Reading Quizzes/Questions:

1. Write the quadratic function 41x2 − 24xy + 34y2 in the form of
[
x y

]
A

[
x
y

]
,

where A is a 2× 2 symmetric matrix.

2. Write the quadratic function 21x2 + 36y2 − 3z2 − 84xy − 12yz + 72xz in the

form of
[
x y z

]
A

xy
z

, where A is a 3× 3 symmetric matrix.
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6.1.2 Purely quadratic functions as sums of squares

The behavior of a purely quadratic function x · Ax simplifies tremendously along an
eigenvector of A: if u is such that Au = λu, then for x = su, we have

x · Ax = (su) · A(su) = (su) · (sλu) = λs2‖u‖2.

If v is another eigenvector of A: Av = µv for some µ, then for x = su + tv,

x · Ax = (su + tv) · A(su + tv) = s2u · Au + st (u · Av + v · Au) + t2v · Av.

If we are in a situation such that

u · Av = u · (µv) = 0 and v · Au = v · (λu) = 0,

then
x · Ax = (su + tv) · A(su + tv) = λs2‖u‖2 + µt2‖v‖2,

which is, up to the scalars λ and µ, an algebraic sum of squares. We will show that
when A is a symmetric matrix, Au = λu, Av = µv for some λ 6= µ, then indeed we
have u · v = v · u = 0.

Professor Carlen’s notes use the function f(x, y) = x2 − xy + y2 to illustrate
how to represent it as a sum of squares. But we can also use completion of squares
to write it as f(x, y) = (x − 1

2
y)2 + 3

4
y2. If we set ξ = x − 1

2
y and η = y, then

f = ξ2 + 3
4
η2. What’s the difference between this change of variables and the one

in Professor Carlen’s notes? Under this change of variables, the x-axis, represented
by the equation y = 0, corresponds to η = 0, which is the ξ-axis; but the y-axis,
represented by the equation x = 0, corresponds to ξ = −1

2
η, which is a line not

orthogonal to the ξ-axis. Conversely, the η-axis, represented by ξ = 0, corresponds
to x − 1

2
y = 0. Note, however, that the change of variables u = (x + y)/

√
2, v =

(x− y)/
√

2, preserves angels and lengths.
One major advantage of linear change of variables which preserve angles and

lengths is that the geometry of the level curves can be easily related from the u-v
coordinates to the original x-y coordinates. For instance, with the u-v coordinate
above, f = 1

2
u2 + 3

2
v2, so the level curve f = c, for c > 0, given by 1

2
u2 + 3

2
v2 = c is an

ellipse whose major axis is along the u-axis. The geometry of this ellipse in the x-y
coordinates, other than its orientation, looks the same. On the other hand, if we used
the coordinates ξ-η, then the ellipse ξ2 + 3

4
η2 = c would have its major axis along the

η-axis, and its shape in the coordinates ξ-η would look different from its shape in the
x-y axis.

Thus we prefer to work with linear change of variables of the form x = Qu such
that:
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(a). It has an inverse in a similar form u = Px for some n× n matrix in the
sense that

x = QPx for all x ∈ Rn, and u = PQu for all u ∈ Rn. (6.1)

(b). The transformation u 7→ x = Qu preserves angels and lengths so that
the ui-axes are mapped to axes which are still orthogonal to each other.

(6.1) implies that ej = QPej for each j, but QPej is the jth column of QP .
Thus QP = [e1 e2 · · · en] = In. Likewise, PQ = In. Thus the requirement of (a) is
equivalent to the existence of matrix P such that

QP = PQ = In. (6.2)

In other words, the requirement of (a) is equivalent to the invertibility of the matrix
Q.

(b) requires that Qej is still a unit vector and Qej ⊥ Qek for j 6= k. But Qej is
the jth column of Q. Thus the requirement of (b) implies that the columns of Q form
an orthonormal set of vectors. This condition can be expressed in a compact matrix
form: QTQ = In. In this context Q is an n × n square matrix. An n × n matrix
Q satisfying QTQ = In is called an orthogonal matrix∗; it turns out that in such a
case we automatically have QQT = In. Also, the condition QTQ = In implies that
x = Qu preserves the dot product between two vectors in Rn, therefore preserves the
length of vectors and angle between vectors. This is seen by noting that u ·v = (u)Tv
for u,v ∈ Rn, and treating them as column vectors, so it follows that

Qu ·Qv = (Qu)TQv = (u)TQTQv = (u)T Inv = (u)Tv = u · v.

Reading Quizzes/Questions:

(i) Is the matrix

[
2 −1
1 2

]
an orthogonal matrix?

(ii) If Q is an n × r such that QTQ = Ir, and n 6= r, do we still have QQT = In?
Can r > n under the condition here? Why?

∗Note that the columns of an orthogonal matrix are orthonormal, not just orthogonal to each
other. If Q is an n× r matrix whose columns form an orthonormal set of vectors, but r 6= n (which
necessarily implies that r < n), then we will still have QTQ = Ir. But such a Q is not called an
orthogonal matrix, and QQT 6= In in such a case.
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(iii) Construct a 3×2 matrix Q whose columns consist of orthonormal vectors. Then
compute QQT .

(iv) If Q is an orthogonal matrix, does it follow that its rows are also orthonormal?

The remaining question is:

Given a purely quadratic function of the form x · Ax, where A is a symmetric
matrix. Is there an orthogonal matrix Q such that after a change of variables
x = Qu, the function x ·Ax in terms of u becomes a purely quadratic function
of the simplest form: λ1u

2
1 + λ2u

2
2 + . . .+ λnu

2
n for some scalars λ1, . . . λn?

Reading Quizzes/Questions: For the quadratic function defined by

[
x y

] [ 41 −12
−12 34

] [
x
y

]
,

perform the change of variable [
x
y

]
=

[
3
5
−4

5
4
5

3
5

] [
u
v

]
and find the function in terms of u, v.

If Q is an orthogonal n × n matrix, using the dot product preserving property
Qx ·Qy = x · y for any vectors x,y ∈ Rn, we note the following

(i). x · Ax = Qu · AQu = (Qu)TAQu = (u)TQTAQu = u · (QTAQ)u.

(ii). λ1u
2
1 +λ2u

2
2 + . . .+λnu

2
n = u ·Du, where D is the diagonal matrix whose

ith diagonal entry is λi.

Thus our requirement is u · (QTAQ)u = u · Du for all u, which is equivalent to
QTAQ = D.

Since QTQ = QQT = In, the condition QTAQ = D is also equivalent to AQ =
QD. But D is a diagonal matrix, so the jth column of QD is simply λj times the
jth column of Q, while the jth column of AQ is A times the jth column of Q. Thus
the equation AQ = QD is saying that AColj(Q) = λjColj(Q), for j = 1, . . . , n, which
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is the condition that Colj(Q) is an eigenvector of the matrix A, with λj being the
corresponding eigenvalue.

Reading Quizzes/Questions: Verify that

[
1
2

]
and

[
2
−1

]
are eigenvectors of the

matrix [
2 2
2 5

]
.

Identify the corresponding eigenvalues.

Recall the additional requirement that the columns of Q need to form an orthonor-
mal set of vectors, thus the question we face is

Given a symmetric matrix A, whether we can find a set of n eigenvectors of A
such that they form an orthonormal set of vectors?

This is answered affirmatively in 6.1.3-4 by the Spectral Theorem, also called
diagonalization of real symmetric matrices.

The key ingredients and steps are

(i). An eigenvalue λ of A is characterized by the condition that (A−λIn)x = 0
has non-zero solutions; i.e., A−λIn does not have an inverse. An algebraic
condition is that the determinant of A− λIn must be 0.

(ii). For each λ such that the determinant of A − λIn is 0, find the general
solutions to (A− λIn)x = 0. It will be spanned by a set of solution vec-
tors. Apply the Gram-Schmidt Algorithm to produce a set of orthonormal
spanning set for Null(A− λIn).

(iii). If λ1 6= λ2 are two distinct eigenvalues of A, with x1 and x2 being corre-
sponding eigenvectors, then x1 ⊥ x2.

(iv). If we collect all the eigenvectors constructed above, it forms an orthonor-
mal basis of Rn: {q1, . . . ,qn}, with Aqj = λjqj, 1 ≤ j ≤ n. Setting
Q = [q1 . . .qn], then QTQ = In, QQT = In, and

AQ = Q


λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 0 . . . λn

 = QD; thus Q−1AQ = QTAQ = D.



6.1. QUADRATIC FUNCTIONS 127

In implementing the above algorithm, the first step is to identify all eigenvalues
of the matrix A, and for each eigenvalue λ of A to find an orthonormal basis for the
space of solutions of (A − λI)x = 0. The second step is usually accomplished by
first finding a basis for the space of solutions of (A − λI)x = 0, then applying the
Gram-Schmidt Algorithm to obtain an orthonormal basis.

For a 2×2 matrix A =

[
a b
c d

]
, its eigenvalues are roots of the quadratic polynomial

of det(A − tI) = t2 − (a + d)t + ad − bc = 0. For a 3 × 3 matrix A, det(A − tI)
is a cubic polynomial in t. Theoretically there is a formula for the roots of a cubic
polynomial, but it is not used in practice, as it is algebraically too complicated.

Another potential complication in practice is that if one uses an approximate value
for an eigenvalue, then (A−λI) becomes invertible, so theoretically, the only solution
of (A − λI)x = 0 for an approximate eigenvalue λ is the zero vector 0. Such issues
are analyzed in numerical linear algebra.

It is a simpler task to verify whether a given scalar λ is an eigenvalue of a matrix
A: one simply checks whether one can find non-zero solutions of (A − λI)x = 0. It
is even simpler to check whether a given vector x is an eigenvector of a matrix: one
simply checks whether Ax is a multiple of x.

Example 6.1.2

For

A =

[
41 −12
−12 34

]
,

one can verify that

A

[
3
4

]
=

[
41 −12
−12 34

] [
3
4

]
=

[
75

100

]
= 25

[
3
4

]
,

so

[
3
4

]
is an eigenvector corresponding to eigenvalue λ = 25.

To find the full set of eigenvalues, one solves

det(A− tI) = det

[
41− t −12
−12 34− t

]
= t2 − 75t+ 1250 = 0

to find t = 25 and t = 50.
Next we find all solution of

(A− 50I)x =

[
−9 −12
−12 −16

] [
x
y

]
=

[
0
0

]
,



128 CHAPTER 6. CURVATURE AND QUADRATIC APPROXIMATION

which are given by solving −3x − 4y = 0. Thus all solutions are multiples of[
4
−3

]
.

Note that the eigenvectors

[
3
4

]
and

[
4
−3

]
are orthogonal to each other. To

produce an orthogonal matrix we need to make each a unit vector. Thus the
two columns of the following matrix are orthonormal eigenvectors of the given
matrix A

Q =

[
3
5

4
5

4
5
−3

5

]
,

and the eigenvector relations are encoded in

AQ = Q

[
25 0
0 50

]
,

or equivalently, QTAQ =

[
25 0
0 50

]
.

Note that in solving for (A−50I)x = 0, we could have said that all solutions are

multiples of

[
−4

3

]
. This would have resulted in a different orthogonal matrix

[
3
5
−4

5
4
5

3
5

]
.

This matrix has determinant equal to 1, and represents a rotation matrix, while
the previous choice has its determinant equal to −1 and represents a reflection
matrix.

Reading Quizzes/Questions: For the matrix

A =

[
2 2
2 5

]
,

find an orthogonal matrix Q such that AQ = QD for some diagonal matrix. Identify
D.

Reading Quizzes/Questions: Find the eigenvalues of the matrices

Q1 =

[
3
5

4
5

4
5
−3

5

]
and Q2 =

[
3
5
−4

5
4
5

3
5

]
.
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Remark 6.1.1

Our discussion shows that as long as an n × n matrix A has a set of n eigen-
vectors {v1, . . . ,vn} which is linearly independent, namely, the n × n matrix
V with {v1, . . . ,vn} as its columns has rank n, and with {λ1, . . . , λn} as its
corresponding eigennvalues, then AV = V D, where D is the diagonal matrix
with {λ1, . . . , λn} as entries on its diagonal. Since V is invertible, it follows that
V −1AV = D, or equivalently, A = V DV −1. We see that in such a situation, A
is diagonalizable.
This kind of diagonalization has important application. For instance, it would
allow us to write A = V DV −1, so Ak = V DkV −1 can be computed easily.
Another application is in solving a system of ODEs given by x′(t) = Ax(t).
Making a change of variables x = V y, then the system reduces to V y′(t) =
AV y(t), so y′(t) = Dy(t), which is completely decoupled, and can be solved
easily.

Example 6.1.3

The matrix

[
1 2
0 1

]
as 1 as its only eigenvalue, and when solving for the relevant

eigenvectors, we find that they are given by[
1− 1 2

0 1− 1

] [
x
y

]
=

[
0
0

]
,

which is just 2y = 0. Thus the solutions are

[
x
0

]
. This means that there is no

way to find a set of two orthonormal eigenvectors.
In fact one can see that this matrix is not diagonalizable, for, it were to possible
to write it as V DV −1 for some invertible V and a diagonalD, then the entries on
the diagonal of D must be eigenvalues, therefore must be both 1’s, which would
force D to be I2, which would then force V DV −1 = V I2V

−1 = V V −1 = I2,
which is not the case.

Reading Quizzes/Questions: Verify that the matrix

[
−1

2
1
2

−3 2

]
has

[
2
4

]
and

[
2
6

]
as

eigenvectors, and use this information to determine A10 and limn→∞A
n. Furthermore,
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find the general solution to x′1(t) = −1

2
x1(t) +

1

2
x2(t),

x′2(t) = −3x1(t) + 2x2(t).

Example 6.1.4

Consider the quadratic function x2 − xy + y2, which can be written as

[x y]A[x y]T , where A =

[
1 −1

2

−1
2

1

]
. We apply our algorithm above.

(i). An eigenvalue λ of A makes A− λI2 =

[
1− λ −1

2

−1
2

1− λ

]
to have no inverse.

This is equivalent to

[
1− λ
−1

2

]
‖
[
−1

2

1− λ

]
. But this is equivalent to (1 −

λ)2 − (−1
2
)2 = 0. This gives λ = 1

2
or λ = 3

2
.

(ii). For λ = 1
2
, we need to find all solutions to

(A− 1

2
I2)x =

[
1
2
−1

2

−1
2

1
2

]
x =

[
0
0

]
.

The solutions x = (x y)T are given by x − y = 0. Choosing y as a free
variable, we see that the solutions are[

y
y

]
= y

[
1
1

]
.

We choose a normalized vector, which in this case is

[
1√
2

1√
2

]
.

Then for λ = 3
2
, we solve

(A− 3

2
I2)x =

[
−1

2
−1

2

−1
2
−1

2

]
x =

[
0
0

]
.

The solutions x = (x y)T are given by x + y = 0. Choosing y as a free
variable, we see that the solutions are[

−y
y

]
= y

[
−1

1

]
.
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We choose a normalized vector, which in this case is

[
− 1√

2
1√
2

]
.

(iii). We note that

[
1√
2

1√
2

]
and

[
− 1√

2
1√
2

]
are orthonormal. If we set

Q =

[
1√
2
− 1√

2
1√
2

1√
2

]
,

then QTQ = QQT = I2, and AQ = Q

[
1
2

0
0 3

2

]
. If we make the change of

variables [
x
y

]
= Q

[
x′

y′

]
=

[
1√
2
− 1√

2
1√
2

1√
2

][
x′

y′

]
,

then
[
x y

]
=
[
x′ y′

]
QT , and

[
x y

]
A

[
x
y

]
=
[
x′ y′

]
QTAQ

[
x′

y′

]
=
[
x′ y′

] [1
2

0
0 3

2

] [
x′

y′

]
=

1

2
(x′)2+

3

2
(y′)2.

So under this change of variables, x2 − xy + y2 = 1
2
(x′)2 + 3

2
(y′)2.

For any c > 0, the level curve x2 − xy + y2 = c becomes 1
2
(x′)2 + 3

2
(y′)2 = c in

the x′-y′ coordinates. Since the relation between (x, y) and (x′, y′) coordinates

here are of a rotation ( (x′, y′) = (1, 0) gets mapped to

[
1√
2

1√
2

]
, which means that

the x′-axis gets mapped to the line y = x; and (x′, y′) = (0, 1) gets mapped to[
− 1√

2
1√
2

]
, which means that the x′-axis gets mapped to the line y = −x). This

change of variable allows us to see (a). the level curves of x2 − xy + y2 are
ellipses, and (b). The function x2 − xy + y2 = 1

2
(x′)2 + 3

2
(y′)2 is non-negative,

and can grow unbounded.

Remark 6.1.2

In step (ii) above for computing the eigenvectors associated with λ = 3
2
, if

we had chosen x as a free variable, we would have gotten the eigenvectors as
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Figure 6.2: Contour plot of x2 − xy + y2 = 1 in the original x-y axes and in the
rotated x′-y′ axes.

x

[
1
−1

]
, and with

[
1√
2

− 1√
2

]
as its normalized eigenvector;

[
x
y

]
=

[
1√
2

1√
2

1√
2
− 1√

2

][
x′

y′

]
would still have been an legitimate orthogonal change of variables, but this
time, the y′-axis would have been mapped to be along the direction of the

vector

[
1√
2

− 1√
2

]
, making the x′-y′ coordinate system left handed. This change of

variables is through a reflection, instead of a rotation.
Algebraically a rotation is represented by an orthogonal matrix with a positive
determinant, while a reflection is represented by an orthogonal matrix with a
negative determinant.

