

Natural Construction of Ten Borcherds-Kac-Moody Algebras Associated with Elements in M_{23}

Sven Möller

Rutgers University
Lie Group/Quantum Mathematics Seminar

February 11th, 2022

Contents

1 Introduction and Motivation

- Borcherds-Kac-Moody Algebras
- Problem

2 Vertex Algebras

- Matter Sector
- Characters

3 Quantisation

- BRST Quantisation
- Results

Section 1

Introduction and Motivation

Borcherds-Kac-Moody Algebras

BKMAs are infinite-dimensional generalisations of finite-dimensional simple Lie algebras.

They are defined by generators and relations encoded in a generalised Cartan matrix (not necessarily positive definite, diagonal entries not necessarily positive to allow imaginary simple roots) [Bor88].

They admit Weyl-Kac character formulae and a denominator identity

$$e^\rho \prod_{\alpha \in \Phi^+} (1 - e^\alpha)^{\text{mult}(\alpha)} = \sum_{w \in W} \det(w) w \left(e^\rho \sum_{\alpha \in \Phi} \varepsilon(\alpha) e^\alpha \right).$$

The best-known example is the monster Lie algebra, used in Borcherds' proof of the monstrous moonshine conjecture [Bor92].

General Problem

In many interesting examples the denominator identity of a BKMA is an automorphic form (automorphic product of singular weight) [Bor98].

Classification results for such BKMAs are obtained in [Sch06, GN02, GN18].

Problem A (Borcherds)

Give natural constructions of those BKMAs whose denominator identities are automorphic products of singular weight [Bor01].

Here, “natural” means other than by generators and relations, and in a way that hopefully reveals part of the symmetry group of these algebras.

General Problem

The fake monster Lie algebra \mathfrak{g} [Bor90] is the BKMA obtained naturally as string quantisation of the lattice vertex algebra $V_{\mathbb{H}_{25,1}}$.

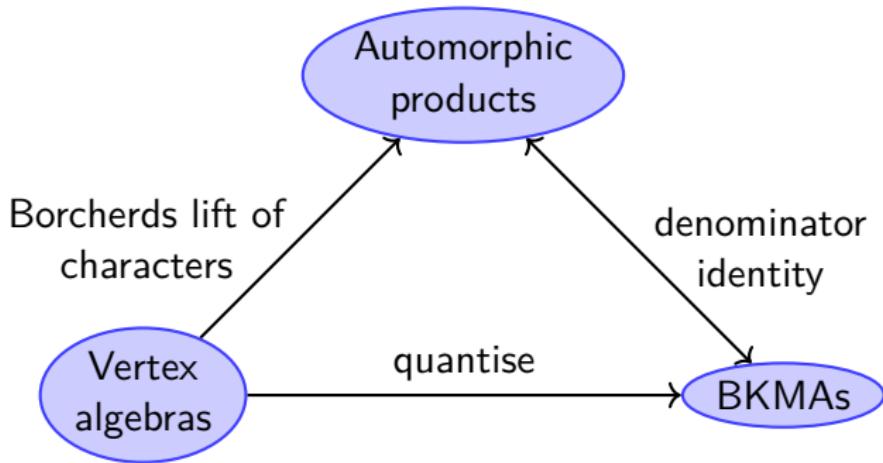
In [Bor92] Borcherds obtained a large family of Borcherds-Kac-Moody (super)algebras \mathfrak{g}_{ϕ_ν} by twisting the fake monster Lie algebra \mathfrak{g} by elements $\nu \in \text{Co}_0$.

Problem B (Borcherds)

Find natural constructions for this family of BKMAs [Bor92].

Goal of this talk: Give partial answer to both problems by giving BRST constructions of a nice subfamily of BKMAs associated with elements of square-free order in $M_{23} < \text{Co}_0$.

Concepts



Examples:

- $V^\natural \otimes V_{\mathbb{II}_{1,1}} \rightarrow \text{monster Lie algebra} \leftrightarrow j(e^{(1,0)}) - j(e^{(0,1)}),$
- $V_{\mathbb{II}_{25,1}} \rightarrow \text{fake monster Lie algebra } \mathfrak{g} \leftrightarrow \text{automorphic product } \Psi \text{ of weight 12 for } O^+(\mathbb{II}_{26,2}).$

Specific Problem

Theorem (Classification [Sch06])

There are exactly ten real BKMA_s whose whose denominator identities are completely reflective automorphic products of singular weight $-w = k/2 - 1$ on even lattices P of signature $(k, 2)$ with $k \geq 4$, square-free level m and p -ranks of the discriminant form P'/P at most $k + 1$.

