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Section 1

Introduction and Motivation
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Borcherds-Kac-Moody Algebras

BKMAs are infinite-dimensional generalisations of
finite-dimensional simple Lie algebras.

They are defined by generators and relations encoded in a
generalised Cartan matrix (not necessarily positive definite,

diagonal entries not necessarily positive to allow imaginary simple
roots) [Bor88|.

They admit Weyl-Kac character formulae and a denominator
identity

e’ H (1 — e)muit(@) — Z det(w)w | e° Z e(a)e™ | .

acdt wewWw acd

The best-known example is the monster Lie algebra, used in
Borcherds' proof of the monstrous moonshine conjecture [Bor92].
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General Problem

In many interesting examples the denominator identity of a BKMA
is an automorphic form (automorphic product of singular weight)
[Bor98].

Classification results for such BKMAs are obtained in
[Sch06, GN02, GN18].

Problem A (Borcherds)

Give natural constructions of those BKMAs whose denominator
identities are automorphic products of singular weight [Bor01].

Here, “natural” means other than by generators and relations, and
in a way that hopefully reveals part of the symmetry group of these
algebras.
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General Problem

The fake monster Lie algebra g [Bor90] is the BKMA obtained
naturally as string quantisation of the lattice vertex algebra Vi, ,.

In [Bor92] Borcherds obtained a large family of
Borcherds-Kac-Moody (super)algebras gg4, by twisting the fake
monster Lie algebra g by elements v € Cog.

Problem B (Borcherds)

Find natural constructions for this family of BKMAs [Bor92].

Goal of this talk: Give partial answer to both problems by giving
BRST constructions of a nice subfamily of BKMAs associated with
elements of square-free order in M3 < Cog.
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Automorphic
products

quantise

Borcherds lift of
characters

denominator
identity

Vertex
algebras

Examples:
n ViR Vi, — monster Lie algebra <> j(e10)) — j(el01),

m Vi, — fake monster Lie algebra g <> automorphic
product W of weight 12 for O (llg 2).
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Specific Problem

Theorem (Classification [Sch06

There are exactly ten real BKMAs whose whose denominator
identities are completely reflective automorphic products of
singular weight —w = k/2 — 1 on even lattices P of signature
(k,2) with k > 4, square-free level m and p-ranks of the
discriminant form P’/P at most k + 1.

Moreover, these are exactly the ten real BKMAs g4, in [Bor92]
obtained by twisting the fake monster Algebra g by elements v of
square-free order m in M3 < Coyg.

Specific Problem

Give natural constructions (as BRST quantisations from suitable
vertex algebras) of these ten BKMAs.

(Done for m =1 [Bor90], m = 2 [HS03], m = 2,3,5,7 [CKS07].)
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Section 2

Vertex Algebras
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Vertex Algebras

(Conformal) Vertex Algebras

m C-vector space V = @,z Vi,
m vacuum vector 1 € Vp, Virasoro vector w € V5,
m algebra products V® V — V, (a,b) — apb for n € Z,

m satisfying generalised associativity and commutativity
constraints.

Vertex (super)algebras and their representations give rigorous
descriptions of 2-dimensional conformal field theories.

The Moonshine module V* [FLM88] provides the only natural
construction of the Monster group M = Aut(V/?).

The character of a vertex algebra is often a modular form [Zhu96].
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Matter Sector

In the following we describe the vertex algebras M, that will serve
as the input of the BRST quantisation.

Let Vi be the strongly rational, holomorphic VOA of central
charge 24 associated with the Leech lattice A. Consider the ten
automorphisms v € Maz < Cog = O(A) of square-free order, i.e.
their standard lifts ¢, € Aut(Vj).

By the orbifold theory in [EMS20] V,‘\i)” has m? irreducible modules
V" (i, j) for i,j in the finite quadratic space Zp X Zpm,.