Reading Quizzes/Questions:
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(i) For 2x2 + 4xy + 5y2, perform a change of variables of the form[
x
y

]
= Q

[
u
v

]
where Q is some orthogonal matrix, so that 2x2 + 4xy + 5y2 transforms into
λ1u

2 + λ2v
2. Identify Q, λ1 and λ2.

(ii) Given that 9,−36, 81 are eigenvalues of the matrix

A =

 21 −42 36
−42 36 −6
36 −6 −3

 .
Find their corresponding eigenvectors. Then construct an orthonormal matrix
Q such that QTAQ is a diagonal matrix.

(iii) Use the result of the previous problem to perform a change of variables of the
form xy

z

 = Q

uv
w


to transform the quadratic function 21x2 + 36y2 − 3z2 − 84xy − 12yz + 72xz
into a quadratic function in u, v, w. Then describe the geometry of the level set
21x2 + 36y2 − 3z2 − 84xy − 12yz + 72xz = 81.

The behavior of quadratic functions will be used in the second derivative test for
mimima/maxima at a critical point.

6.2 The best quadratic approximation

6.2.1 Higher order directional derivatives and repeated par-
tial differentiation

The key of this subsection is (6.1.2-4). The idea is to examine the behavior of the
function f(x) along the one-dimensional line x0 + tv: g(t) = f(x0 + tv); specifically,
computing its first order derivative in t gives g′(t) =

∑n
i=1 vi

∂f
∂xi

(x0 + tv), which, at
t = 0, gives the directional derivative of f at x0 in the direction of v. Assume that
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each ∂f
∂xi

(x) is differentiable, then we can apply the same chain rule to compute the
second order derivative of g(t) in t to get (6.12) in Carlen’s notes:

g′′(t) =
n∑

i,j=1

vivj
∂2f

∂xj∂xi
(x0 + tv),

where

∂2f

∂xj∂xi
(x0 + tv) =

∂

∂xj

(
∂f

∂xi

)
(x0 + tv)

is the partial derivative of ∂f
∂xi

(x) with respect to xj evaluated at x0 + tv. Thus

g′′(0) =
n∑

i,j=1

vivj
∂2f

∂xj∂xi
(x0),

which is a purely quadratic function in the variable (v1, v2, . . . , vn), and gives the
second order derivative of f at x0 in the direction of v.

Example 6.2.1

For f(x, y) = xy for x, y > 0, we found from an earlier example that ∂xf(x, y) =
yxy−1 and ∂yf(x, y) = xy lnx. Therefore

∂2f

∂x∂x
=

∂

∂x

(
∂f

∂x

)
=

∂

∂x

(
yxy−1

)
= y(y − 1)xy−2

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
=

∂

∂y

(
yxy−1

)
= xy−1 + yxy−1 lnx

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
=

∂

∂x
(xy lnx) = yxy−1 lnx+ xy−1

∂2f

∂y∂y
=

∂

∂y

(
∂f

∂y

)
=

∂

∂y
(xy lnx) = xy(lnx)2

Then for any given v = (v1, v2), and g(t) = (1 + tv1)1+tv2 would have

g′′(0) =
∂2f

∂x∂x
(1, 1)v2

1 +
∂2f

∂y∂x
(1, 1)v1v2 +

∂2f

∂x∂y
(1, 1)v1v2 +

∂2f

∂y∂y
(1, 1)v2

2

= 0v2
1 + 2v1v2 + 0v2

2.
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6.2.2 Clairault’s Theorem

In (6.1.2-4) we encounter a quadratic function in v whose coefficients are ∂2

∂xj∂xi
f(x0) :=

∂
∂xj

(
∂
∂xi
f
)

(x0)∗. Clairault’s Theorem gives conditions under which these coeffi-

cients are symmetrical in i and j. Under the conditions here, the function
∑n

i,j=1 vivj
∂2f

∂xj∂xi
(x0)

can be written in a compact matrix form v · [Hessf (x0)]v = (v)T [Hessf (x0)]v, where
the entries of the matrix [Hessf (x0)], called the Hessian matrix of f at x0, are
∂2f

∂xj∂xi
(x0), so [Hessf (x0)] would be a symmetric matrix.

In the above, we used the notation ∂2f
∂xj∂xi

(x0), instead of ∂
∂xj

(
∂
∂xi
f(x0)

)
, for the

second derivative of f at x0. The choice of notation reflects the internal logic of the

operation, as ∂
∂xj

(
∂
∂xi
f(x0)

)
may suggest that we are taking ∂

∂xj
partial derivative of

∂
∂xi
f(x0), which is already evaluated as a constant. Such kind of logic is important in

the syntax of programming languages such as Mathematica. E.g., in Mathematica,
for a generic function f [x], D[f[x],x] would give the derivative of f at x, while
D[f[x_0],x] would treat f [x0] as a constant, so give 0 as the output, not the deriva-
tive of f at x0. The derivative of f at x0 is obtained as D[f[x],x]/.x->x_0. Our
notation ∂2f

∂xj∂xi
(x0) treats ∂2f

∂xj∂xi
as the second derivative of f as a function, ready to

be evaluated at any x.

It is possible for ∂2f
∂xj∂xi

(x) 6= ∂2f
∂xi∂xj

(x) when the conditions for the Clairault’s

Theorem are not satisfied.

Example 6.2.2

Consider

f(x, y) =

{
xy x

2−y2
x2+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

∗Some texts use the notation fxi(x) for ∂
∂xi

f(x), and fxixj (x) for ∂
∂xj

(
∂

∂xi
f
)

(x).
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Then at (x, y) 6= (0, 0),

∂f

∂x
(x, y) =

y (4x2y2 + x4 − y4)

(x2 + y2)2 ,

∂f

∂y
(x, y) =

−4x3y2 + x5 − xy4

(x2 + y2)2 ,

∂2f

∂y∂x
(x, y) =

(x2 − y2) (10x2y2 + x4 + y4)

(x2 + y2)3

∂2f

∂x∂y
(x, y) =

(x2 − y2) (10x2y2 + x4 + y4)

(x2 + y2)3

so we see that

∂2f

∂y∂x
(x, y) =

∂2f

∂x∂y
(x, y) when (x, y) 6= (0, 0).

We can also verify directly by definition that

∂f

∂x
(0, 0) = 0,

∂f

∂y
(0, 0) = 0.

To compute ∂2f
∂y∂x

(0, 0), we only need to examine the derivative with respect to

y of ∂f
∂x

(0, y) = −y, which gives −1; while to compute ∂2f
∂x∂y

(0, 0), we only need

to examine the derivative with respect to x of ∂f
∂y

(x, 0) = x, which gives 1. Thus

∂2f

∂y∂x
(0, 0) = −1 6= 1 =

∂2f

∂x∂y
(0, 0).

6.2.3 A multivariable second order Taylor expansion

Treating g(t) = f(x0 + tv) as a one variable function of t, and if f has continuous
second derivatives with respect to x, then g(t) has continuous second derivatives in

t, and we have a Taylor’s expansion of the form g(t) = g(0) + g′(0)t+ g′′(0)
2
t2 +R2(t),

where the remainder

R2(t) =

∫ t

0

(t−s)[g′′(s)−g′′(0)]ds = t2
∫ 1

0

(1−τ)[g′′(tτ)−g′′(0)]dτ (after setting s = tτ).

Setting w = tv, we get
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f(x0 + w) = f(x0) +∇f(x0) ·w +
1

2
w · [Hessf (x0)]w +R2,

where R2 = w · (
∫ 1

0
A(τ)dτ)w, A(τ) = [Hessf (x0 + τw)]− [Hessf (x0)]. Here

f(x0) +∇f(x0) ·w +
1

2
w · [Hessf (x0)]w

provides the “best quadratic approximation” to f(x) for x = x0 + w near x0.

If the second derivatives of f are continuous at x0, then we will be able to prove
that

lim
‖w‖→0

|R2|
‖w‖2

= 0. (6.3)

This means that |R2| is vanishingly small compared with ‖w‖2, which represents the
size of the term 1

2
w · [Hessf (x0)]w. It is in this sense we see that f(x0) + ∇f(x0) ·

w + 1
2
w · [Hessf (x0)]w provides a “best quadratic approximation” to f near x0.

(6.3) is seen as follows: for any ε > 0, we can find δ > 0 such that for all w with
‖w‖ < δ, and all τ ∈ [0, 1], ‖A(τ)‖F < ε. For such w, we thus have

‖R2‖ ≤ ‖w‖‖(
∫ 1

0

A(τ)dτ)w‖ ≤ ‖w‖
∫ 1

0

‖(A(τ)w‖dτ ≤ ε‖w‖2.

In the remainder of this section, we use the second order directional derivative

d2

dt2

∣∣∣∣
t=0

f(x0 + tv) = v · [Hessf (x0)]v = (v)T [Hessf (x0)]v

and the Taylor expansion

f(x0 + v) = f(x0) +∇f(x0) · v +
1

2
v · [Hessf (x0)]v +R2

to study the local behavior of f near x0.

Example 6.2.3

For the function f(x, y) = xy for x, y > 0, its quadratic Taylor expansion at
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(1, 1) is

f(1 + v1, 1 + v2) = f(1, 1) + ∂xf(1, 1)v1 + ∂yf(1, 1)v2

+
∂2
xxf(1, 1)

2
v2

1 + ∂2
xyf(1, 1)v1v2 +

∂2
yyf(1, 1)

2
v2

2

= 1 + v1 + v1v2,

while its quadratic Taylor expansion at (2, 1) is

f(2 + v1, 1 + v2) = f(2, 1) + ∂xf(2, 1)v1 + ∂yf(2, 1)v2

+
∂2
xxf(2, 1)

2
v2

1 + ∂2
xyf(2, 1)v1v2 +

∂2
yyf(2, 1)

2
v2

2

= 2 + v1 + 2 ln 2 v2 + (1 + ln 2)v1v2 + (ln 2)2v2
2.

When v is an eigenvector of [Hessf (x0)]: [Hessf (x0)]v = µv for some µ, then
the term v · [Hessf (x0)]v = µ‖v‖2 simplifies. The main results about the quadratic
approximation are

(a). If all the eigenvalues of [Hessf (x0)] are positive, then
d2

dt2

∣∣∣∣
t=0

f(x0 + tv) > 0 for all v, and the graph of f near x0 would

be approximated by f(x0) + ∇f(x0) · v + 1
2
v · [Hessf (x0)]v, which is

the sum of a convex parabloid 1
2
v · [Hessf (x0)]v and the tangent plane

f(x0) +∇f(x0) · v.

(b). Likewise, if all the eigenvalues of [Hessf (x0)] are negative, then
d2

dt2

∣∣∣∣
t=0

f(x0 + tv) < 0 for all v, and the graph of f near x0 would be

approximated by f(x0) + ∇f(x0) · v + 1
2
v · [Hessf (x0)]v, which is the

sum of a concave parabloid 1
2
v · [Hessf (x0)]v and the tangent plane

f(x0) +∇f(x0) · v.

(c). In particular, at a critical point x0 of f , if all the eigenvalues of [Hessf (x0)]
are positive, then f has a local minimum at x0; while if all the eigenvalues
of [Hessf (x0)] are negative, then f has a local maximum at x0.

(d). One can check whether all the eigenvalues of [Hessf (x0)] are positive (or
negative) without computing the eigenvalues directly by applying the
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Sylvester’s criterion in 6.2.7, which is based on computing the determi-
nants of a number of submatrices constructed based on the given matrix.
This is useful for 2× 2 and 3× 3 matrices, but not as useful for matrices
of bigger sizes.

(e). At a critical point, if the eigenvalues of [Hessf (x0)] have opposite signs,
then f behaves as having a minimum in directions of eigenvectors asso-
ciated with negative eigenvalues, and as having a maximum in directions
of eigenvectors associated positive eigenvalues. Such a critical point is
called a saddle critical point.

(f). One can also use the diagonalization of all the eigenvalues of [Hessf (x0)]
are positive to construct the local contour curve of f near x0, as is done
in 6.2.5.

6.3 A Brief Discussion of Determinant

In our earlier discussion on mixed product in R3 (in section 1.2), we already mentioned
that relation between the mixed product and determinant of a 3× 3 matrix with the
signed volume of the parallelepiped. This latter relation is the geometric motivation
for a general n× n matrix.

Let’s first review the situation in R2. Let [u,v] denote the parallelogram spanned
by u and v,. Analytically, this means the set of vectors {su + tv : 0 ≤ s, t ≤ 1}. Let
A[u,v] denote the area of this parallelogram. Then we have

A[u, cv] = cA[u,v], for all u,v, (a1)

at least for c ≥ 0,

A[u,v + cu] = A[u,v], for all u,v, and c. (a2)

(a2) is a reflection of the geometric principle that parallelograms with the same base
and equal heights have equal areas. Here [u,v + cu] and [u,v] share a common base
u, and have equal heights with base u. The following is a Desmos graph illustration∗

of areas of parallelograms with adjacent edges[u,v] and [u,v + cu].
In order to extend (a1) to all c, we can either replace c on the right by |c|, or

replace A[u,v] by the signed area sgA[u,v]. sgA[u,v] satisfies (a1) for all c, and
satisfies (a2) as well; furthermore, we also have

sgA[u,v + w] = sgA[u,v] + sgA[u,w], for all u,v,w. (a3)

∗https://www.desmos.com/calculator/895gqiflo9

https://www.desmos.com/calculator/895gqiflo9
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(Construct corresponding parallelograms to give a geometric proof to the above.) The
same properties hold if we do the same operations on the first vector u. We would
rather keep the very useful properties (a1) and (a3) and accept that sgA[u,v] can
take on negative values, than insisting on working with a nonnegative area function;
we can always define, in the end, that A[u,v] = |sgA[u,v]|.

Based on (a1–3) and the normalization requirement that A[e1, e2] = 1, it is easy
to derive that sgA[u,v] must be given by the usual formula for the determinant of
the 2 × 2 matrix [u,v] with u,v as its columns (we are abusing notation using the
same [u,v] to denote both the geometric parallelogram and the matrix).

Here is how the argument goes. Suppose u =

[
a
b

]
and v =

[
c
d

]
. Let’s first assume

that a 6= 0, then u = a

[
1
b/a

]
, so according to (a1),

det[u,v] = a det

[
1 c
b/a d

]
.

Next v subtracting c∗ the first column of the matrix on the right hand gives

[
0

d− cb/a

]
,

and according to (a2) and (a1),

det

[
1 c
b/a d

]
= det

[
1 0
b/a d− cb/a

]
= (d− cb/a) det

[
1 0
b/a 1

]
.

Finally, the first column of the above matrix subtracting b/a∗ the second column

produces

[
1
0

]
, so

det

[
1 0
b/a 1

]
= det

[
1 0
0 1

]
= 1.

Putting these together, we get

det[u,v] = a(d− cb/a) = ad− bc.

When a = 0 and c 6= 0, or when a = c = 0, we just need to adjust the above
arguments and in both cases we arrive at the same conclusion.

The same argument also works for a 3× 3 matrix, and can be used to define the
determinant of any n× n matrix, namely,

det[v1, · · · ,vn] = signed volume[v1, · · · ,vn],

where signed volume[v1, · · · ,vn] is the n-dimensional analogue of parallelepiped and
obeys similar properties as in (a1–3).
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(a2) means that detA is unchanged when the columns of A undergo the kind of
“elementary column operations” as described in (a2). (a1) implies that if A has a
column of 0’s, then detA = 0. These together also imply that when any column of
A can be expressed as a linear combination of some other columns (namely when A
is not invertible), then detA = 0, as one can then perform a number of operations as
in (a2) to produce a column of 0’s. Furthermore, for any diagonal matrix D with its
diagonal entries d1, · · · , dn,

detD = d1 · . . . · dn.
This follows by applying (a1) multiple times to produce

detD = d1 · . . . · dn · det In = d1 · . . . · dn,

where we still demand the normalization condition that det In = 1.
For any upper triangular matrix R, if it has n pivots, then we can repeatedly

apply the column operations in (a2) to reduce R to the diagonal matrix whose entries
on the diagonal are the same as those of R, therefore conclude that detR = product
of its diagonal entries.

At this point we don’t have a definition for the volume or signed volumes of a
general region in Rn, but any region spanned by n vectors in Rn, the properties (a1–
a3) are natural ones for the notion of signed volume. Based on this interpretation,
detQ = ±1 for any orthogonal matrix Q.

detA also plays the role of magnifying factor between the signed volumes of a
region U and its image A(U) under the linear function defined by A:

signed volume of A(U) = detA (signed volume of U).

This interpretation forces det(AB) = detA detB, as

signed volume of AB(U) = detA (signed volume of B(U))

= detA detB (signed volume of U).

As a consequence of this property,

det(AB) = detA detB = det(BA),

even though AB 6= BA may happen. In addition, when A is invertible,

1 = det In = det(AA−1) = detA detA−1,

so det(A−1) = 1/ det(A).
As this point, when A has a QR factorization A = QR, the above properties imply

that detA = detQ detR, where detQ = ±1, and detR is the product of its diagonal
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entries. The only remaining issue is to determine how to tell whether detQ = 1 or
−1.

Another useful fact is that detAT = detA.
As a consequence of the above properties, when a symmetric matrix A is diago-

nalized by an orthogonal matrix Q: A = QDQT ,

detA = detQ detD detQT = (detQ)2 detD = detD,

where detD is the product of its diagonal entries, which is the product of the eigen-
values of A.