Moreover, these are exactly the ten real BKMA_s \mathfrak{g}_{ϕ_ν} in [Bor92] obtained by twisting the fake monster Algebra \mathfrak{g} by elements ν of square-free order m in $M_{23} < \text{Co}_0$.

Specific Problem

Give natural constructions (as BRST quantisations from suitable vertex algebras) of these ten BKMA_s.

(Done for $m = 1$ [Bor90], $m = 2$ [HS03], $m = 2, 3, 5, 7$ [CKS07].)

Section 2

Vertex Algebras

(Conformal) Vertex Algebras

- \mathbb{C} -vector space $V = \bigoplus_{n \in \mathbb{Z}} V_n$,
- vacuum vector $\mathbf{1} \in V_0$, Virasoro vector $\omega \in V_2$,
- algebra products $V \otimes V \rightarrow V$, $(a, b) \mapsto a_n b$ for $n \in \mathbb{Z}$,
- satisfying generalised associativity and commutativity constraints.

Vertex (super)algebras and their representations give rigorous descriptions of 2-dimensional conformal field theories.

The Moonshine module V^\natural [FLM88] provides the only *natural* construction of the Monster group $M \cong \text{Aut}(V^\natural)$.

The character of a vertex algebra is often a modular form [Zhu96].

Matter Sector

In the following we describe the vertex algebras M_{ϕ_ν} that will serve as the input of the BRST quantisation.

Let V_Λ be the strongly rational, holomorphic VOA of central charge 24 associated with the Leech lattice Λ . Consider the ten automorphisms $\nu \in M_{23} < \mathrm{Co}_0 = \mathrm{O}(\Lambda)$ of square-free order, i.e. their standard lifts $\phi_\nu \in \mathrm{Aut}(V_\Lambda)$.

By the orbifold theory in [EMS20] $V_\Lambda^{\phi_\nu}$ has m^2 irreducible modules $V_\Lambda^{\phi_\nu}(i, j)$ for i, j in the finite quadratic space $\mathbb{Z}_m \times \mathbb{Z}_m$.

Definition (Conformal Vertex Algebra of Central Charge 26)

$$M_{\phi_\nu} := \bigoplus_{\alpha+K \in K'/K} V_\Lambda^{\phi_\nu}(\varphi(\alpha + K)) \otimes V_{\alpha+K}$$

with isometry $\varphi : K'/K \rightarrow \overline{\mathbb{Z}_m \times \mathbb{Z}_m}$ and lattice $K = \mathbb{II}_{1,1}(m)$.

Matter Sector

There is a well-known lattice decomposition that induces

$$V_\Lambda \cong \bigoplus_{\alpha + \Lambda^\nu \in (\Lambda^\nu)' / \Lambda^\nu} V_{\psi(\alpha + \Lambda^\nu)} \otimes V_{\alpha + \Lambda^\nu}$$

with isometry $\psi: (\Lambda^\nu)' / \Lambda^\nu \rightarrow \overline{(\Lambda_\nu)' / \Lambda_\nu}$.

Let $\hat{\nu} \in \text{Aut}(V_{\Lambda_\nu})$ be a standard lift of ν restricted to Λ_ν . By the orbifold theory in [Lam20] $V_{\Lambda_\nu}^{\hat{\nu}}$ has $m^2|(\Lambda_\nu)' / \Lambda_\nu|$ irreducible modules $V_{\Lambda_\nu}^{\hat{\nu}}(\alpha + \Lambda_\nu, i, j)$ with fusion described by the finite quadratic space $(\Lambda_\nu)' / \Lambda_\nu \times \mathbb{Z}_m \times \mathbb{Z}_m$.

More generally, the decomposition

$$V_\Lambda^{\phi_\nu}(i, j) \cong \bigoplus_{\alpha + \Lambda^\nu \in (\Lambda^\nu)' / \Lambda^\nu} V_{\Lambda_\nu}^{\hat{\nu}}(\psi(\alpha + \Lambda^\nu), i, j) \otimes V_{\alpha + \Lambda^\nu}$$

holds for all $i, j \in \mathbb{Z}_m$ [Lam20].