Definition (Conformal Vertex Algebra of Central Charge 26)

My, = B V(ela+K)® Vark
at+KeK'/K

with isometry ¢ : K'/K — Zm X Zm and lattice K = Il 1(m).
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Matter Sector

There is a well-known lattice decomposition that induces

Vh = P Vip(asnr) @ Vatar
at+AE(AY) /A
with isometry ¢: (AV) /A" — (A) /A,
Let 7 € Aut(Vp,) be a standard lift of v restricted to A,. By the
orbifold theory in [Lam20] V,\ﬁu has m?|(A,)' /M| irreducible

modules VKD (a+ Ay, i,j) with fusion described by the finite
quadratic space (A,) /Ay X Zm X L.

More generally, the decomposition

V)2 @ VEWla+N),if) @ Vo
a+/\ue(/\u)///\u

holds for all i,j € Zp, [Lam20].
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Matter Sector

Define the lattice L := A @ K of signature (k — 1,1) and the
isometry x := (¢, ): L'/L— (N)) /Ny X Ly X L.

Proposition ([Mo6l21

The conformal vertex algebra My, decomposes as

My, = P VR (X(v+1)® Vi
A+LeL! /L

This implies that I\/l(z,y has the [’-grading
@ V,\ (o + L)) @ k=11

acl’

with Heisenberg modules ﬂ&k_l’l), rather than just a grading by
the lattice K’ of signature (1,1).
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By [M6116] the characters

ChvV (atAni)(T)/n(T )A)

form a vector-valued modular form of weight w =1 — k/2 for the
dual Weil representation of SL>(Z) on C[L'/L].

There is a procedure (see [Sch06]) to lift modular forms for
congruence subgroups to vector-valued modular forms for SLy(Z).

form for [o(m).

Proposition ([Mol21

chyp (asn, iy (D) ) = F(7).
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Section 3

Quantisation
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BRST Quantisation

Consider the semi-infinite cohomology of graded Lie algebras
[FeiB4, FGZ86] applied to the Virasoro algebra.

For “positive-energy” Virasoro representation M of central charge
26 define W = M ® Vg, of central charge 0 and BRST operator @
with @? = 0. Obtain cohomological spaces Hggzs(M).

If M is conformal vertex algebra, then Higst(M) is a Lie algebra
[LZ93] (also inherits invariant bilinear form).

IfM=Verl Y (4 some conditions), vanishing theorem
[Zuc89] and Euler-Poincaré principle yield:

(Vord N aye ifa#0,

Higs(V @ w11 = {(V @ 7lk 0y, ifa=0
0 — U.
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Define the [’-graded Lie algebra

9% == Hirst(My,) = €D Harst(VA, (x(a + L)) @ 7l 11).
acl’

With the results on the previous slide we show:

Theorem ([M6121
g% is a complex BKMA of rank k = rk(L), graded by L', with
Cartan subalgebra g(0).

g% is isomorphic to (the complexification of) gy, .

Moreover, the Borcherds lift [Bor98| of the vector-valued modular
form F is an automorphic product W4, whose expansion at any
cusp is the denominator identity of g® and g4, [Sch04, Sch08].
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For convenience we rescale the quadratic form on L to obtain the
even lattice A :==L'(m) =N @ Il ;.

The dimensions of the root spaces are

dim(g% (0)) = [Fusd] (~(0,0)/2) = 3 Sucaraarl/n)(~ (o ) /2d)
d

for all « € A\ {0}. m

The denominator identity of g? may be written as
e H H (1 — &)t/ l(=(eva)/2d) Z det(w)w(n,(e”))
dlmacedtnNdA’ weW
with Weyl vector p. Here, the Weyl group W is the full reflection
group of A.

The real roots of g% are the roots of the lattice A. The imaginary
roots are np, n € Zso, with multiplicities 240o((m, n))/o1(m).
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Vertex Alg. BKMA Aut. Prod.

quantise FMA g den. id. i

VA ® Vi, = Vi,
bu lift of char. b

quantise ~ den. id.

D ek V(v + K) @ Viik g% =gy, s Wy,

lift of char.
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Thank you for your attention!
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