Exercise 6.3.1. Applying (a1-3) to calculate

det


1 1 0 2
0 1 2 3
0 0 −1 2
0 0 0 1

 .
Exercise 6.3.2. Applying (a1-3) to calculate the determinant of the Jacobian matrix
of the map from cylindrical coordinates (r, θ, z) to the rectangular coordinates (x, y, z):

det

cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

 .
(Hint: The columns are orthogonal to each other.)

Exercise 6.3.3. Applying (a1-3) to calculate the determinant of the Jacobian matrix
of the map from spherical polar coordinates (r, θ, φ) to the rectangular coordinates
(x, y, z):

det

sinφ cos θ −r sinφ sin θ r cosφ cos θ
sinφ sin θ r sinφ cos θ r cosφ sin θ

cosφ 0 −r sinφ

 .
(Hint: The columns are orthogonal to each other.)



Chapter 7

INTEGRATION IN SEVERAL
VARIABLES

7.1 Integration and summation

Although the rough ideas in defining integrals in several variables are similar to those
in one variable, there are some major differences, with the major ones being

(a) the domain of integration in several variables can be much more varied and
complicated, as opposed to an interval in one dimension;

(b) the partition of the domain of integration would involve complications: except
when the domain is a rectangular box whose faces (or edges) are parallel to
the coordinate axes, if we do partition of the domain using small rectangular
boxes whose faces (or edges) are parallel to the coordinate axes, some boxes
would straddle between the domain and its complement, and we would have
to account for the impact of contributions or omissions from these boxes when
forming the Riemann sum.

Issue (b) turns out to be the main source of difficulty in defining integrals in several
variables∗. One possible remedy is to enclose the domain U to be enclosed in a
rectangular boxR whose faces (or edges) are parallel to the coordinate axes (assuming
U to be bounded), and extend the integrand f(x) to be 0 in R\U . But the extended
function is generally discontinuous at points on the boundary ∂U of U , and these
points of discontinuity could create difficulties for having a well defined integral.

∗Look up Osgood curves and Knopp curves, whose fractal geometry creates difficulties in defining
the area of its complement in a rectangle enclosing the curve using Riemann’s approximation. The
area (integral) can be defined using a different procedure due to Lebesgue.

143
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The issues arise as follows. Once we partition the given domain U as the non-
overlapping union of small boxes Rk, some of which are rectangular boxed contained
within U , and some of which straddle between U and its complement, we need to
sample a point xk in Rk and form the Riemann sum∑

k

f(xk) Area(Rk)

and study whether this Riemann sum has a limit independent of how we do the
partition and pick xk with Rk as the partition size goes to 0.

But for those Rk which straddle between U and its complement, a more appropri-
ate choice for its contribution to the Riemann sum would have been f(xk) Area(Rk ∩
U). However, Area(Rk ∩ U) is not something that we know how to compute.

Our alternative strategy is to extend the integrand f to be 0 outside of U and use
Area(Rk) directly; but then for these straddling Rk, the term f(xk) Area(Rk) would

be 0 if xk is chosen to be a point in Rk but outside of U , which may not reflect the
actual contribution from such a region.

Take the case of f ≡ 1, then the term f(xk) Area(Rk) could vary between 0 and
Area(Rk ∩ U), and the overall accumulation of these terms in the Riemann sum

would be varying between 0 and
∑

Area(Rk ∩ U), the latter may not approach 0 as
the partition size goes to 0, as is the case if the boundary ∂U has a fractal nature.

We will not aim to define integrals on most general domains in multi-dimensions;
instead, we will focus on defining integrals on domains which we usually encounter in
applications. These include

(i). Rectangular boxes R whose faces (or edges) are parallel to the coordinate axes;

(ii). Domains in R2 which can be described as {(x, y) : c ≤ x ≤ d, a(x) ≤ y ≤ b(x)},
where a(x) ≤ b(x) are given continuous functions defined on the interval [c, d]
whose graphs describe the upper and lower portion of the boundary of this
domain;

(iii). Domains in R2 which can be described as {(x, y) : c ≤ y ≤ d, a(y) ≤ x ≤ b(y)},
where a(y) ≤ b(y) are given continuous functions defined on the interval [c, d]
whose graphs describe the left and right portion of the boundary of this domain;

(iv). Domains which can be partitioned into a finite union of non-overlapping sub-
domains, each of which is of a type of the above;

(v). Domains which in a rotated rectangular coordinates, or in polar/spherical/cylindrical
coordinates, or under a change of variables, have a structure similar to one of
the above.
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Figure 7.1: A region of integration and a partition of this region by small rectangles,
as well as a graph over this region

Figure 7.2: On the left is an Osgood curve which is obtained after an infinite iteration
of removing a certain proportion from each triangle left from the previous iteration; a
partition of the enclosing rectangle by small rectangles would always have a positive
portion overlapping with the Osgood curve. On the right is the shape after only six
iterations.
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Figure 7.3: A partition of the region under the graph by thin slices or by small
rectangular columns; some columns “straddle” on the boundary of the region

For the domains that we list above, the potential complications of contributions
from the boundary terms would not arise when the integrand is a continuous function
on the closed domain of integration. As a result the integral of a continuous function
on such a domain is well defined. What we need to figure out is how to evaluate such
an integral without having to use the definition.

Here are two basic properties of integrals, which are not stated explicitly in Pro-
fessor Carlen’s notes:

(I) If both f(x) and g(x) are integrable over the set U , then so is af(x) + bg(x) for
any constants a and b, and

∫
U

(af(x) + bg(x))dA = a
∫
U
f(x)dA+ b

∫
U
g(x)dA∗

(II) If U and V are non-overlapping sets, and
∫
U
f(x)dA and

∫
V
f(x)dA are both well

defined, then
∫
U∪V f(x)dA is also well defined, and

∫
U∪V f(x)dA =

∫
U
f(x)dA+∫

V
f(x)dA.

∗
∫
U

(· · · )dA in Carlen’s notes denotes an integral in two variables; but these two prop-
erties are the requirements for integrals in any number of variables. It is common to use∫∫

U
(· · · )dA, or

∫∫
U

(· · · )dx dy to denote an integral in two variables (x, y), and use
∫∫∫

U
(· · · )dV , or∫∫∫

U
(· · · )dx dy dz to denote an integral in three variables (x, y, z).
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Another important point to note is that, in defining integrals in several variables,
we need not restrict ourselves to partitioning the domain only using small rectan-
gular boxes whose faces (or edges) are parallel to the coordinate axes; it is often
more efficient to partition the domain using thin long slices or wedges, and there are
often different ways of doing such partitions. This is the issue of appropriate “dis-
integration”, as described in Professor Carlen’s notes. Technically, this amounts to
tallying up the sum of contributions from small rectangular boxes which constitute a
thin slice or wedge, then tallying up these subtotals; in other words, compute certain
one-variable integral according to the slicing scheme, then compute another integral
with the previous integral as integrand. In summary, we often evaluate an integral of
several variables via a certain choice of iterated (one-variable) integrals.

It would take some subtle discussions to prove properly that the integral of a con-
tinuous function on a domain as described above is well defined, and the different
ways of disintegration (such as (7.7) and (7.9) in the notes, called iterated integrals
in many other texts) would provide equivalent ways of evaluating the integral. Pro-
fessor Carlen’s discussion on pp.267-268 is only a heuristic argument, and should not
be taken as an actual proof.

Figure 7.4: Finding the volume of a sphere by partitioning it into thin rectangular
columns, or into thin cylindrical slices.

Example 7.1.1

We will use two different disintegration approaches to set up and evaluate the
volume of a ball of radius R in R3. The equation for the ball will take a simple
form when centered at the origin: x2 + y2 + z2 = R2.
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We can consider the volume of the ball as the integration of thin rectangular
columns over squares of dimensions ∆x×∆y with (x, y) as one of its corners,
where (x, y) lies in the disk x2 + y2 ≤ R2 in the z = 0 plane, and the height of
the rectangular column is

√
R2 − x2 − y2. Thus the volume of this ball is

2

∫ ∫
x2+y2≤R2

√
R2 − x2 − y2 dA.

To evaluate this integral, we can think of it as the integration in x of the
area of the slice of the graph z =

√
R2 − x2 − y2 as a function of y over

[−
√
R2 − x2,

√
R2 − x2]. Thus

2

∫ ∫
x2+y2≤R2

√
R2 − x2 − y2 dA = 2

∫ R

−R

(∫ √R2−x2

−
√
R2−x2

√
R2 − x2 − y2 dy

)
dx.

In principle, this iterated integral can be carried out, although it is not that

straightforward to compute
∫ √R2−x2
−
√
R2−x2

√
R2 − x2 − y2 dy directly using only the

standard calculus tools.
We can also disintegrate this volume by slicing the ball by planes perpendicular
to the x-axis: suppose the slices cut the x-axis at −R = x0 < x1 < . . . < xN =
R, with ∆xi = xi − xi−1, i = 1, 2, . . . , N , and ∆Vi denoting the volume of the
ball between the slices x = xi−1 and xi. ∆Vi can be approximated by the volume
of a cylindrical slice with a disk of radius ri = r(xi) =

√
R2 − x2

i as its base and
thickness ∆xi. Set Ei = ∆Vi−πr2

i∆xi. Then Ei is no more than the volume of a
cylindrical ring with its cross section having area |ri−ri−1|∆xi ≈ |r′(xi)||∆xi|2,
which is vanishingly small percentage-wise in comparison to either πr2

i∆xi or
|∆xi|. In fact,

N∑
i=1

∆Vi = π

N∑
i=1

r2
i∆xi +

N∑
i=1

Ei,

and
∑N

i=1 Ei → 0 as max |∆xi| → 0. Thus the volume of this ball is also equal

to π
∫ R
−R r(x)2dx = π

∫ R
−R(R2 − x2)dx = 4π

3
R3.

In fact, if we interpret
∫ √R2−x2
−
√
R2−x2

√
R2 − x2 − y2 dy as the area of the semi-disk

of radius
√
R2 − x2, we know it is equal to π(R2− x2)/2, which also enables us

to conclude that

2

∫ R

−R

(∫ √R2−x2

−
√
R2−x2

√
R2 − x2 − y2 dy

)
dx =

∫ R

−R
π(R2 − x2) dx.
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We will also discuss how to evaluate
∫∫

x2+y2≤R2

√
R2 − x2 − y2 dA using polar

coordinates.
A third approach to formulate the volume of this ball is to set it up as an
integration in three variables: it is the integral of the function 1 over the ball:∫∫∫

x2+y2+z2≤R2 1 dV , as it is the limit of the sum of small three dimensional
rectangular boxes with dimensions ∆x, ∆y, and ∆z. We can “disintegrate”
this integral in three variables as three iterated integrals∫ R

−R

∫ √R2−x2

−
√
R2−x2

∫ √R2−x2−y2

−
√
R2−x2−y2

1 dz dy dx,

where the limits of these iterated integrals are determined by the rule that
for −R ≤ x ≤ R, −

√
R2 − x2 ≤ y ≤

√
R2 − x2 describes the range of the y

variable along the segment within the disk x2 +y2 ≤ R2 in the z = 0 plane (the
intersection of the sphere with the z = 0 plane), and for each such pair (x, y),
the range −

√
R2 − x2 − y2 ≤ z ≤

√
R2 − x2 − y2 describes the range of the z

variable along the vertical segment within the ball x2 + y2 + z2 ≤ R2. If we

carry out the inner-most integral,
∫√R2−x2−y2

−
√
R2−x2−y2

1 dz, we get 2
√
R2 − x2 − y2,

and we have reduced the triple integral in three variables into a double integral
in two variables.

Reading Quizzes/Questions: Let D denote the region enclosed by the circle (x−
1)2 + y2 = 1. Express the integral

∫∫
D
x dA in the following three different ways and

then evaluate the iterated integrals: (a). Integrate in y-variable first; (b) Integrate in
x-variable first; (c) Integrate in polar-coordinates.

Example 7.1.2

Sometimes one form of iterated integral is easier to compute than others. For
example ∫ 1

0

∫ e

ey

1

lnx
dxdy,

would take some effort to carry out the integration x-variable. But re-examining
this integral makes one realize that the domain of integration can also be de-
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scribed as {(x, y) : 1 ≤ x ≤ e, 0 ≤ y ≤ lnx}, so∫ 1

0

∫ e

ey

1

lnx
dxdy =

∫ e

1

∫ lnx

0

1

lnx
dydx =

∫ e

1

y

lnx

∣∣∣y=lnx

y=0
dx = e− 1.

Integration in Polar coordinates

Given an integration in rectangular coordinates
∫∫

D
f(x, y) dxdy, if representing

D in terms of polar coordinates (r, θ) ∈ U 7→ (x, y) = (r cos θ, r sin θ) ∈ D, how would
we compute this integral in terms of (r, θ)?

This amounts to doing partition in terms of r and θ: for a rectangle in the (r, θ)
coordinates: ri ≤ r ≤ ri+1 := ri + ∆ri and θj ≤ θ ≤ θj+1 := θj + ∆θj, its image in
(x, y) is a truncated sector with angle opening ∆θj and inner and outer radii ri and
ri+1 respectively. The area of the image is

1

2
(ri + ∆ri)

2∆θj −
1

2
r2
i∆θj = ri∆ri∆θj +

1

2
(∆ri)

2∆θj.

Note that ri∆θj is the length of the inner circular arc of the sector, so ri∆ri∆θj is an
approximation for the area of this sector, if we treat it as a rectangle.

Figure 7.5: A rectangle in polar coordinates and its image in rectangular coordinates.
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In defining
∫∫

D
f(x, y) dxdy using such partitions in U , we need to examine

lim
∆ri,∆j→0

∑
i,j

f(ri cos θj, ri sin θj)(Area of Image of Polar Rectangle [ri, ri + ∆ri]× [θj, θj + ∆θj])

= lim
∆ri,∆j→0

∑
i,j

f(ri cos θj, ri sin θj)(ri∆ri∆θj +
1

2
(∆ri)

2∆θj).

We assume that there exists some M > 0 such that |f(x, y)| ≤ M for all (x, y) ∈ D.
We then claim that

lim
∆ri,∆j→0

∑
i,j

f(ri cos θj, ri sin θj)ri∆ri∆θj,

is finite, and

lim
∆ri,∆j→0

∑
i,j

1

2
f(ri cos θj, ri sin θj)(∆ri)

2∆θj = 0.

It then follows that
∫∫

D
f(x, y) dxdy =

∫∫
U
f(r cos θ, r sin θ)r dr dθ.

The claim is based on
∑

i,j ∆ri∆θj = Area of rectangle in polar coordinate, and∣∣∣∣∣∑
i,j

1

2
f(ri cos θj, ri sin θj)(∆ri)

2∆θj

∣∣∣∣∣ ≤ M

2

∑
i,j

(∆ri)
2∆θj ≤

M

2
max |∆ri|

∑
i,j

∆ri∆θj,

so it tends to 0 as max |∆ri| → 0.

The key of the above argument is that, of the two terms in ri∆ri∆θj+
1
2
(∆ri)

2∆θj,
the latter is a vanishingly small proportion of the former — both terms individually
are tending to 0, but when summed up, the first term gives a finite limit, and the
second term then has 0 as its limit.

We are going to do an analysis of change of variables in the more general context
in the next section. The general idea is to use linear approximation to account for the
change of area: when we use linear approximation to X = (x, y) = (r cos θ, r sin θ) at
(ri, θj), we get [

ri cos θj
ri sin θj

]
+

[
cos θj −ri sin θj
sin θj ri cos θj

] [
r − ri
θ − θj

]
.

where

[
cos θj −ri sin θj
sin θj ri cos θj

]
is the Jacobian matrix of (r, θ) 7→ (r cos θ, r sin θ) at (ri, θj),

and its determinant is ri, which is the factor in front of ∆ri∆θj in ri∆ri∆θj!
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7.2 Jacobians and changing variables of integra-

tion in R2

7.2.1 Letting the boundary of D determine the disintegration
strategy

The key underlying basis for the method of this subsection is Theorem 83. Here
is a different proof of Theorem 83 using the QR factorization of A: Suppose that

A = Q

[
a b
0 d

]
, where we assume that both columns of A are pivotal, so a, d > 0. We

further note that

[
a b
0 d

]
=

[
a 0
0 1

] [
1 b/(ad)
0 1

] [
1 0
0 d

]
, and use this to accomplish the

transformation x = Au as the composition of four transformations:

u
f17→
[
1 0
0 d

]
u =: v

f27→
[
1 b/(ad)
0 1

]
v =: w

f37→
[
a 0
0 1

]
w =: y

f47→ Qy =: x.

Figure 7.6: A square [0, h]× [0, h] and its image under (x, y) 7→ (x+ cy, y).

It is now relatively easy to see that for any region U , area(f1(U)) = d area(U),
area(f2(U)) = area(U), area(f3(U)) = a area(U), and area(f4(U)) = area(U). The
second equality follows because f2 maps any square whose sides are parallel to the x
and y axis respectively into a parallelogram with the same base length and height, so
the area of the parallelogram is equal to the area of the pre-image square (for example,
the square with vertices (0, 0), (h, 0), (h, h), (0, h) is mapped into the parallelogram
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with vertices (0, 0), (h, 0), ((1 + b/(ad))h, h), (bh/(ad), h)), as a result, area(f2(U)) =
area(U). The fourth equality holds because f4, arising from an orthogonal matrix,
does not change the size and shape of any geometric figure.

