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Interpolation Polynomials

Inhomogenous symmetric polynomials: P
ρ
λ(x) = P

ρ
λ(x1, . . . , xn).

Their coefficients depend on n parameters ρ = (ρ1, . . . , ρn).

They are indexed by partitions

Λn = {λ ∈ Zn : λ1 ≥ · · · ≥ λn ≥ 0} .

The total degree of P
ρ
λ (x) is |λ| = λ1 + λ2 + · · ·+ λn

P
ρ
λ (x) vanishes at points of the form

{µ + ρ : µ ∈ Λn, |µ| ≤ |λ|, µ 6= λ}.

These properties characterize P
ρ
λ up to a scalar multiple.

They were introduced by S. Sahi in 1994; motivated by earlier work
with B. Kostant on generalizations of the Capelli identity.
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Connection with Jack polynomials

The special case ρ = rδ, δi = n− i , is of particular interest.

This was studied by F. Knop and S. Sahi in [KS1].

The main result of [KS1] is that

P rδ
λ = P

(α)
λ + terms of degree < |λ|.

Here P
(α)
λ is the Jack polynomial with parameter α = 1/r .

Thus P rδ
λ is sometimes called an interpolation Jack polynomial, or

shifted Jack polynomial, or even a Knop-Sahi polynomial.
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Jack polynomials

Jack polynomials play a prominent role in Macdonald’s remarkable
monograph [M] on symmetric functions.

They are eigenfunctions of Debiard-Sekiguchi differential operators

Macdonald introduced a normalized version J
(α)
λ = cλ(α)P

(α)
λ and

considered its coefficients with respect to symmetric monomials mµ.

He conjectured ([M], VI.10.26?) that these coefficients belong to
N[α], i.e. they are positive integral polynomials in the parameter α.

Knop and Sahi proved this conjecture in [KS2] and obtained a
combinatorial formula in terms of certain “admissible” tableaux.
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Positivity of interpolation polynomials

We prove a conjecture of Knop and Sahi ([KS1]).

This generalizes the positivity result for Jack polynomials.

It involves the normalized interpolation polynomials

J rδ
λ := (−1)|λ|cλ(α)P

rδ
λ (−x),

and their monomial coefficients

J rδ
λ = ∑µ

α|µ|−|λ|aλ,µ(α)mµ.

Theorem ([Naqvi-Sahi-Sergel 2020])

The coefficients aλ,µ(α) belong to N[α].
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Example

J rδ
(2,0) = ( 1r + 1)

(
(x1 + r + 1)(x1 + r) + r(x2)

)
+ 2 x1x2 + ( 1r + 1)(x2 + r + 1)x2.

This vanishes at the points

−(0 + r , 0), −(1 + r , 0), −(1 + r , 1)

When x1 = −1− r and x2 = −1, we have

( 1r + 1)
(

0− r
)

+ 2(1 + r) + ( 1r + 1)(r)(−1).
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Nonsymmetric Jack polynomials

The Jack positivity results of [KS2] are proved in greater generality.

Jack polynomials have nonsymmetric analogs E
(α)
η , which are indexed

by compositions η ∈Nn.

They are eigenfunctions of the “trigonometric Dunkl operators” due
to Cherednik, and were first considered by Heckman and Opdam [O].

Knop and Sahi defined a certain normalized version F
(α)
η = dη(α)E

(α)
η

The main result of [KS2] is that F
(α)
η has N[α]-coefficients with

respect to ordinary monomials xγ = x
γ1

1 · · · x
γn
n .
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Nonsymmetric interpolation polynomials

The interpolation polynomials admit nonsymmetric analogs E
ρ
η (x) .

E
ρ
η (x) has degree |η| = η1 + · · ·+ ηn and vanishes at the points

{γ : γ ∈Nn, |γ| ≤ |η|, γ 6= η} ,

Here γ = γ + wγ(ρ) where wγ is the shortest permutation such that
w−1γ (γ) is a partition.

These properties characterize E
ρ
η up to a multiple.

In the special case ρ = rδ we have

E rδ
η = E

(α)
η + terms of degree < |η|.

For these and other properties of E
ρ
η see [Kn1, S2].
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Positivity of nonsymmetric interpolation polynomials

We now formulate the nonsymmetric generalization of our result.

This involves the normalized nonsymmetric interpolation polynomial

F rδ
η := (−1)|η|dη(α)E

rδ
η (−x),

and its ordinary monomial coefficients

F rδ
η = ∑γ

α|γ|−|η|bη,γ(α)x
γ.