Matter Sector

Define the lattice $L := \Lambda^\nu \oplus K$ of signature $(k-1, 1)$ and the isometry $\chi := (\psi, \varphi): L'/L \rightarrow \overline{(\Lambda_\nu)'/\Lambda_\nu \times \mathbb{Z}_m \times \mathbb{Z}_m}$.

Proposition ([Mö121])

The conformal vertex algebra M_{ϕ_ν} decomposes as

$$M_{\phi_\nu} \cong \bigoplus_{\gamma+L \in L'/L} V_{\Lambda_\nu}^{\hat{\nu}}(\chi(\gamma+L)) \otimes V_{\gamma+L}.$$

This implies that M_{ϕ_ν} has the L' -grading

$$M_{\phi_\nu} = \bigoplus_{\alpha \in L'} V_{\Lambda_\nu}^{\hat{\nu}}(\chi(\alpha+L)) \otimes \pi_\alpha^{(k-1,1)}$$

with Heisenberg modules $\pi_\alpha^{(k-1,1)}$, rather than just a grading by the lattice K' of signature $(1, 1)$.

Characters

By [Möl16] the characters

$$\mathrm{ch}_{V_{\Lambda_\nu}^{\hat{\nu}}(\alpha+\Lambda_\nu, i, j)}(\tau) / \eta(\tau)^{\mathrm{rk}(\Lambda^\nu)}$$

form a vector-valued modular form of weight $w = 1 - k/2$ for the dual Weil representation of $\mathrm{SL}_2(\mathbb{Z})$ on $\mathbb{C}[L'/L]$.

There is a procedure (see [Sch06]) to lift modular forms for congruence subgroups to vector-valued modular forms for $\mathrm{SL}_2(\mathbb{Z})$. Let $F(\tau)$ be the lift of $1/\eta_\nu(\tau) = \prod_{t|m} \eta(t\tau)^{-24/\sigma_1(m)}$, a modular form for $\Gamma_0(m)$.

Proposition ([Möl21])

$$\mathrm{ch}_{V_{\Lambda_\nu}^{\hat{\nu}}(\alpha+\Lambda_\nu, i, j)}(\tau) / \eta(\tau)^{\mathrm{rk}(\Lambda^\nu)} = F(\tau).$$

Section 3

Quantisation

BRST Quantisation

Consider the semi-infinite cohomology of graded Lie algebras [Fei84, FGZ86] applied to the Virasoro algebra.

For “positive-energy” Virasoro representation M of central charge 26 define $W = M \otimes V_{\text{gh.}}$ of central charge 0 and BRST operator Q with $Q^2 = 0$. Obtain cohomological spaces $H_{\text{BRST}}^p(M)$.

If M is conformal vertex algebra, then $H_{\text{BRST}}^1(M)$ is a Lie algebra [LZ93] (also inherits invariant bilinear form).

If $M = V \otimes \pi_\alpha^{(k-1,1)}$ (+ some conditions), vanishing theorem [Zuc89] and Euler-Poincaré principle yield:

$$H_{\text{BRST}}^1(V \otimes \pi_\alpha^{(k-1,1)}) \cong \begin{cases} (V \otimes \pi_0^{(k-2,0)})_{1-\langle \alpha, \alpha \rangle / 2} & \text{if } \alpha \neq 0, \\ (V \otimes \pi_0^{(k-1,1)})_1 & \text{if } \alpha = 0. \end{cases}$$

Results

Define the L' -graded Lie algebra

$$\mathfrak{g}^{\phi_\nu} := H_{\text{BRST}}^1(M_{\phi_\nu}) = \bigoplus_{\alpha \in L'} H_{\text{BRST}}^1(V_{\Lambda_\nu}^{\hat{\nu}}(\chi(\alpha + L)) \otimes \pi_\alpha^{(k-1,1)}).$$

With the results on the previous slide we show:

Theorem ([Möll21])

\mathfrak{g}^{ϕ_ν} is a complex BKMA of rank $k = \text{rk}(L)$, graded by L' , with Cartan subalgebra $\mathfrak{g}(0)$.