It then follows that area(f4 ◦ f3 ◦ f2 ◦ f1(D̂)) = ad area(D̂). Finally, det(Q) = ±1,

and det(A) = det(Q)ad = ±ad. Thus ad = | det(A)|, and area(f4 ◦ f3 ◦ f2 ◦ f1(D̂)) =

| det(A)|area(D̂).

7.2.2 The change of variables formula for integrals in R2

The key here is the linear approximation of a continuously differentiable map x =
Φ(u) near any u0: Φ(u) ≈ Φ(u0) + [DuΦ(u0)](u−u0) for u near u0. Then the image
of a small rectangular box R with a vertex at u0 will be mapped into a shape by Φ,
which can be approximated by the image of R by [DuΦ(u0)] (the action of Φ(u0)+
merely translates every point by the same Φ(u0), so does not cause any change of
area). But according to our discussion from the last subsection, the area of the latter
is | det(DuΦ(u0))| times the area ofR. This | det(DuΦ(u0))| factor varies with u0, and
it can be made rigorous to use the images of small rectangular boxes in u coordinates
under the map Φ, or rather its approximation DuΦ(u), to disintegrate

∫∫
D
f(x)dA

to prove ∫ ∫
D

f(x) d2x =

∫ ∫
D̂

f(Φ(u))| det(DuΦ(u))| d2u,

where, instead of using dA in the two integrals, we use d2x to stand for dA with
respect to the x variable, and d2u to stand for dA with respect to the u variable, and
D = Φ(D̂).

Figure 7.7: A square [0, 1]× [0, 1] and its image under (x, y) 7→ (x2 − y2, xy).
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Here are some more details about this process.

• Partition D̂ by a collection of small rectangular boxes {Ri} whose edges are par-
allel to the u and v axes, respectively. Suppose ∆ui and ∆vi are the dimensions
of this box.

• Then {Φ(Ri)} forms a partition of D. Let ui denote a vertex of Ri, then Φ(Ri)
can be approximated by the parallelogram with vertex Φ(ui), and with edges

Φu(ui)∆u and Φv(ui)∆v. Here Φu(ui) =
∂Φ(u)

∂u

∣∣
u=ui

is the partial derivative

of the vector-valued function Φ(u) with respect to u, and similarly for Φv(ui).
Recall that the derivative [DΦ(ui)] is a matrix whose two columns are Φu(ui)
and Φv(ui) respectively.

• The area of the parallelogram in the previous item is |Φu(ui)×Φv(ui)|∆ui∆vi =
| det[DΦ(ui)]|∆ui∆vi. Thus∑

f(Φ(ui))| det[DΦ(ui)]|∆ui∆vi

provides an approximation of the Riemann sum of
∫∫

D
f(x) dA with the parti-

tion from {Φ(Ri)}. In the limit, we should get∫ ∫
D

f(x) dA =

∫ ∫
D̂

f(Φ(u))| det(DuΦ(u))| d2u.

7.3 Integration in R3

7.3.1 Reduction to iterated integrals in lower dimension

The general idea of defining and computing integrals of three variables is the same
as that for two variables: partition the domain into non-overlapping union of shapes
(usually rectangular boxes or slabs) whose volume can be computed easily, account
for the contribution from each piece, and take the limit to define the integral; the
computation also follows a similar line — finding a good way to slice the domain
to make the computation of the partitioned part easy to compute, and eventually
reducing the computation to several iterated integrals of one variable. Another related
idea is to introduce a change of variables to make it easier to do partition in the new
variables, but modifying the integrand with the absolute value of the determinant of
the Jacobian matrix of the change of variables.
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Example 7.3.1

Let’s compute the integration of x2 + y2 inside the solid ball x2 + y2 + z2 ≤ R2.
There are multiple ways to slice the solid ball.
One way is to treat the solid ball as thin columns (of varying heights) sitting
on top of the disk {(x, y, 0) : x2 + y2 ≤ R2}, namely, for each such (x, y), the
range of z is determined by −

√
R2 − x2 − y2 ≤ z ≤

√
R2 − x2 − y2. Thus we

can transform the triple integral into∫ ∫ ∫
x2+y2+z2≤R2

(
x2 + y2

)
dV =

∫ ∫
x2+y2≤R2

∫ √R2−x2−y2

−
√
R2−x2−y2

(
x2 + y2

)
dz dx dy.

The integration in z is carried out easily as 2 (x2 + y2)
√
R2 − x2 − y2, so we

need to evaluate the double integral∫ ∫
x2+y2≤R2

2
(
x2 + y2

)√
R2 − x2 − y2 dx dy.

which is most easily done by converting it into integration in polar coordinates.
Another way to slice the solid ball is to treat it as stacks of discs of radius√
R2 − z2 as z varies from −R to R, so∫ ∫ ∫

x2+y2+z2≤R2

(
x2 + y2

)
dV =

∫ R

−R

∫ ∫
x2+y2≤R2−z2

(
x2 + y2

)
dxdy dz

The double integral in x and y is also most easily done in polar coordinates:∫ ∫
x2+y2≤R2−z2

(
x2 + y2

)
dxdy =

∫ 2π

0

∫ √R2−z2

0

r2 r dr dθ =
π

2
(R2 − z2)2.

It is now easy to carry out the integration in z to get∫ ∫ ∫
x2+y2+z2≤R2

(
x2 + y2

)
dV =

∫ R

−R

π

2
(R2 − z2)2 dz =

8πR5

15
.

Later on, we will discuss how to evaluate the triple integral in spherical coor-
dinates.

Reading Quizzes/Questions:

(i). Carry out the integrations in the example above according to the first approach



156 CHAPTER 7. INTEGRATION IN SEVERAL VARIABLES

to confirm that it gives the same answer.

(ii). Formulate the integral
∫∫∫

D
1 dV as three different iterated integrals and evalu-

ate them, where D is the region enclosed by x ≥ 0, y ≥ 0, z ≥ 0, x+2y+3z ≤ 6.

(iii). Formulate the volume of the solid given by |x| + |y| + |z| ≤ 1 as an iterated
integral and find the volume.

7.3.2 The Change of Variables Formula for integrals in R3

Here the idea is similar: If u ∈ D̂ 7→ x = Φ(u) ∈ D is the change of variable
to be used, then we need to partition D̂ into non-overlapping union of rectangular
boxes, and need to examine how the volume of Φ(R) relates to that of R, here R
is one of the small rectangular boxes with a vertex at ui and with its axes parallel
to the u coordinate axes. Again we use the linear approximation to Φ(u) near ui :
Φ(ui) + [DuΦ(ui)](u− ui) to analyze this.

Suppose u = (u, v, w), and the lengths of the edges of R along the u, v, and w
axes are ∆ui, ∆vi, and ∆wi respectively, then the linear approximation maps the
edge along the u-axis to a segment starting at Φ(ui) and adding a displacement of
DuΦ(ui)∆ui (Make sure to understand this point!), and similarly for the other two
edges. In other words, the linear approximation maps R into a parallelepiped whose
three adjacent edges at Φ(ui) are DuΦ(ui)∆ui, DvΦ(ui)∆vi, DwΦ(ui)∆wi, respec-
tively. The volume of this parallelepiped is

|(DuΦ(ui)×DvΦ(ui)) ·DwΦ(ui)||∆ui∆vi∆wi|
=| det[DuΦ(ui), DvΦ(ui), DwΦ(ui)]|Volume (R)

=| det(DuΦ(ui))|Volume (R).

This explains why we need to have the Jacobian factor | det(DuΦ(ui))| in changing
variables in the integration:∫ ∫ ∫

D

f(x) d3x =

∫ ∫ ∫
D̂

f(Φ(u))| det(DuΦ(ui))| d3u.
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Figure 7.8: When a cube is mapped to a parallelepiped by a linear map x 7→ Ax, its
volume is magnified by | detA|.

Example 7.3.2

Suppose we use spherical coordinates (r, φ, θ) to evaluate some integral in rect-
angular coordinates (x, y, z), where

x = r sinφ cos θ

y = r sinφ sin θ

z = r cosφ

Then, denoting this maps as Φ, we have
Φr = (sinφ cos θ, sinφ sin θ, cosφ)

Φφ = r(cosφ cos θ, cosφ sin θ,− sinφ)

Φθ = r(− sinφ sin θ, sinφ cos θ, 0)

Φφ × Φθ = r2 sinφ(sinφ cos θ, sinφ sin θ, cosφ)

So
(Φφ × Φθ) · Φr = det[Φφ,Φθ,Φr] = r2 sinφ.

For 3×3 matrices, you may take the first equality as the definition for the deter-
minant of the matrix. Using the symmetry properties of the mixed product on
the left hand side, we see that det[Φφ,Φθ,Φr] = det[Φr,Φφ,Φθ] = det[Dr,φ,θΦ].
So when an integral in the rectangular coordinates x, y, z is transformed into one
in r, φ, θ, the integrand needs to be multiplied by the Jacobian factor r2 sinφa
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and ∫ ∫ ∫
D

f(x, y, z) dx dy dz

=

∫ ∫ ∫
D̂

f(r sinφ cos θ, r sinφ sin θ, r cosφ)r2 sinφ dr dφ dθ.

In our earlier example computing
∫∫∫

x2+y2+z2≤R2 (x2 + y2) dx dy dz, if we use

spherical coordinates (r, φ, θ), then the solid ball x2 + y2 + z2 ≤ R2 is mapped
from D̂ = {(r, φ, θ) : 0 ≤ r ≤ R, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π}, so∫ ∫ ∫

x2+y2+z2≤R2

(
x2 + y2

)
dx dy dz

=

∫ 2π

0

∫ π

0

∫ R

0

(
r2 sin2 φ

)
r2 sinφ dr dφ dθ

=

∫ 2π

0

∫ π

0

R5

5
sin3 φ dφ dθ

=
8πR5

15
.

aSome texts use ρ in place of r in spherical coordinates; other texts may swap the symbols
between θ and φ. It is important to note that the φ in the r2 sinφ factor refers to the angle
with respect to the north pole.

Remark 7.3.1

In computing the Jacobian matrix from the spherical coordinates (r, φ, θ) to the
rectangular coordinates, note that Φr,Φφ,Φθ are orthogonal to each other, and
||Φr|| = 1, ||Φφ|| = r, ||Φθ|| = r sinφ. This has a clear geometric interpretation:
as r moves at a unit speed, (x, y, z) moves in the radial direction at a unit
speed, so ||Φr|| = 1; as φ moves at a unit speed, (x, y, z) moves along a circle of
radius r at unit angular speed, so ||Φφ|| = r; as θ moves at a unit speed, (x, y, z)
moves along a circle of radius r sinφ at unit angular speed, so ||Φθ|| = r sinφ;
and the three velocity vectors Φr,Φφ,Φθ are orthogonal to each other based on
the motion of the point in relation to that of r, φ, θ.
The above observation can be used to produce a set of three orthonormal vectors
{Φr, r

−1Φφ, (r sinφ)−1Φθ}, illustrated as {r̂, φ̂, θ̂} in the figure above, which
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Figure 7.9: Relation between rectangular and spherical coordinates

then forms an orthogonal matrix, and

[Φr,Φφ,Φθ] = Q

1 0 0
0 r 0
0 0 r sinφ

 .
One basic property of determinant is that det(QR) = det(Q) det(R) for any
two square matrices Q,R, and det(Q) = det(QT ). It then follows that, if Q is
an orthogonal matrix, using I = QTQ, we see that

1 = det(I) = det(QTQ) = det(QT ) det(Q) = det(Q) det(Q),

so det(Q) = ±1. In our situation here, it turns out that det(Q) = 1, and

det[Φr,Φφ,Φθ] = det(Q) det

1 0 0
0 r 0
0 0 r sinφ

 = r2 sinφ.

Reading Quizzes/Questions:

(i) Determine the volume of the parallelepiped with vectors (1, 0, 0), (2, 2, 0), (−5, 6, 3)
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as its three adjacent edges.

(ii) Determine the Jacobian matrix and its determinant for the change of variables
from cylindrical coordinates (r, θ, z) to (x, y, z), where x = r cos θ, y = r sin θ.

7.4 Integration on parameterized surfaces

7.4.1 Parameterized surfaces

7.4.2 The surface area of a parameterized surface

The definition of the surface area of a parameterized surface S is motivated again by
partition of the surface as the non-overlapping union of images of small rectangular
boxes which form a partition of the domain D, each of such an image of a small box
with vertex at (u, v) in D and box side length h is approximated by a parallelogram
with a vertex at X(u, v) and with sides Xu(u, v)h and Xv(u, v)h. Thus the magnifying
factor is ‖Xu(u, v)×Xv(u, v)‖, which leads us to define the surface area as∫ ∫

S

1 dS =

∫ ∫
D

‖Xu(u, v)×Xv(u, v)‖ du dv,

and the integral of a function f(X) on S as∫ ∫
S

f(x) dS =

∫ ∫
D

f(X(u, v))‖Xu(u, v)×Xv(u, v)‖ du dv.

The most useful cases for computations include

(I). (Surface as a graph z = h(x, y) over a two dimensional domain D) (x, y) 7→
X(x, y) = (x, y, h(x, y)) provides a parametrization. Xx = (1, 0, hx(x, y)), Xy =
(0, 1, hy(x, y)), and Xx ×Xy = (−hx(x, y),−hy(x, y), 1). So

‖Xx ×Xy‖ =
√

1 + hx(x, y)2 + hy(x, y)2 =
√

1 + ‖∇h(x, y)‖2,

and ∫ ∫
S

f(x) dS =

∫ ∫
D

f(x, y, h(x, y))
√

1 + ‖∇h(x, y)‖2 dx dy.

The simplest case of such a surface is a plane z = ax + by + c defined over
(x, y) ∈ D ⊂ R2. Then

√
1 + ‖∇h(x, y)‖2 =

√
1 + a2 + b2, so the area of this

graph is
∫∫

D

√
1 + a2 + b2 dx dy =

√
1 + a2 + b2(Area of D).
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Figure 7.10: A parametric surface showing the partition by images of the partitioned
rectangles in the parameter domain.

Example 7.4.1

The surface area of the sphere x2 + y2 + z2 = R2 is twice of the area of
the upper hemi-sphere, which is given as the graph of z =

√
R2 − x2 − y2

over the disc {(x, y) : x2 + y2 ≤ R2}. According to our set up, we need
to compute

‖∇z‖2 =
x2

R2 − x2 − y2
+

y2

R2 − x2 − y2
=

x2 + y2

R2 − x2 − y2
,
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and get

Area of sphere of radius R = 2

∫ ∫
x2+y2≤R2

√
1 +

x2 + y2

R2 − x2 − y2
dx dy

= 2

∫ ∫
x2+y2≤R2

R√
R2 − x2 − y2

dx dy

= 2

∫ 2π

0

∫ R

0

R√
R2 − r2

r dr dθ

= 2

∫ 2π

0

−R
√
R2 − r2

∣∣∣r=R
r=0

dθ

= 4πR2.

(II). For the purpose of integrating a function on a surface, what matters is to find
‖Xu(u, v) × Xv(u, v)‖, the vector Xu(u, v) × Xv(u, v) is not needed explicitly.
Note that ‖Xu(u, v)×Xv(u, v)‖ =

√
‖Xu(u, v)‖2‖Xv(u, v)‖2 − (Xu(u, v) ·Xv(u, v))2.

This follows from

‖Xu(u, v)×Xv(u, v)‖ = ‖Xu(u, v)‖‖Xv(u, v)‖ sin θ,

where θ is the angle between Xu(u, v) and Xv(u, v); and

‖Xu(u, v)‖2‖Xv(u, v)‖2−(Xu(u, v)·Xv(u, v))2 = ‖Xu(u, v)‖2‖Xv(u, v)‖2(1−cos2 θ).

The latter is often easier to compute. Thus we can also compute∫∫
D
f(X(u, v))‖Xu(u, v)×Xv(u, v)‖ du dv as∫ ∫

D

f(X(u, v))
√
‖Xu(u, v)‖2‖Xv(u, v)‖2 − (Xu(u, v) ·Xv(u, v)) du dv.

Remark 7.4.1

Note that

‖Xu(u, v)‖2‖Xv(u, v)‖2 − (Xu(u, v) ·Xv(u, v))2

= det

[
Xu(u, v) ·Xu(u, v) Xu(u, v) ·Xv(u, v)
Xv(u, v) ·Xu(u, v) Xv(u, v) ·Xv(u, v)

]
= det

([
Xu(u, v) Xv(u, v)

]T [
Xu(u, v) Xv(u, v)

])
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where [
Xu(u, v) Xv(u, v)

]
is the Jacobian matrix of the parametrization map (u, v) 7→ X(u, v). This
formulation works for more general settings such as in higher dimensions.

Example 7.4.2

We use the spherical coordinates to parametrize the sphere of radius
R centered at (0, 0, 0): x = R sinφ cos θ, y = R sinφ sin θ, z = R cosφ,
where 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π. Denoting this parametriza-
tion by X(φ, θ), then Xφ = R(cosφ cos θ, cosφ sin θ,− sinφ), Xθ =
R(− sinφ sin θ, sinφ cos θ, 0). Xφ ·Xθ = 0, ‖Xφ‖ = R, and ‖Xθ‖ = R sinφ,
so

Area of sphere of radius R =

∫ ∫
0≤φ≤π,0≤θ≤2π

1 R2 sinφ dφ dθ

=

∫ 2π

0

∫ π

0

R2 sinφ dφ dθ

=

∫ 2π

0

2R2dθ

= 4πR2.

We could also use cylindrical coordinates (r, θ, z) to parametrize the
sphere of radius R centered at (0, 0, 0): x = r cos θ, y = r sin θ, z = z,
where the equation x2 + y2 + z2 = R2 turns into r2 + z2 = R2. Geo-
metrically, we should take 0 ≤ r ≤ R and −R ≤ z ≤ R, and each r
corresponds to two possible values of z : ±

√
R2 − r2. It’s easier to treat

r as a function of z: r =
√
R2 − z2. for −R ≤ z ≤ R. Thus we have the

parametrization

X(z, θ) =

√R2 − z2 cos θ√
R2 − z2 sin θ

z

 ,
so

Xz(z, θ) =

− z√
R2−z2 cos θ

− z√
R2−z2 sin θ

1

 , Xθ(z, θ) =

−√R2 − z2 sin θ√
R2 − z2 cos θ

0

 .



164 CHAPTER 7. INTEGRATION IN SEVERAL VARIABLES

It follows that

‖Xz(z, θ)‖ =
R√

R2 − z2
, ‖Xθ(z, θ)‖ =

√
R2 − z2.

Since Xz(z, θ) ·Xθ(z, θ) = 0, it follows that

‖Xz(z, θ)×Xθ(z, θ)‖ = ‖Xz(z, θ)‖‖Xθ(z, θ)‖ = R.

Thus

Area of sphere of radius R =

∫ 2π

0

∫ R

−R
Rdz dθ = 4πR2.

This can be used to prove Archimedes’ Theorem, for the area of the
section of the sphere of radius R between z = z1 and z = z2 is∫ 2π

0

∫ z2

z1

Rdz dθ = 2πR(z2 − z1),

which is the area of the circumscribed cylinder of radius R between z = z1

and z = z2.

Remark 7.4.2

In Carlen’s Example 117 and 118, he chooses to work with cylindrical
coordinate parametrization, and needs to compute Xr×Xθ for the specific
surface. This requires a good amount of computation. It is easier to work
with rectangular coordinates to set up the integral as∫

f(x, y, h(x, y))
√

1 + ‖∇h(x, y)‖2 dx dy

then change the rectangular integral into polar coordinates for such round
domains of integration. In doing this, dx dy = r dr dθ is the standard
change of variables, and the computation for

√
1 + ‖∇h(x, y)‖2 is fairly

routine.
In general, when a surface is represented as a graph z = h(x, y), we know
Xx × Xy = (−hx,−hy, 1). If we decide to use a new parametrization

X̂(u, v), it means that x = φ(u, v), y = ψ(u, v) for some (differentiable)
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φ, ψ such that X̂(u, v) = X(φ(u, v), ψ(u, v)). Then by the chain rule

X̂u × X̂v = Xx ×Xy det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
.

Since we only need ‖X̂u × X̂v‖ in this context, we find

‖X̂u × X̂v‖ = ‖Xx ×Xy‖| det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
|,

and the two factors ‖Xx × Xy‖ =
√

1 + h2
x + h2

y and det

[
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

]
are

often easier to compute than computing ‖X̂u × X̂v‖ directly.
For the case of Example 117, h(x, y) = 1−x2−y2, so

√
1 + ‖∇h(x, y)‖2 =√

1 + 4x2 + 4y2.
For the lower portion of the surface in Example 118, h(x, y) = 1√

x2+y2
,

and
√

1 + ‖∇h(x, y)‖2 =
√

1 + r−4. In both cases, the integral can be
evaluated easily using polar coordinates.

(III). (Surface of revolution) Such a surface is defined through a curve t ∈ (a, b) 7→
(y, z) = (φ(t), ψ(t)), and rotating each point (φ(t), ψ(t)) around the z-axis. This
means that we will assume φ(t) > 0 and will use it as the radius of rotation
at that point, so X(t, θ) := (x, y, z) = (φ(t) cos θ, φ(t) sin θ, ψ(t)), t ∈ (a, b),
θ ∈ [0, 2π) provides a parametrization for this surface of revolution. Then

Xt = (φ′(t) cos θ, φ′(t) sin θ, ψ′(t)), Xθ = (−φ(t) sin θ, φ(t) cos θ, 0).

‖Xt‖2 = |φ′(t)|2 + |ψ′(t)|2, ‖Xθ‖2 = |φ(t)|2, and Xt ·Xθ = 0, so its area is given
by∫ b

a

∫ 2π

0

√
|φ′(t)|2 + |ψ′(t)|2|φ(t)| dθ dt = 2π

∫ b

a

√
|φ′(t)|2 + |ψ′(t)|2|φ(t)| dt.

Special cases include φ(t) = t, namely, we can identify t to be the radial variable
in the cylindrical coordinates; we then label ψ(r) as z = z(r), thus the area is

2π

∫ b

a

√
1 + |z′(r)|2 r dr.
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Recall that
√

1 + |z′(r)|2 dr = ds, where s is the arc length parameter of the
curve z = z(r), so the area can also be written as

2π

∫
r ds,

which, geometrically, means that it is the integration of cylindrical slices with
width ds and radius r.

Another such case is t = z, ψ(t) = t, so we can treat r = φ(z) as the radial

variable in cylindrical coordinates. Then the area is 2π
∫ b
a

√
1 + |r′(z)|2 r dz.

Note that
√

1 + |r′(z)|2 dz still equals ds, where s is the arc length parameter.

In the special case of the sphere x2 +y2 +z2 = R2, which can be written in terms
of cylindrical coordinates as r2 +z2 = R2, we get by implicit differentiation that
2rr′(z) + 2z = 0, so r′(z) = −z/r, and

√
1 + |r′(z)|2 =

√
1 + z2/r2 = R/r, so

the area of this sphere between z = z1 < z = z2 is 2π
∫ z2
z1
R dz = 2πR(z2 − z1),

which is the area of the circumscribed cylinder between z = z1 < z = z2. This
was originally due to Archimedes.

In the case of a section of a cone given by z2 = k2(x2 + y2), z1 ≤ z ≤ z2, we can
parametrize it in terms of cylindrical coordinates (z, θ) 7→ (k−1z cos θ, k−1z sin θ, z),
and according to our discussion, the surface area is

2π

∫ z2

z1

r

√
1 +

(
dr

dz

)2

dz = 2π

∫ z2

z1

k−1
√

1 + k−2z dz = π(z2
2 − z2

1)k−1
√

1 + k−2.

If we express this area in terms of the radius ri = zi/k of the two cross sectional
disks, then the area is π(r2

2 − r2
1)
√
k2 + 1.

(IV). Often a geometric surface S in R3 does not come with a canonical choice of
parametrization, so one may choose different parametrizations to represent the
surface and compute its area or integrals on it. A natural question is whether
our way of defining the area of a surface and integrals on it depends on how we
choose to parametrize it? The answer is no. To verify this statement, suppose
(u, v) ∈ D 7→ X(u, v) ∈ S is an initial (differentiable) parametrization, and

(û, v̂) ∈ D̂ 7→ (u, v) ∈ Φ(û, v̂) ∈ D is a change of variables from (û, v̂) ∈ D̂ to

(u, v) ∈ D, so that X̂(û, v̂) := X ◦ Φ(û, v̂) is another parametrization of the
surface S. Then we now have two ways of computing the area of S:∫ ∫

D

‖Xu ×Xv‖ du dv and

∫ ∫
D̂

‖X̂û × X̂v̂‖ dû dv̂.
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According to the chain rule of differentiation we have
X̂û = Xu

∂u

∂û
+Xv

∂v

∂û
,

X̂v̂ = Xu
∂u

∂v̂
+Xv

∂v

∂v̂
,

so

X̂û × X̂v̂ =

(
Xu

∂u

∂û
+Xv

∂v

∂û

)
×
(
Xu

∂u

∂v̂
+Xv

∂v

∂v̂

)
= Xu ×Xv det

[
∂u
∂û

∂u
∂v̂

∂v
∂û

∂v
∂v̂

]
,

and

‖X̂û × X̂v̂ = ‖Xu ×Xv‖| det

[
∂u
∂û

∂u
∂v̂

∂v
∂û

∂v
∂v̂

]
| = ‖Xu ×Xv‖| det(Dû,v̂Φ)|.

Therefore, by the change of variables formula for integration in two variables,
we have ∫ ∫

D

‖Xu ×Xv‖ du dv =

∫ ∫
D̂

‖X̂û × X̂v̂‖ dû dv̂.

(V). A piece of surface often can be represented as a graph over (x, y) and as a graph
over (y, z) or (x, z). This often arises when the surface Σ is given implicitly
by F (x, y, z) = 0. If we assume Fx(x0, y0, z0) 6= 0, Fy(x0, y0, z0) 6= 0, and
Fz(x0, y0, z0) 6= 0, then by Implicit Function Theorem in Chapter 5, the set of
points satisfying F (x, y, z) = 0 near x0 = (x0, y0, z0) can be represented as a
graph over (x, y) and as a graph over (y, z) as well as a graph over (x, z). Recall
that (Fz(x, y, z), Fy(x, y, z), Fz(x, y, z)) is a normal vector to the surface Σ, so
we can use

N(x, y, z) =
(Fz(x, y, z), Fy(x, y, z), Fz(x, y, z))

‖∇F (x, y, z)‖

=
(Fz(x, y, z), Fy(x, y, z), Fz(x, y, z))√
Fx(x, y, z)2 + Fy(x, y, z)2 + Fz(x, y, z)2

as the unit normal vector to Σ at (x, y, z).

If we treat Σ as a graph of z over (x, y), then implicit differentiation gives

Fx(x, y, z) + Fz(x, y, z)
∂z

∂x
= 0, Fy(x, y, z) + Fz(x, y, z)

∂z

∂y
= 0,

from which it follows that

dS =

√
1 + (

∂z

∂x
)2 + (

∂z

∂y
)2 dx dy =

√
Fx(x, y, z)2 + Fy(x, y, z)2 + Fz(x, y, z)2

|Fz(x, y, z)|
dx dy.
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This relation can be rewritten as

|N3(x, y, z)| dS = dx dy.

Geometrically, this means that when a piece of (small) surface with unit normal
vector N = (N1, N2, N3) is projected orthogonally onto the x-y plane, then the
area of the projected region is |N3| times the area of the original surface. The
same applies to the other coordinate planes, namely,

|N1| dS = dy dz, and |N2| dS = dx dz.

When N is a constant vector, namely, when Σ is a piece on a plane in R3, let
Σxy denotes the orthogonal projection of Σ onto the x-y plane, Σxz denotes the
orthogonal projection of Σ onto the x-z plane, and Σyz denotes the orthogonal
projection of Σ onto the y-z plane. Let |Σ∗| denote the area of Σ∗, then using
N2

1 +N2
2 +N2

3 = 1, we have

|Σ|2 = |Σxy|2 + |Σyz|2 + |Σxz|2.

In Chapter 9, we will take into account the orientation of the surface, and
work with (N1(x, y, z), N2(x, y, z), N3(x, y, z))dS = (±dx dy,±dy dz,±dz dx),
by removing the absolute value signs on Ni(x, y, z) when computing the flux
integral F (x, y, z) · (N1(x, y, z), N2(x, y, z), N3(x, y, z))dS.

Reading Quizzes/Questions:

1. Suppose Γ is a closed curve in R2 parametrized by x = φ(t), y = ψ(t) for
t ∈ [0, l]. We define a right cylinder C over Γ by

X(t, z) = (x, y, z) = (φ(t), ψ(t), z), 0 ≤ t ≤ l, a ≤ z ≤ b.

(i) Compute ∂tX × ∂zX and use it to determine a unit normal vector n(X)
to C at X(t, z).

(ii) Is there a good way to determine whether your unit normal is outward
pointing or inward pointing?

(iii) Compute the area of this surface.

2. Suppose we have two differentiable functions h1(x, y) ≤ h2(x, y) defined over a
bounded domain D in R2. The graphs of these two functions, together with the
right cylinder over the boundary ∂D as defined in the previous problem, enclose
a three dimensional solid. For any point (x, y, hi(x, y)) on either the top or the
bottom portion of the boundary of this solid, determine an outward pointing
unit normal to the surface there.
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3. Suppose that X(u, v) for (u, v) ∈ D is a parametrization for a surface S, that
n(X) denotes the unit normal to S in the direction of ∂uX×∂vX. Suppose that
we are given a vector valued function F (X) = (F1(X), F2(X), F3(X)) for X ∈ S,
and want to use F (X) · n(X) as the integrand to compute

∫
S F (X) · n(X) dS.

Verify that ∫
S
F (X) · n(X) dS =

∫
D

F (X) · (∂uX× ∂vX) dA

where dA refers to integration in the (u, v) variables.

4. Using the set up of the previous problem, suppose S is given by a graph z =
h(x, y) for (x, y) ∈ D, n(X) is upward pointing, and F (x, y, z) = (0, 0, F3(x, y, z))
is a vector field oriented vertically, verify that∫

S
F (X) · n(X) dS =

∫
D

F3(x, y, h(x, y)) dA

where dA refers to integration in the (x, y) variables.
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Chapter 9

FLUX AND CIRCULATION,
DIVERGENCE AND CURL

For this chapter, due to our time constraint, we won’t have time to follow Professor
Carlen’s notes to fully develop the material as he does; we will use several sections
from Chapter 16 of the Rogawski and Adam Calculus textbook to quickly introduce
the basic concepts and relevant computations. I have uploaded a scanned copy of the
relevant sections under the Sakai Resource Tab. I will also provide some comments
to facilitate students’ reading of Professor Carlen’s notes.

9.1 Flows and flux

Here are some main concepts.

• A vector field X over a domain D is a vector-valued function defined on D,
taking values in Rn, where n = 2 if D is two dimensions, and n = 3 if D is
three dimensional. Geometrically, it assigns a vector X(x) at each point x ∈ D.
Typically we want X(x) to be continuous, or continuously differentiable; or at
least piecewise continuous or continuously differentiable. The latter means that
we can partition D into the union of several (non-overlapping) domains ∪Di,
such that the restriction to the interior of each is continuous.

• To define the flux of a (continuous) vector field X in a two dimensional domain
D over a curve C in D, we typically work with a well defined and continuous
unit normal vector n(x) along the C. If we parametrize the curve C by its arc
length parameter s, 0 ≤ s ≤ l, then the flux of X across C, with this designated

171
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orientation is defined as ∫ l

0

X(x(s)) · n(x(s)) ds.

It is also denoted as
∫
C X(x(s)) · n(x(s)) ds. It is important to keep in mind

that this integral is independent of how the curve is parametrized, as long as the
parametrization gives a unit normal vector field that agrees with the designated
orientation.

The curve is usually not given in terms of its arc length parameter, but is given
in terms of a general parametrization: x = r(t) for a ≤ t ≤ b for some a < b
(in some situations one may be working with a parametrization where a > b).
To compute the flux, we note that r′(t) = (x′(t), y′(t)) is tangent to the curve
at r(t), and r′(t)⊥ = (−y′(t), x′(t)) is a normal to the curve at r(t), so n(x(s))
is either r′(t)⊥/‖r′(t)‖ or its opposite. Note that we would take the plus sign
if n(x(s)) relates to r′(t) by a counterclockwise rotation, and take the negative
sign otherwise.

Using ds = ‖r′(t)‖ dt, we conclude that the flux is

±
∫ b

a

X(r(t)) · (−y′(t), x′(t)) dt,

where the sign is determined by whether n(x(s)) = ±r′(t)⊥/‖r′(t)‖.
If we write out X(r(t)) in terms of its components (X1(r(t)), X2(r(t))), and take
note that x′(t) dt = dx, y′(t) dt = dy, we have the flux equal to

±
∫
C
X2(x, y)dx−X1(x, y)dy.

This notation also indicates that the integral is independent of how the curve
is parametrized, and has the advantage that if the curve can be parametrized
as a graph of the form y = h(x), a ≤ x ≤ b, then dy = h′(x) dx, and the flux
reduces to a one variable integral over [a, b]:

±
∫ b

a

[X2(x, h(x))−X1(x, h(x))h′(x)] dx,

while if the curve can be parametrized as a graph of the form x = g(y), c ≤ y ≤
d, then dx = g′(y) dy, and the flux reduces to

±
∫ d

c

[X2(g(y), y)g′(y)−X1(g(y), y)] dy.
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• A more commonly used line integral of a (continuous) vector field X along an
oriented curve C with continuously varying unit tangent vectors, parametrized
as x = r(t) over a ≤ t ≤ b, is the vector line integral (circulation in the case
when the curve is a closed one) of X along C defined as∫

C
X(r(t)) · dr′(t) =

∫ b

a

X(r(t)) · r′(t) dt.

Here if we set T(r(t)) = r′(t)/‖r′(t)‖ to be the unit tangent vector to the curve
at r(t) in the given orientation, then r′(t) dt = T(r(t))‖r′(t)‖ dt = T(r(t)) ds,
with s being the arc length parameter. Therefore, using s to parametrize the
curve: γ(s) = r(t), we have the line integral equal to

∫ l
0
X(γ(s)) · T(γ(s)) ds,

where l is the arc length of the curve from r(a) to r(b). A more conceptual
notation for this integral is

∫
C X(γ(s)) · T(γ(s)) ds, which indicates that the

integral is independent of how the curve is parametrized as long as its tangent
vector agrees with the designated orientation.