\mathfrak{g}^{ϕ_ν} is isomorphic to (the complexification of) \mathfrak{g}_{ϕ_ν} .

Moreover, the Borcherds lift [Bor98] of the vector-valued modular form F is an automorphic product Ψ_{ϕ_ν} whose expansion at any cusp is the denominator identity of \mathfrak{g}^{ϕ_ν} and \mathfrak{g}_{ϕ_ν} [Sch04, Sch08].

Properties

For convenience we rescale the quadratic form on L to obtain the even lattice $\Delta := L'(m) \cong \Lambda^\nu \oplus \mathbb{H}_{1,1}$.

The dimensions of the root spaces are

$$\dim(\mathfrak{g}^{\phi_\nu}(\alpha)) = [F_{\alpha+L}](-\langle \alpha, \alpha \rangle/2) = \sum_{d|m} \delta_{\alpha \in \Delta \cap d\Delta'} [1/\eta_\nu](-\langle \alpha, \alpha \rangle/2d)$$

for all $\alpha \in \Delta \setminus \{0\}$.

The denominator identity of \mathfrak{g}^{ϕ_ν} may be written as

$$e^\rho \prod_{d|m} \prod_{\alpha \in \Phi^+ \cap d\Delta'} (1 - e^\alpha)^{[1/\eta_\nu](-\langle \alpha, \alpha \rangle/2d)} = \sum_{w \in W} \det(w) w(\eta_\nu(e^\rho))$$

with Weyl vector ρ . Here, the Weyl group W is the full reflection group of Δ .

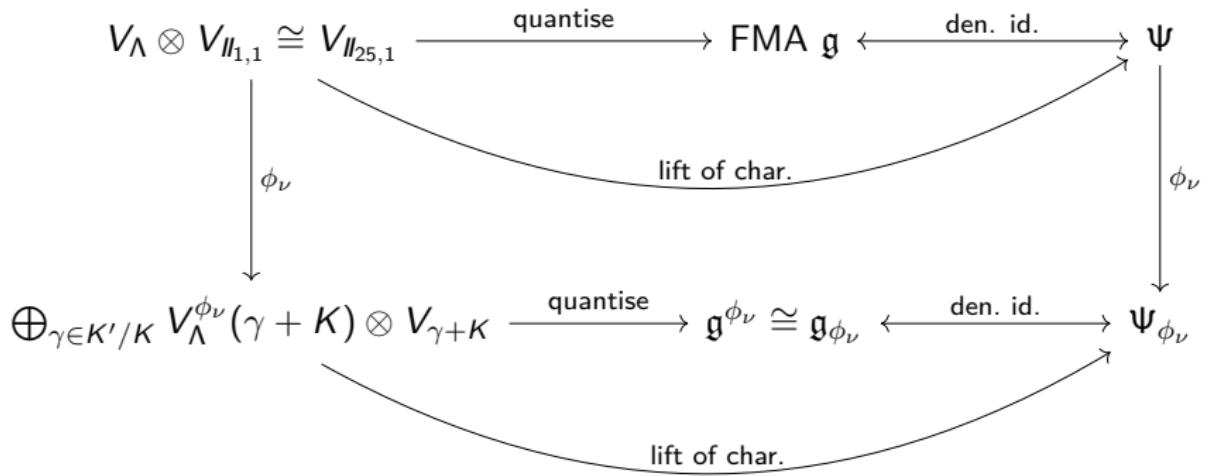
The real roots of \mathfrak{g}^{ϕ_ν} are the roots of the lattice Δ . The imaginary roots are $n\rho$, $n \in \mathbb{Z}_{>0}$, with multiplicities $24\sigma_0((m, n))/\sigma_1(m)$.

Summary

Vertex Alg.

BKMA

Aut. Prod.



Thank you for your attention!