Our way of defining this vector line integral/circulation makes it ordinary in-
tegral in the single variable t over [a, b]. For the case that C is a curve in R2,
using dr′(t) = r′(t) dt = (x′(t), y′(t))dt = (dx, dy), the integral can be written
as ∫

C
X(r(t)) · dr′(t) =

∫ b

a

X(r(t)) · r′(t) dt =

∫
C
X1(x, y) dx+X2(x, y) dy,

where the latter notation suggests that it is independent of how we parametrize
the curve—as long as the parametrization gives the set orientation. Again in
actual computations, we have can evaluate this integral in terms of an ordinary
integral over an x interval or an y interval, if the curve can be parametrized as
a graph over an x interval or an y interval.

This integral depends on the orientation of the curve C. If x = r(t) is a
parametrization of C in its given orientation, then x := r−(t) := r(b + a − t)
is a parametrization for the opposite orientation of C, which is denoted as −C.
Note that∫

−C
X1(x, y) dx+X2(x, y) dy = −

∫
C
X1(x, y) dx+X2(x, y) dy.

• When the vector field is conservative, namely, X(x) = ∇f(x) for some differ-
entiable function f(x), then

X(r′(t)) · r′(t) dt = ∇f(r(t)) · r′(t) =
df(r(t))

dt
,
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by the chain rule, so∫
C
X(r(t)) · dr′(t) =

∫ b

a

X(r(t)) · r′(t) dt = f(r(b))− f(r(a)),

which depends only on (r(b)) − f(r(a)), not on the particular path from r(a)
to r(b). In particular, when C is a closed curve, we see that for a conservative
vector field, ∫

C
X(r(t)) · dr′(t) = 0.

• When a curve C does not have continuously varying unit normal vectors, as
in the case of polygonal segments, it is possible to partition C into the non-
overlapping union of several segments ∪Ci, i = 1, 2, · · · , k, such that the end
point Pi of Ci coincides with the beginning point of Ci+1 — this prescribes
how the orientation of Ci relates to that of Ci+1, even though there may be a
discontinuity of the tangent at Pi. Then we define the line integral of X along
C as

k∑
i=1

∫
Ci
X1(x, y) dx+X2(x, y) dy.

Exercise 9.1.1. Evaluate the flux
∫
C X(x, y)·n(x, y)ds and the circulation

∫
C X(x, y)·

T(x, y)ds, where C is the circle of radius 2 centered at the origin, oriented counter-
clockwise, X(x, y) = (0, x), and the normal n(x, y) points outward.

SOLUTION: We use the parametrization x = 2 cos t, y = 2 sin t, 0 ≤ t ≤ 2π. It
gives us (x′(t), y′(t)) = (−2 sin t, 2 cos t) = (−y, x), which points counterclockwise, and
dx = −2 sin tdt = −ydt, dy = 2 cos tdt = xdy. Based on our discussion, T(x, y) =
(−y, x)/2, and T(x, y)ds = (x′(t), y′(t))dt = (dx, dy) so∫

C
X(x, y) ·T(x, y)ds =

∫
C
x dy.

C is the union of the right half circle C1 and the left half circle C2. x =
√

4− y2,

−2 ≤ y ≤ 2, is a parametrization for C1, while x = −
√

4− y2, −2 ≤ y ≤ 2,
is a parametrization for −C2! So we need to add a negative sign when using this
parametrization for the left half circle to get∫

C
x dy =

∫ 2

−2

√
4− y2 dy −

∫ 2

−2

(−
√

4− y2) dy.

But the latter is seen to be the area of the disk of radius 2, so the result is 4π.
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To compute
∫
C X(x, y)·n(x, y)ds, note that n(x, y) is in the opposite direction from

(−y′(t), x′(t)), if (x(t), y(t)) is a parametrization for the counterclockwise oriented C,
so ∫

C
X(x, y) · n(x, y)ds =

∫
C
(0, x) · (dy,−dx) =

∫
C
(−x)dx.

But x dx = x(t)x′(t) dt = 1
2
(x(t)2)′ dt, so∫
C
(−x)dx = −1

2
(x(t)2)

∣∣∣t=l
t=0
.

But C is a closed curve, so x(0) = x(l), so
∫
C X(x, y) · n(x, y)ds = 0. �

Exercise 9.1.2. Find the circulation of the vector field (x, x− 2y) along the edges of
the triangle with (0, 0), (1, 0), (0, 1) as its vertices, oriented counterclockwise.

SOLUTION: The edges of the triangle has three segments, C1 running from
(0, 0) to (1, 0), C2 running from (1, 0) to (0, 1), and C3 running from (0, 1) to (0, 0).

The parametrization for C1 given by (x, 0), 0 ≤ x ≤ 1, gives the correct orientation,
and (dx, dy) = (dx, 0) in this parametrization, so∫

C1

(x, x− 2y) · dr′(t) =

∫
C1

(x, x− 2y) · (dx, 0) =

∫ 1

0

xdx = 1/2.

The parametrization for C2 given by (x, 1 − x), 0 ≤ x ≤ 1, gives the opposite
orientation of the designated one, and (dx, dy) = (dx,−dx) in this parametrization,
so∫

C2

(x, x− 2y) · (dx, dy) = −
∫ 1

0

xdx+ (x− 2y)(−dx) = −
∫ 1

0

2(1− x) dx = −1.

The parametrization for C3 given by (0, y), 0 ≤ y ≤ 1, gives the opposite orienta-
tion of the designated one, and (dx, dy) = (0, dy) in this parametrization, so∫

C3

(x, x− 2y) · (dx, dy) = −
∫ 1

0

(0,−2y) · (0, dy) = −
∫ 1

0

−2y dy = 1.

Thus we have ∫
C1∪C2∪C3

(x, x− 2y) · (dx, dy) = 1/2− 1 + 1 = 1/2.

�
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Exercise 9.1.3. Evaluate the vector line integral of the vector field (x,−2y, x + z)
along the segment from (1, 0, 0) to (1, 2, 3).

SOLUTION: We parametrize the segment as (x, y, z) = (1−t)(1, 0, 0)+t(1, 2, 3) =
(1, 2t, 3t) for 0 ≤ t ≤ 1. Then (dx, dy, dz) = (0, 2, 3)dt, so the vector line integral is∫

S

xdx− 2ydy + (x+ z)dz =

∫ 1

0

(x,−2y, x+ z) · (0, 2, 3) dt

=

∫ 1

0

[−4y + 3(x+ z)] dt

=

∫ 1

0

[−4(2t) + 3(1 + 3t)] dt = 3
1

2
.

Note that part of the vector field, (x,−2y, z), is a conservative vector field, for (x,−2y, z)·
(dx, dy, dz) = x dx− 2y dy + z dz = d(x2/2− y2 + z2/2), so∫
C

x dx−2y dy+z dz = (x2/2−y2+z2/2)|end position
initial position = (1/2−22+32/2)−(1/2) = 1/2.

And the remaining part gives∫
C

(0, 0, x) · (dx, dy, dz) =

∫
C

x dz =

∫ 1

0

1 · 3dt = 3.

Thus ∫
C

(x,−2y, x+ z) · (dx, dy, dz) =
1

2
+ 3 = 3

1

2
.

�

9.2 Flux of a vector field across an oriented surface

To define the flux of a vector field across an oriented surface, we first need to discuss
the notion of orientation of a surface. We have an intuitive notion that many surfaces
have two sides: any closed surface we see in three dimensions such as a closed sphere
or a rectangular box has inside and outside; a graph has up side and down side.

One intuitive way to designate a side is to choose a unit normal vector at each point
on the surface to point to the side one is referring to. For instance, if the surface is
given by the graph of a (differentiable) function z = h(x, y), then (−hx(x, y),−hy(x, y), 1)
is its upward pointing normal at (x, y, h(x, y)), and (hx(x, y), hy(x, y),−1) is its down-
ward pointing normal there.
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Many textbooks define an oriented surface as one with a chosen continuously
varying unit normal vector at each of its point. A rectangular box does not have a
continuously varying unit normal vector at each of its point, but it does have a well
defined notion of outside and inside. Here is how we can make this notion precise.

(a). A surface such as a rectangular box can be decomposed as the non-overlapping
union of several pieces, such that each piece has a continuously varying unit
normal vector at each of its point.

(b). When each piece is partitioned as the non-overlapping union of triangular re-
gions (including curvilinear triangles), the chosen continuously varying unit
normal vector field on this piece causes an orientation on the sides of each such
triangular region by the right hand rule such that if the thumb points in the
direction of the chosen normal direction, the remaining four fingers point to the
orientation of the sides of each triangular region. Note that if a side is shared
by two triangular regions on the same differentiable piece, then the orienta-
tions of this side induced by the chosen normal vector field on the two adjacent
triangular regions are opposite of each other, as indicated in the figure below.

(c). When two pieces abut, they do so along a differentiable curve, and if a segment
of this curve is shared by two triangular regions on the two neighboring dif-
ferentiable pieces, then the orientations on this segment induced by the chosen
normal vector field on the two triangular regions are also opposite of each other.

With this discussion, each piece has a chosen continuously varying unit normal
vector field, and the neighboring pieces have a coherent choice according to (c) above.

Now for a given vector field F (x, y, z) whose domain of definition includes the
given oriented surface S, we can define the flux of F (x, y, z) across S by defining its
flux across each of its differentiable piece Si as discussed above, with the normal on
Si chosen according to (c) above. The formal definition of the flux across Si is defined
as ∫

Si
F (x) · n(x) dS,

where n(x) denotes the chosen unit normal to Si. Then∫
S
F (x) · n(x) dS =

∫
S1
F (x) · n(x) dS + · · ·+

∫
Sk
F (x) · n(x) dS,

if S = ∪ki=1Si in the sense discussed above.
To compute this integral, we first need to choose a parametrization of Si consistent

with the chosen orientation of Si. This means that, the parametrization x = X(u, v),
(u, v) ∈ D ⊂ R2 of Si, gives rise to a normal vector field Xu(u, v) ×Xv(u, v), which
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points in the same direction as the chosen unit normal n(X(u, v)). Analytically this
means

Xu(u, v)×Xv(u, v) = ‖Xu(u, v)×Xv(u, v)‖n(X(u, v)).

Since dS = ‖Xu(u, v)×Xv(u, v)‖ du dv, we have∫
S
F (x) · n(x) dS =

∫
D

F (X(u, v)) · (Xu(u, v)×Xv(u, v)) dudv,

which can now be evaluated as an ordinary double integral in two dimensions.
One important observation is that this integral is independent of the particular

parametrization for Si, as long as it provides the right orientation. This is seen as
follows. Suppose that (û, v̂) ∈ D̂ ⊂ R2 is another parametrization of Si. This means
that there exists a one-to-one differentiable G : D̂ 7→ D such that X̂ = X ◦ G is the
new parametrization. Then by the chain rule

X̂û = Xu
∂u

∂û
+Xv

∂v

∂û

X̂v̂ = Xu
∂u

∂v̂
+Xv

∂v

∂v̂
so

X̂û × X̂v̂ =

[
Xu

∂u

∂û
+Xv

∂v

∂û

]
×
[
Xu

∂u

∂v̂
+Xv

∂v

∂v̂

]
=

[
∂u

∂û

∂v

∂v̂
− ∂v

∂û

∂u

∂v̂

]
Xu ×Xv.



9.2. FLUX OF A VECTOR FIELD ACROSS AN ORIENTED SURFACE 179

The assumption that (û, v̂) provides the right orientation means that ∂u
∂û

∂v
∂v̂
− ∂v

∂û
∂u
∂v̂

=
∂(u,v)
∂(û,v̂)

> 0 over (û, v̂) ∈ D̂. Then∫
D̂

F (X ◦G(û, v̂)) ·
(
X̂û × X̂v̂

)
dûdv̂

=

∫
D̂

F (X ◦G(û, v̂)) · (Xu ×Xv)
∂(u, v)

∂(û, v̂)
dûdv̂

=

∫
D

F (X(u, v)) · (Xu ×Xv) dudv

by the change of variables formula. It is crucial that ∂(u,v)
∂(û,v̂)

> 0 over (û, v̂) ∈ D̂ in
the above discussion. The positivity of the Jacobian determinant between two sets of
parametrizations turn out to be a useful criterion for checking that they provide the
same orientation.

Exercise 9.2.1. Evaluate the flux of F (x, y, z) = (x,−2y, 3z) across the unit sphere
S2: x2 + y2 + z2 = 1, with the outward unit normal.

SOLUTION: (Method 1) Note that n(x, y, z) = (x, y, z), and F (x, y, z) ·
n(x, y, z) = (x,−2y, 3z) · (x, y, z) = x2 − 2y2 + 3z2, so∫

S2
F (x) · n(x) dS =

∫
S2

(x2 − 2y2 + 3z2) dS.

This now becomes the integral of a scalar function on S2. We can evaluate this integral
using spherical coordinates as∫ 2π

0

∫ π

0

(sin2 φ cos2 θ − 2 sin2 φ sin2 θ + 3 cos2 φ) sinφ dφdθ.

But we can also exploit the special symmetry of this surface S2. It is geometrically
convincing that ∫

S2
x2 dS =

∫
S2
y2 dS =

∫
S2
z2 dS.

Thus∫
S2
x2 dS =

∫
S2
y2 dS =

∫
S2
z2 dS =

1

3

∫
S2

(
x2 + y2 + z2

)
dS =

1

3

∫
S2

1 dS =
4π

3
.

From this we can evaluate
∫
S2 F (x) · n(x) dS = 16π

3
.



180 CHAPTER 9. FLUX AND CIRCULATION, DIVERGENCE AND CURL

(Method 2) We use spherical parametrization x = G(θ, φ) for S2 in terms of
(θ, φ) given by 

x = sinφ cos θ

y = sinφ sin θ

z = cosφ

Then 
Gθ = (− sinφ sin θ, sinφ cos θ, 0)

Gφ = (cosφ cos θ, cosφ sin θ,− sinφ)

Gθ ×Gφ = − sinφ(sinφ cos θ, sinφ sin θ, cosφ)

Note that ‖Gθ × Gφ‖ = sinφ, which is what we expected, as ‖Gθ × Gφ‖ dφdθ =
sinφ dφdθ is the formula for computing area on the unit sphere using spherical co-
ordinates. But note that this gives the opposite orientation as the designated one!
Conceptually this can be fixed by treating (φ, θ), in stead of (θ, φ), as the correct
parametrization, just as the rotation from the y-axis to the x-axis is opposite of the
rotation from the x-axis to y-axis. From computational point of view, we just need
to make sure to use Gφ ×Gθ, instead of Gθ ×Gφ, in computing F · n. Then the flux
is computed as∫ 2π

0

∫ π

0

F (x, y, z)·(Gφ×Gθ) dφdθ =

∫ 2π

0

∫ π

0

(x, 2y, 3z)·[sinφ(sinφ cos θ, sinφ sin θ, cosφ)] dφdθ.

This turns out to be the same as
∫ 2π

0

∫ π
0

(x, 2y, 3z)·(sinφ cos θ, sinφ sin θ, cosφ) sinφ dφdθ.
�

We next discuss another view on∫
S
F (x) · n(x) dS =

∫
S

(F1(x)n1(x) + F2(x)n2(x) + F3(x)n3(x)) dS.

It is more illuminating to analyze each one term of the integrand separately. We will
take

∫
S F2(x)n2(x) dS as an example. Suppose that S can be represented as a graph

y = h(x, z) over some D ⊂ R2. Then

n(x, y, z) = ± (−hx(x, z), 1,−hz(x, z))√
1 + hx(x, z)2 + hz(x, z)2

depending on whether n2(x, y, z) > 0 or < 0.

Since dS =
√

1 + hx(x, z)2 + hz(x, z)2 dx dz, we end up with∫
S
F2(x)n2(x) dS = ±

∫
D

F2(x, h(x, z), z) dx dz,
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namely, it has been reduced to an ordinary double integral in the x-z plane, with
F2(x, h(x, z), z) as integrand. The geometric meaning of this is that F2(x)n2(x) dS
can be interpreted as the flux of F2(x)j across the surface element n(x) dS, and
instead of projecting F2(x)j in the direction of n(x), we interpret it as projecting
n(x) dS along the j axis, namely, projecting the area element into the x-z plane,
which is orthogonal to the j axis; and the other two terms carry a similar meaning.

The other two terms have a similar behavior, except that F1(x)n1(x) dS is in-
terpreted as flux of F1(x)i across the projection of n(x) dS into the y-z plane, and
F3(x)n3(x) dS is interpreted as flux of F3(x)k across the projection of n(x) dS into
the x-y plane. In traditional textbooks, one often sees the notation∫

S
F1(x) dy dz + F2(x) dz dx+ F3(x) dx dy

for ∫
S

(F1(x)n1(x) + F2(x)n2(x) + F3(x)n3(x)) dS.

The order F2(x) dz dx is meant that
∫
S F2(x) dz dx would be evaluated as

∫
D
F2(x) dz dx

if the z-axis, x-axis, and n(x) form a right handed system, and would be evaluated
as −

∫
D
F2(x) dz dx if the z-axis, x-axis, and n(x) form a left handed system.
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In the case of the example above, S2 can be split into the union of S2
right and S2

left,

on each of which it can be represented as a graph y = ±
√

1− x2 − z2. On S2
right,

n2(x, y, z) > 0, and on S2
left, n2(x, y, z) < 0, so we have∫

S2
(−2y)n2(x, y, z) dS =

∫
x2+z2≤1

(−2yright) dx dz −
∫
x2+z2≤1

(−2yleft) dx dz

= −2

∫
x2+z2≤1

(yright − yleft) dx dz,

which is −2× the volume of the unit ball.

9.3 Why are the divergence and curl of a vector

field define that way?

If F (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z)) is a differentiable vector field in a
region U ⊂ R3. Then we define its divergence at (x, y, z) as the scalar

∂F1(x, y, z)

∂x
+
∂F2(x, y, z)

∂y
+
∂F3(x, y, z)

∂z
.

It has the pattern of ( ∂
∂x
, ∂
∂y
, ∂
∂z

) · (F1(x, y, z), F2(x, y, z), F3(x, y, z)), and is often de-
noted as ∇ · F . Another commonly used notation is div F .

We define curl of F at (x, y, z) as the vector

(
∂F3(x, y, z)

∂y
− ∂F2(x, y, z)

∂z
,
∂F1(x, y, z)

∂z
− ∂F3(x, y, z)

∂x
,
∂F2(x, y, z)

∂x
− ∂F1(x, y, z)

∂y
).

The curl has the pattern of the cross product

(
∂

∂x
,
∂

∂y
,
∂

∂z
)× (F1(x, y, z), F2(x, y, z), F3(x, y, z)),

which we denote as ∇ × F . Note that when the vector field is two dimensional:
F = (F1(x, y), F2(x, y), 0), ∇× F = (0, 0, ∂F2(x,y)

∂x
− ∂F1(x,y)

∂y
). But what motivates the

definition of these two quantities?
It turns out the divergence of F at a location x0 = (x0, y0, z0) gives a measurement

of infinitesimal flux of F across small closed surfaces surrounding (x0, y0, z0) (such as
a sphere or a box). More precisely, if Bε(x0) denotes a ball of radius ε centered at x0

(or box of of side length ε centered at x0), then∫ ∫
∂Bε(x0)

F (x) · n(x) dS ∼ (divF (x0))vol(Bε)(x0).
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More precisely,

lim
ε→0

1

vol(Bε(x0))

∫ ∫
∂Bε(x0)

F (x) · n(x) dS = divF (x0).

Namely, divF (x0) equals the infinitesimal flux of F across small closed surfaces sur-
rounding (x0, y0, z0) per unit volume.

When we compute
∫∫

∂Bε(x0)
F (x) ·n(x) dS for ε > 0 small, it is natural to use the

linear approximation of F at x0:

F (x) ∼ F (x0) + [DF (x0)](x− x0).

We will see easily that if we replace F by F (x0) + [DF (x0)](x− x0), then∫ ∫
∂Bε(x0)

[F (x0) + [DF (x0)](x− x0)] · n(x) dS = [divF (x0)] vol(Bε).

This is the easiest to see when Bε(x0) is a cube centered at x0 with side length ε > 0.
In such a case ∂Bε(x0) has 6 congruent square faces with area ε2. The top and bottom
faces have unit normal vector (0, 0,±1) respectively, so

[F (x0) + [DF (x0)](x− x0)] · n(x)

=F3(x0) +
∂F3

∂x
(x0)(x− x(0)) +

∂F3

∂y
(x0)(y − y(0)) +

∂F3

∂z
(x0)ε/2.

Since (x−x(0)) and (y−y(0)) have odd symmetry with respect to the square centered
at (x(0), y(0)), we see that∫ ∫

top

[F (x0) + [DF (x0)](x− x0)] · n(x) dS =

[
F3(x0) +

∂F3

∂z
(x0)ε/2

]
ε2.

Similarly,∫ ∫
bot

[F (x0) + [DF (x0)](x− x0)] · n(x) dS = −
[
F3(x0)− ∂F3

∂z
(x0)ε/2

]
ε2.

Thus ∫ ∫
top∪bot

[F (x0) + [DF (x0)](x− x0)] · n(x) dS =
∂F3

∂z
(x0)ε3.

The flux of F across the other two pairs of opposite squares are handled similarly,
and we are led to∫ ∫

∂Bε(x0)

[F (x0) + [DF (x0)](x− x0)]·n(x) dS =

[
∂F1

∂x
(x0) +

∂F2

∂y
(x0) +

∂F3

∂z
(x0)

]
ε3,
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which confirms that div F = ∂F1

∂x
(x0) + ∂F2

∂y
(x0) + ∂F3

∂z
(x0) measures the infinitesimal

rate of flux of F across closed cubes centered around x0.
The above conclusion will also follow from the divergence theorem directly, but

it is instructive to do this computation to understand the origin for the notion of
divergence.

Let’s also verify the case when Bε(x0) is the ball of radius ε > 0 centered at x0.
Let’s set x0 = (0, 0, 0) for notational simplicity, then n(x) = x/ε, and∫ ∫

∂Bε(0)

F (0) · n(x) dS =

∫ ∫
∂Bε(0)

ε−1 [F1(0)x+ F2(0)y + F3(0)z] dS.

Due to the odd symmetry of x, y, and z on ∂Bε(0), we see that∫ ∫
∂Bε(0)

x dS =

∫ ∫
∂Bε(0)

y dS =

∫ ∫
∂Bε(0)

z dS = 0.

At this point we see that
∫∫

∂Bε(0)
F (0) · n(x) dS = 0.

Next, we note that

[DF (0)]x · n(x) =


∂F1

∂x
(0)x+ ∂F1

∂y
(0)y + ∂F1

∂z
(0)z

∂F2

∂x
(0)x+ ∂F2

∂y
(0)y + ∂F2

∂z
(0)z

∂F3

∂x
(0)x+ ∂F3

∂y
(0)y + ∂F3

∂z
(0)z

 ·
xy
z

 ε−1

=ε−1

{
∂F1

∂x
(0)x2 +

∂F1

∂y
(0)yx+

∂F1

∂z
(0)zx

+
∂F2

∂x
(0)xy +

∂F2

∂y
(0)y2 +

∂F2

∂z
(0)zy

+
∂F3

∂x
(0)xz +

∂F3

∂y
(0)yz +

∂F3

∂z
(0)z2

}
Using the symmetry of x2, y2, z2, xy, yz, zx and that of ∂Bε(0) we see that∫ ∫

∂Bε(0)

x2 dS =

∫ ∫
∂Bε(0)

y2 dS =

∫ ∫
∂Bε(0)

z2 dS =

∫ ∫
∂Bε(0)

x2 + y2 + z2

3
dS =

4πε4

3∫ ∫
∂Bε(0)

xy dS =

∫ ∫
∂Bε(0)

yz dS =

∫ ∫
∂Bε(0)

zx dS = 0.

Thus we see that∫ ∫
∂Bε(0)

[DF (0)]x·n(x) dS =
4πε3

3

(
∂F1

∂x
(0) +

∂F2

∂y
(0) +

∂F3

∂z
(0)

)
=

4πε3

3
(div F (0)) .
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Next we discuss the origin for the notion of the curl of a vector field. On any plane
passing through x0 with n as a unit normal, let C be a closed curve surrounding x0—
we will take it to be a circle of radius ε > 0 centered at x0, and orient it so that the
orientations of C and n follow the right hand rule. We will see that in computing∫
C F ·dr =

∫
C F1 dx+F2 dy+F3 dz, the leading order term will be πε2(∇×F )(x0) ·n.

Thus, among circles with radius ε centered at x0, when n is aligned with (∇×F )(x0),
one gets maximal circulation

∫
C F · dr. This gives a geometric meaning for the notion

of curl of a vector field: (∇× F )(x0) · n equals the infinitesimal circulation of F per
unit area along closed loops surrounding x0 in the plane with unit normal vector n,
and the direction of (∇× F )(x0) in some sense gives the direction of (maximal) axis
of rotation of the vector field F around x0. When the vector field is two dimensional:
F = (F1(x, y), F2(x, y), 0), ∇× F = (0, 0, ∂F2(x,y)

∂x
− ∂F1(x,y)

∂y
), which is consistent with

our intuition that any axis of of rotation of a two vector field is perpendicular to the
plane in which the vector field lies.

To verify the claim, we will again use the linear approximation F (x0)+[DF (x0)](x−
x0) to approximate F (x) when doing the integration along small circles surrounding
x0. For notational simplicity, we will take x0 = 0. Then

F1 dx+ F2 dy + F3 dz

≈
[
F1(0) +

∂F1

∂x
(0)x+

∂F1

∂y
(0)y +

∂F1

∂z
(0)z

]
dx

+

[
F2(0) +

∂F2

∂x
(0)x+

∂F2

∂y
(0)y +

∂F2

∂z
(0)z

]
dy

+

[
F3(0) +

∂F3

∂x
(0)x+

∂F3

∂y
(0)y +

∂F3

∂z
(0)z

]
dz

= [F1(0)dx+ F2(0)dy + F3(0)dz]

+

[
∂F1

∂x
(0) xdx+

∂F2

∂y
(0) ydy +

∂F3

∂z
(0) zdz

]
+

[
∂F1

∂y
(0) ydx+

∂F2

∂x
(0) xdy

]
+

[
∂F1

∂z
(0) zdx+

∂F3

∂x
(0) xdz

]
+

[
∂F2

∂z
(0) zdy +

∂F3

∂y
(0) ydz

]
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We will see that the integrals along the closed curve C have the following properties∫
C

1 dx =

∫
C

1 dy =

∫
C

1 dz = 0,∫
C
xdx =

∫
C
ydy =

∫
C
zdz = 0,∫

C
xdy = −

∫
C
ydx,∫

C
ydz = −

∫
C
zdy,∫

C
zdx = −

∫
C
xdz.

It then follows that ∫
C
F · dr

≈
∫
C

[F (0) + [DF (0)](x)] · dr

=

[
∂F2

∂x
(0)− ∂F1

∂y
(0)

] ∫
C
xdy

+

[
∂F1

∂z
(0)− ∂F3

∂x
(0)

] ∫
C
zdx

+

[
∂F3

∂y
(0)− ∂F2

∂z
(0)

] ∫
C
ydz

Finally we will see that∫
C
ydz = πε2n1,

∫
C
zdx = πε2n2,

∫
C
xdy = πε2n3.

It then follows that∫
C

[F (0) + [DF (0)](x)] · dr = (∇× F )(0) · n πε2.

We now sketch verifications for several of the integral properties used. Take any
parametrization t : [0, l] 7→ x(t) of a closed curve C, we have∫

C
1dx =

∫ l

0

x′(t) dt = x(t)
∣∣∣t=l
t=0

= 0,

∫
C
xdx =

∫ l

0

x(t)x′(t) dt =
x(t)2

2

∣∣∣t=l
t=0

= 0,∫
C
xdy + ydx =

∫
C

[x(t)y′(t) + x′(t)y(t)] dt = [x(t)y(t)]
∣∣∣t=l
t=0

= 0, so

∫
C
xdy = −

∫
C
ydx.



9.3. WHY ARE THE DIVERGENCE AND CURL OF A VECTOR FIELD DEFINE THAT WAY?187

Finally, choose two orthonormal vectors u = (u1, u2, u3) and v = (v1, v2, v3) in the
plane such that u× v = n. We can parametrize the circle C in this plane centered at
x0 with radius ε > 0 by x(t) = ε cos t u + ε sin t v (we have chosen x0 = 0). Then


x(t) = ε cos t u1 + ε sin t v1

y(t) = ε cos t u2 + ε sin t v2

y′(t) = −ε sin t u2 + ε cos t v2

x(t)y′(t) = ε2
[
(v1v2 − u1u2) cos t sin t+ u1v2 cos2 t− u2v1 sin2 t

]
Using

∫ 2π

0
cos t sin t dt = 0, and

∫ 2π

0
cos2 t dt =

∫ 2π

0
sin2 t dt = π, we see that

∫
C
xdy =

∫ 2π

0

x(t)y′(t) dt = πε2(u1v2 − u2v1) = πε2n3.

Once Stokes’ theorem has been at one’s disposal, one can also regard
∫
C xdy as the

circulation of the vector field xj along C and applies Stokes’s theorem, with the disk
D spanned by C in the plane as the surface, then

∫
C
xdy =

∫ ∫
D

∇× (xj) · n dS.

∇× (xj) = k, so ∇× (xj) · n = n3, and
∫∫

D
∇× (xj) · n dS = n3Area (D) = πε2D.

Remark 9.3.1

Computing the curl of a vector field using the cross product pattern is tedious
and prone to errors, a more efficient way to compute it is the following.

(i). Compute the differential of any multi-variable function as in one variable
calculus: df(x, y, z) = fx dz + fy dy + fz dz.

(ii). For a given vector field F (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z)),
write F (x, y, z) · dr in differential form F1(x, y, z) dx + F2(x, y, z) dy +
F3(x, y, z) dz.
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(iii). Apply the following rules

d(F1(x, y, z) dx+ F2(x, y, z) dy + F3(x, y, z) dz)

=dF1(x, y, z) dx+ dF2(x, y, z) dy + dF3(x, y, z) dz

=

(
∂F1(x, y, z)

∂x
dx+

∂F1(x, y, z)

∂y
dy +

∂F1(x, y, z)

∂z
dz

)
dx

+

(
∂F2(x, y, z)

∂x
dx+

∂F2(x, y, z)

∂y
dy +

∂F2(x, y, z)

∂z
dz

)
dy

+

(
∂F3(x, y, z)

∂x
dx+

∂F3(x, y, z)

∂y
dy +

∂F3(x, y, z)

∂z
dz

)
dz

and treat dx dx = 0, dy dy = 0, dz dz = 0, dy dx = −dx dy, dz dy =
−dy dz, and dx dz = −dz dx, so

d(F1(x, y, z) dx+ F2(x, y, z) dy + F3(x, y, z) dz)

=

[
∂F2(x, y, z)

∂x
− ∂F1(x, y, z)

∂y

]
dx dy

+

[
∂F3(x, y, z)

∂y
− ∂F2(x, y, z)

∂z

]
dy dz

+

[
∂F1(x, y, z)

∂z
− ∂F3(x, y, z)

∂x

]
dz dx

In advanced courses, an exterior product, also called wedge product, is
introduced among dx, dy, dz, which obeys the anti-symmetry described
above, so the rules above are written as dx∧ dx = 0, dy∧ dx = −dx∧ dy,
etc.

Finally, using n1 dS = dy dz, n2 dS = dz dz, and n3 dS = dx dy to
identify the above expression as

(∇× F ) · n dS = (∇× F )1 dy dz + (∇× F )2 dz dx+ (∇× F )3 dx dy,

so

∇× F (x)

=

(
∂F3(x, y, z)

∂y
− ∂F2(x, y, z)

∂z
,
∂F1(x, y, z)

∂z
− ∂F3(x, y, z)

∂x
,
∂F2(x, y, z)

∂x
− ∂F1(x, y, z)

∂y

)
,

and

d(F1(x, y, z) dx+ F2(x, y, z) dy + F3(x, y, z) dz)

=dF1(x, y, z) dx+ dF2(x, y, z) dy + dF3(x, y, z) dz

=(∇× F ) · n dS.
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This procedure may look complicated, but in concrete cases, it’s fairly straight-
forward. E.g. for F = xj, we would compute d(x dy) = dx dy, so ∇(xj) = k.
For a vector field (P (x, y), Q(x, y)) in two dimensions, this procedure also makes
it easy to compute the curl easily, as by the rules above,

d [P (x, y)dx+Q(x, y)dy] = Py(x, y) dy dx+Qx(x, y) dx dy = [Qx(x, y)− Py(x, y)] dxdy,

so
∫
C P (x, y)dx+Q(x, y)dy =

∫∫
D

[Qx(x, y)− Py(x, y)] dxdy, if D is the region
enclosed by the closed curve C.
In more advanced courses, Green’s Theorem and Stokes’ Theorem are formu-
lated using differential form as above and take on a very simple form∫

∂S
Pdx+Qdy +Rdz =

∫∫
S
d(Pdx+Qdy +Rdz).

9.4 Green’s Theorem and Its Proof

Green’s theorem relates the integral of a differentiable vector field along a closed
piece-wise differentiable curve in the plane to the integral of the curl of this vector
field in the region enclosed by the closed curve. It’s more precise formulation is

Theorem 9.4.1

Suppose that C is a closed piece-wise differentiable curve in R2. Then it is a fact
that it encloses a region D in it. Let C be oriented such that as a point traverses
along it, the region D stays on its left. Let F (x, y) = (P (x, y), Q(x, y)) be a
vector field differentiable in D. Then∫
C
F (x) · d x =

∫
C
P (x, y) dx+Q(x, y) dy =

∫∫
D

(
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

)
dxdy,

(9.1)

In many contexts, a region D in R2 is given first, then it determines an orientation
of its boundary curve according to the rule above (domains with holes have more
than one boundary curves, the orientation of each needs to be determined according
to the rule above), and we use ∂D to denote the boundary curve with the designated
orientation. Then the Green’s theorem takes the form∫

∂D

P (x, y) dx+Q(x, y) dy =

∫∫
D

(
∂Q(x, y)

∂x
− ∂P (x, y)

∂y

)
dxdy.
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We note that, when D is the unit square [0, 1]× [0, 1], Green’s Theorem is simply
a straightforward consequence of the Fundamental Theorem of Calculus. Since the
boundary ∂D of the unit square D consists of two horizontal segments and two vertical
segments with opposite directions, we have∫

∂D

P (x, y) dx+Q(x, y) dy

=

∫ 1

0

[P (x, 0)− P (x, 1)] dx+

∫ 1

0

[Q(1, y)−Q(0, y)] dy

=

∫ 1

0

∫ 1

0

−P (x, y)

∂y
dydx+

∫ 1

0

∫ 1

0

∂Q(x, y)

∂x
dxdy

=

∫∫
D

[
∂Q(x, y)

∂x
− P (x, y)

∂y

]
dxdy.