Bibliography I

- **Richard E. Borcherds.**
Generalized Kac-Moody algebras.
J. Algebra, 115(2):501–512, 1988.
- **Richard E. Borcherds.**
The monster Lie algebra.
Adv. Math., 83(1):30–47, 1990.
- **Richard E. Borcherds.**
Monstrous moonshine and monstrous Lie superalgebras.
Invent. Math., 109(2):405–444, 1992.
- **Richard E. Borcherds.**
Automorphic forms with singularities on Grassmannians.
Invent. Math., 132(3):491–562, 1998.
(arXiv:alg-geom/9609022v2).
- **Richard E. Borcherds.**
Problems in Moonshine.
In *First international congress of Chinese mathematicians*, volume 20 of *AMS/IP Stud. Adv. Math.*, pages 3–10. Amer. Math. Soc., 2001.
- **Thomas Creutzig, Alexander Klauer and Nils R. Scheithauer.**
Natural constructions of some generalized Kac-Moody algebras as bosonic strings.
Commun. Number Theory Phys., 1(3):453–477, 2007.
(arXiv:0801.1829v1 [math.NT]).

Bibliography II

- **Jethro van Ekeren, Sven Möller and Nils R. Scheithauer.**
Construction and classification of holomorphic vertex operator algebras.
J. Reine Angew. Math., 759:61–99, 2020.
(arXiv:1507.08142v3 [math.RT]).
- **Boris L. Feigin.**
The semi-infinite homology of Kac-Moody and Virasoro Lie algebras.
Russian Math. Surveys, 39(2):155–156, 1984.
- **Igor B. Frenkel, Howard Garland and Gregg J. Zuckerman.**
Semi-infinite cohomology and string theory.
Proc. Nat. Acad. Sci. U.S.A., 83(22):8442–8446, 1986.
- **Igor B. Frenkel, James I. Lepowsky and Arne Meurman.**
Vertex operator algebras and the Monster, volume 134 of *Pure Appl. Math.*
Academic Press, 1988.
- **Valery A. Gritsenko and Viacheslav V. Nikulin.**
On the classification of Lorentzian Kac-Moody algebras.
Russian Math. Surveys, 57(5):921–979, 2002.
(arXiv:math/0201162v2).
- **Valery A. Gritsenko and Viacheslav V. Nikulin.**
Lorentzian Kac-Moody algebras with Weyl groups of 2-reflections.
Proc. Lond. Math. Soc. (3), 116(3):485–533, 2018.
(arXiv:1602.08359v2 [math.AG]).

Bibliography III

Gerald Höhn and Nils R. Scheithauer.

A natural construction of Borcherds' Fake Baby Monster Lie algebra.
Amer. J. Math., 125(3):655–667, 2003.
(arXiv:math/0312106v1 [math.QA]).

Ching Hung Lam.

Cyclic orbifolds of lattice vertex operator algebras having group-like fusions.
Lett. Math. Phys., 110(5):1081–1112, 2020.
(arXiv:1805.10778v2 [math.QA]).

Bong H. Lian and Gregg J. Zuckerman.

New perspectives on the BRST-algebraic structure of string theory.
Comm. Math. Phys., 154(3):613–646, 1993.
(arXiv:hep-th/9211072v1).

Sven Möller.

A Cyclic Orbifold Theory for Holomorphic Vertex Operator Algebras and Applications.
Ph.D. thesis, Technische Universität Darmstadt, 2016.
(arXiv:1611.09843v2 [math.QA]).

Sven Möller.

Natural construction of ten Borcherds-Kac-Moody algebras associated with elements in M_{23} .
Comm. Math. Phys., 383(1):35–70, 2021.
(arXiv:1905.09629v2 [math.QA]).

Nils R. Scheithauer.

Generalized Kac-Moody algebras, automorphic forms and Conway's group. I.
Adv. Math., 183(2):240–270, 2004.

Bibliography IV

Nils R. Scheithauer.

On the classification of automorphic products and generalized Kac-Moody algebras.
Invent. Math., 164(3):641–678, 2006.

Nils R. Scheithauer.

Generalized Kac-Moody algebras, automorphic forms and Conway's group. II.
J. Reine Angew. Math., 625:125–154, 2008.

Yongchang Zhu.

Modular invariance of characters of vertex operator algebras.
J. Amer. Math. Soc., 9(1):237–302, 1996.

Gregg J. Zuckerman.

Modular forms, strings, and ghosts.
In Leon Ehrenpreis and Robert C. Gunning, editors, *Theta Functions Bowdoin 1987*, volume 49 of *Proc. Sympos. Pure Math.*, pages 273–284. Amer. Math. Soc., 1989.