When D has a curvy side, say, given by D = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ h(x)},
essentially the same argument works. The top and bottom pieces give∫ b

a

(P (x, c)− P (x, h(x))−Q(x, h(x))h′(x)) dx = −
∫ b

a

∫ h(x)

c

P (x, y)

∂y
dy dx−

∫ b

a

Q(x, h(x))h′(x) dx;

while the two vertical pieces give∫ h(b)

c

Q(b, y) dy −
∫ h(a)

c

Q(a, y) dy.

Setting q(x) =
∫ h(x)

c
Q(x, y) dy, we see by the differentiation rules of integrals that

q′(x) = Q(x, h(x))h′(x) +

∫ h(x)

c

∂Q(x, y)

∂x
dy,

so ∫ h(b)

c

Q(b, y) dy −
∫ h(a)

c

Q(a, y) dy

=q(b)− q(a) =

∫ b

a

q′(x) dx

=

∫ b

a

Q(x, h(x))h′(x) dx+

∫ b

a

∫ h(x)

c

∂Q(x, y)

∂x
dy dx.

Putting these together we have established Green’s theorem for such a case. This
kind of arguments easily adapts to other domains of similar properties.
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For a more general domain D, we can add some auxiliary lines to partition it into
the non-overlapping union of several regions such that the above argument applies to
each of the subregion. We can then use the “Additivity of circulations” to add up the
all the equalities, and note that each of the added auxiliary lines appears exactly twice
in the line integrals, but with opposite orientations, so in the outcome of the sum of
the line integrals, only the contributions along the boundary curve of D remain. Note
also how this kind of partition determines the orientation of the “inner” portion of
the boundary curve, as illustrated in the figure here.

Exercise 9.4.1. Let D be a bounded region in R2 with piecewise differentiable bound-
ary curve ∂D. Then, according to the Green’s Theorem,

∫
∂D
xdy =

∫∫
D

1 dxdy =
Area(D), as the curl of (0, x) is 1. Likewise,

∫
∂D
ydx =

∫∫
D

(−1) dxdy = −Area(D).
Thus we can compute Area(D) by either

∫
∂D
xdy or −

∫
∂D
ydx.

Here is a specific example. The Gerono lemniscate is given by r(t) = (2 sin t, 2 sin t cos t).
Its portion in the right half plane is a closed curve given by 0 ≤ t ≤ π. The enclosed
area can be computed by

∫
x dy =

∫ π
0
x(t)y′(t) dt =

∫ π
0

2 sin t 2 cos(2t) dt = 8/3.

Remark 9.4.1

In applying Green’s theorem, it is important that the vector field is continuously
differentiable in the enclosed region. E.g., the vector field (− y

x2+y2
, x
x2+y2

) has
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its curl equal to 0 whenever (x, y) 6= (0, 0), as

∂x

(
x

x2 + y2

)
− ∂y

(
− y

x2 + y2

)
= 0, for (x, y, ) 6= (0, 0);

On the other hand, we know∫
x2+y2=1

− y

x2 + y2
dx+

x

x2 + y2
dy =

∫
x2+y2=1

−y dx+ x dy = 2π.

The issue here is that the vector field is not continuously differentiable near
(0, 0). Any application of the Green’s theorem has to exclude a region near
(0, 0). If we are asked to calculate

∫
C
− y
x2+y2

dx + x
x2+y2

dy, where C is a some-

what complicated curve enclosing (0, 0), say, an ellipse. Instead of trying to
evaluate such an integral directly, we can choose a small ε > 0 such that the
circle x2 +y2 = ε2 is enclosed in C, and apply the Green’s theorem in the region
enclosed by both C and x2 + y2 = ε2. This would give us∫

C

− y

x2 + y2
dx+

x

x2 + y2
dy =

∫
x2+y2=ε2

− y

x2 + y2
dx+

x

x2 + y2
dy,
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where the orientation for the circle x2 + y2 = ε2 is also counterclockwise based
on our discussion. But the latter can be evaluated easily, as∫

x2+y2=ε2
− y

x2 + y2
dx+

x

x2 + y2
dy

=ε−2

∫
x2+y2=ε2

−y dx+ x dy

=ε−2

∫
x2+y2≤ε2

2 dxdy by Green’s theorem applied to (−y, x)

=2π.

Remark 9.4.2

Green’s theorem is only for the line integral of a vector field along a closed curve.
Sometimes one needs to calculate the line integral of a vector field along a curve
which is not closed, but can be made closed by adjoining another curve. E.g.,
one may be asked to evaluate

∫
−y dx + x dy along the portion of the Gerono

lemniscate from t = 0 to t = π/2. The curve starts at (0, 0) and ends at (2, 0).
By adjoining the segment from (2, 0) to (0, 0), one forms a closed curve C, and∫
C
−y dx + x dy =

∫
enclosed region by C

2 dx dy. The latter was known to be 8/3

by the example earlier, while
∫
C
−y dx + x dy also includes the contribution

from the segment from (2, 0) to (0, 0). But on that segment, y = 0, so the line
integral there is 0. Thus the line integral being asked is 8/3.

9.5 Stokes’ Theorem and Its Proof

Stokes’ theorem is an extension of Green’s theorem when the curve is not necessarily
a planar curve, or the enclosed surface is not a planar region. We now state Stokes’
Theorem and outline a proof.

Theorem 9.5.1

Suppose that S is a bounded, oriented, piece-wise differentiable surface in R3,
that X(x) = (X1(x), X2(x), X3(x)) is a continuously differentiable vector field
in a region Ω of R3 which contains S and its boundary curve ∂S (the boundary
curve of S may consists of more than one component as in the case of a cylinder).
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Then ∫
∂S

X(x) · d x =

∫∫
S

(∇×X)(x) · n(x) dS, (9.2)

where n(x) stands for the designated unit normal to S at x, and the orientation
of ∂S is induced by that of S, namely, when S is formed as the non-overlapping
union of several differentiable pieces Si with continuously varying unit normals
on each, it induces an orientation on the boundary curve of Si by the right
hand rule, and if two such pieces abut each other along a curve, then the in-
duced orientation on that curve must be opposite to each other. This partition
also partitions the boundary curve ∂S into the non-overlapping union of sev-
eral curves, each of which is a boundary portion of some Si with its induced
orientation.

Remark 9.5.1

The most difficult part of this theorem is to make precise the notion of a
bounded, oriented, piece-wise differentiable surface in R3, and its induced ori-
entation on its boundary curve. Even though the geometric intuition may be
clear to many, it is a challenge to find a mathematically precise way to describe
such a surface. One difficulty is that, if we treat a surface as given by a single
parametric representation, then rarely can we find an appropriate two dimen-
sional domain in R2 as the domain of this representation. In more advanced
treatment, one gives up using a single parametric representation to represent
a surface; rather, one tries to find characterizations which are independent of
specific parametric representation.
If we accept our geometric description for a partition of such a surface, we may
assume that each piece Si has a parametric representation as x = Φi(u, v) :
D 7→ Si for some simple domain D in R2. We will take D to be a unit square
{(u, v) : 0 ≤ u, v ≤ 1}. Suppose we can establish Stokes’ Theorem for each Si:∫

∂Si

X(x) · d x =

∫∫
Si

(∇×X)(x) · n(x) dS,
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then ∫∫
S

(∇×X)(x) · n(x) dS

=
∑
i

∫∫
Si

(∇×X)(x) · n(x) dS

=
∑
i

∫
∂Si

X(x) · d x.

In the last sum, the integrals over any sides which are shared by two abutting
Si’s are canceled due to their opposite induced orientations; what remains is
the integral on ∂S, with the appropriate orientation.
Thus it suffices to establish Stokes’ Theorem for each such Si, which we will do
by transforming both sides to appropriate integrals on the square D, which is
the domain of Φi. The proof in Rogawski and Adams uses a similar strategy,
except they treat each Si as a graph, and do computations using the graph.

Proof. We make one further reduction. Let L[X] denote
∫
∂Si

X(x) · d x. Then it
is clear that L[X + Y ] = L[X] + L[Y ] and L[cX] = cL[X] for any continuously
differentiable vector fields X and Y and any constant c. This property is called lin-
earity. A similar property holds for the right hand side. Based on this property, it
suffices to prove Stokes’ Theorem for X(x) of the form X1(x)i, X2(x)j, and X3(x)k
separately.

We will take X(x) = X1(x)i, and prove

∫
∂Si

X(x) · d x =

∫
∂D

X1(Φi(u, v))

[
∂x(Φi(u, v))

∂u
du+

∂x(Φi(u, v))

∂v
dv

]
,

(9.3)∫∫
Si

(∇×X)(x) · n(x) dS =

∫∫
D

[
∂X1(Φi(u, v))

∂u

∂x

∂v
− ∂X1(Φi(u, v))

∂v

∂x

∂u

]
dudv.

(9.4)

Namely, we convert both sides into integrals in a two dimensional domain. Now if
we set P (u, v) = X1(Φi(u, v))∂x(Φi(u,v))

∂u
and Q(u, v) = X1(Φi(u, v))∂x(Φi(u,v))

∂v
, then we
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apply Green’s Theorem to 9.3 to obtain∫
∂Si

X(x) · d x

=

∫
∂D

P (u, v) du+Q(u, v) dv

=

∫∫
D

[
∂Q(u, v)

∂u
− ∂P (u, v)

∂v

]
dudv

=

∫∫
D

[
∂X1(Φi(u, v))

∂u

∂x

∂v
− ∂X1(Φi(u, v))

∂v

∂x

∂u

]
dudv

=

∫∫
Si

(∇×X)(x) · n(x) dS.

To prove 9.3 and 9.4, we note

X(x) · d x = X1(x)dx = X1(Φi(u, v))

[
∂x(Φi(u, v))

∂u
du+

∂x(Φi(u, v))

∂v

]
dv,

and (∇×X)(x) = (0, ∂zX1(x),−∂yX1(x)). But in the parametrization x = Φi(u, v),

n(x) =
∂uΦi(u, v)× ∂vΦi(u, v)

‖∂uΦi(u, v)× ∂vΦi(u, v)‖
,

and

∂uΦi × ∂vΦi = (
∂y

∂u

∂z

∂v
− ∂y

∂v

∂z

∂u
,
∂z

∂u

∂x

∂v
− ∂z

∂v

∂x

∂u
,
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
).

So ∫∫
Si

(∇×X)(x) · n(x) dS

=

∫∫
D

(∇×X)(x) · (∂uΦi × ∂vΦi)du dv

=

∫∫
D

[(
∂z

∂u

∂x

∂v
− ∂x

∂u

∂z

∂v

)
∂zX1(x)−

(
∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v

)
∂yX1(x)

]
du dv

=

∫∫
D

[(
∂z

∂u
∂zX1(x) +

∂y

∂u
∂yX1(x)

)
∂x

∂v
−
(
∂z

∂v
∂zX1(x) +

∂y

∂v
∂yX1(x)

)
∂x

∂u

]
du dv

=

∫∫
D

[
∂X1(Φi(u, v))

∂u

∂x

∂v
− ∂X1(Φi(u, v))

∂v

∂x

∂u

]
du dv,

which concludes 9.4.



9.5. STOKES’ THEOREM AND ITS PROOF 197

In fact, the proof works without breaking it down into different components of X
by using∫∫

Si

(∇×X)(x) · n(x) dS =

∫∫
D

(∇×X)(x) · (Φu(u, v)× Φv(u, v)) du dv,∫
∂Si

X(x) · dx =

∫
∂D

X(x) · Φu(u, v) du+X(x) · Φv(u, v) dv,

and the Green’s theorem, together with the following relation

Curlz(X(x) · Φu(u, v), X(x) · Φv(u, v)) = (∇×X)(x) · (Φu(u, v)× Φv(u, v)).

Exercise 9.5.1. Suppose one is asked to evaluate
∫
C
z dx+ x dy+ (y+ 2z) dz, where

C is the intersection of the cylinder x2 + y2 = 1 and the plane z = x, with the
counterclockwise orientation when viewed from the top. One strategy is to find a
parametrization of C and evaluate this line integral directly. Since C is a closed
curve, it spans many surfaces, in particular, the planar portion on z = x cut-out by the
cylinder, so it may be worthwhile to explore the Stokes’ Theorem. First, Curl (z, x, y+
2z) = (1, 1, 1), and a normal to z = x is (1, 0,−1), which is orthogonal to (1, 1, 1),
so for any point (x, y, z) in the said planar region, Curl (z, x, y + 2z) · n(x, y, z) = 0!
This renders∫

C

z dx+ x dy + (y + 2z) dz =

∫ ∫
enclosed region

Curl (z, x, y + 2z) · n(x, y, z) = 0.

If one is asked to evaluate
∫
C1
z dx + x dy + (y + 2z) dz, where C1 is the portion

of C in the upper half space running from (0,−1, 0) to (0, 1, 0), then C1 is no longer
a closed curve, so we can’t directly apply Stokes’ theorem. But adjoining the segment
from (0, 1, 0) to (0,−1, 0) would create a closed curve C ′1, which encloses one-half of
the planar region encountered above, and we still have

∫
C′

1
z dx+x dy+(y+2z) dz = 0.

But∫
C′

1

z dx+x dy+(y+2z) dz =

∫
C1

z dx+x dy+(y+2z) dz+

∫
(0,1,0)7→(0,−1,0)

z dx+x dy+(y+2z) dz,

and the letter can be evaluated easily as the segment from (0, 1, 0) to (0,−1, 0) can be
parametrized as (0, (1− t)1 + t(−1), 0), t ∈ [0, 1], so∫

(0,1,0) 7→(0,−1,0)

z dx+ x dy + (y + 2z) dz =

∫ 1

0

0(−2) dt = 0.

This still leads to
∫
C1
z dx+ x dy + (y + 2z) dz = 0.
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Remark 9.5.2

Computing the curl of a vector field using the cross product pattern is tedious
and prone to errors, a more efficient way to compute it is the following.

(i). Compute the differential of any multi-variable function as in one variable
calculus: df(x, y, z) = fx dz + fy dy + fz dz.

(ii). For a given vector field F (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z)),
write F (x, y, z) · dr in differential form F1(x, y, z) dx + F2(x, y, z) dy +
F3(x, y, z) dz.

(iii). Apply the following rules

d(F1(x, y, z) dx+ F2(x, y, z) dy + F3(x, y, z) dz)

=dF1(x, y, z) dx+ dF2(x, y, z) dy + dF3(x, y, z) dz

=

(
∂F1(x, y, z)

∂x
dx+

∂F1(x, y, z)

∂y
dy +

∂F1(x, y, z)

∂z
dz

)
dx

+

(
∂F2(x, y, z)

∂x
dx+

∂F2(x, y, z)

∂y
dy +

∂F2(x, y, z)

∂z
dz

)
dy

+

(
∂F3(x, y, z)

∂x
dx+

∂F3(x, y, z)

∂y
dy +

∂F3(x, y, z)

∂z
dz

)
dz

and treat dx dx = 0, dy dy = 0, dz dz = 0, dy dx = −dx dy, dz dy =
−dy dz, and dx dz = −dz dx, so

d(F1(x, y, z) dx+ F2(x, y, z) dy + F3(x, y, z) dz)

=

[
∂F2(x, y, z)

∂x
− ∂F1(x, y, z)

∂y

]
dx dy

+

[
∂F3(x, y, z)

∂y
− ∂F2(x, y, z)

∂z

]
dy dz

+

[
∂F1(x, y, z)

∂z
− ∂F3(x, y, z)

∂x

]
dz dx

In advanced courses, an exterior product, also called wedge product, is
introduced among dx, dy, dz, which obeys the anti-symmetry described
above, so the rules above are written as dx∧ dx = 0, dy∧ dx = −dx∧ dy,
etc.

Finally, using n1 dS = dy dz, n2 dS = dz dz, and n3 dS = dx dy to
identify the above expression as

(∇× F ) · n dS = (∇× F )1 dy dz + (∇× F )2 dz dx+ (∇× F )3 dx dy,
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so

(∇× F (x))1 =
∂F3(x, y, z)

∂y
− ∂F2(x, y, z)

∂z
,

(∇× F (x))2 =
∂F1(x, y, z)

∂z
− ∂F3(x, y, z)

∂x
,

(∇× F (x))3 =
∂F2(x, y, z)

∂x
− ∂F1(x, y, z)

∂y
,

and

d(F1(x, y, z) dx+ F2(x, y, z) dy + F3(x, y, z) dz)

=dF1(x, y, z) dx+ dF2(x, y, z) dy + dF3(x, y, z) dz

=(∇× F ) · n dS.

This procedure may look complicated, but in concrete cases, it’s fairly straight-
forward. E.g. for F = xj, we would compute d(x dy) = dx dy, so ∇(xj) = k.
For a vector field (P (x, y), Q(x, y)) in two dimensions, this procedure also makes
it easy to compute the curl easily, as by the rules above,

d [P (x, y)dx+Q(x, y)dy]

=Py(x, y) dy dx+Qx(x, y) dx dy = [Qx(x, y)− Py(x, y)] dxdy,

so
∫
C P (x, y)dx+Q(x, y)dy =

∫∫
D

[Qx(x, y)− Py(x, y)] dxdy, if D is the region
enclosed by the closed curve C.
In more advanced courses, Green’s Theorem and Stokes’ Theorem are formu-
lated using differential form as above and take on a very simple form∫

∂S
Pdx+Qdy +Rdz =

∫∫
S
d(Pdx+Qdy +Rdz).
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