Theorem ([Naqvi-Sahi-Sergel 2020])

The coefficients bη,γ(α) belong to N[α].

As we explain below, we actually prove a stronger result.
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Examples

F rδ
(2,0) = ( 2r + 1)( 1r + 1)

(
(x1 + 1 + r)(x1 + r) + r(x2)

)
+( 2r + 1) x1x2 + ( 1r + 1)(x2 + 1 + r)(x2)

Check: It vanishes at these points:

−(0, 0) = (−r , 0), −(1, 0) = (−1−r , 0), −(0, 1) = (0,−1−r).

−(1, 1) = (−1−r ,−1), −(0, 2) = (0,−2−r).
Similarly,

F rδ
(1,1) = ( 1r + 2)( 1r + 1) x1x2

F rδ
(0,2) = ( 2r + 2) x1x2 + ( 2r + 2)( 1r + 1)(x2 + 1 + r)(x2)
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The dehomogenization operator

The homogenous F
(α)
η and the inhomogeneous F rδ

η are both linear
bases for the polynomial algebra F[x1, . . . , xn] over the field
F = Q(α) = Q(r).

Thus there is a unique F-linear operator Ψ = Ψr , which we call the
dehomogenization operator, that satisfies

Ψ(F
(α)
η ) = F rδ

η for all η ∈Nn.

In fact, Ψ preserves the space of symmetric polynomials; moreover it

maps J
(α)
λ to J rδ

λ and hence P
(α)
λ (−x) to P rδ

λ (−x).
Thus Ψ is a generalization of the symmetric dehomogenization

operator of [KS1] that maps P
(α)
λ to P rδ

λ .
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Bar monomials and their positivity

We consider the application of Ψ to an ordinary monomial.

We call this a bar-monomial

xη = Ψ(xη)

For n = 1 it is the rising factorial xk = x (x + 1) · · · (x + k − 1)

In general, one has a monomial expansion of the form

xη = xη + ∑
γ : |γ|<|η|

cη,γ(r)x
γ.

Theorem ([Naqvi-Sahi-Sergel 2020])

The coefficient cη,γ(r) is a polynomial in N[r ] of degree ≤ |η| − |γ|.

This implies the positivity result for interpolation polynomials.
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Vanishing and Examples

Proposition

Let f be any homogeneous polynomial of degree k. Then Ψ(f ) is the
unique polynomial with top component f that vanishes at all points −γ
for all |γ| < k.

x (2,0) = (x1 + 1 + r)(x1 + r) + r(x2)

The top component is x21 and it vanishes at the points

−(0, 0) = (−r , 0), −(1, 0) = (−1−r , 0), −(0, 1) = (0,−1−r).

Similarly,

x (1,1) = (x1)(x2)

x (0,2) = (x2 + 1 + r)(x2)

So, how can we construct these things? Why are they positive?
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Intertwiners and recursions

Monomials can be generated recursively from x0 = 1 by

Φ (xγ) = xΦγ, si (x
γ) = x siγ

Here Φf (x) = xnf (xn, x1, . . . , xn−1) and Φγ = (γ2, . . . , γn, γ1 + 1).

Also si interchanges xi and xi+1, or γi and γi+1 for compositions.

It turns out that there is an analogous recursion for bar-monomials.

Let Φ1f (x) = xnf (xn + 1, x1, . . . , xn−1) and σi = si − r
xi−xi+1

(1− si ).

Lemma

We have Φ1 (x
γ) = xΦγ and σi (x

γ) = x siγ

Unfortunately σi does not preserve positivity. We overcame this issue
by solving the recursion to find an explicit combinatorial formula!

Emily Sergel (Rutgers University) February 12, 2021 14 / 19



Bar games

We play a solitaire game on the diagram of η, shrinking it gradually.

A valid move at an intermediate composition γ has two steps:

1 Of the rightmost boxes of γ, delete the one in the highest row, i , say
2 Then move some boxes, possibly none, from the end of row i

either to up and strictly left of their original positions
or down and weakly left of their original positions.

A game G is over when there are no more boxes left.

Here is an example of a game on (1, 8, 3, 0, 2, 5)
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Weighted sums of bar games

The weight of a move is

r if any boxes are moved in step 2;
xi + (γi − 1) + r |{j > i : γj < γi} ∪ {j < i : γj < γi − 1}| if not.

The weight w (G ) of G is the product of its move weights.

The game

has weight r · (x1 + 5 + 5r) · r · r · r · (x3 + 2 + 2r) · (x6 + 2)
· (x1 + 1) · (x2 + 1) · · · (x6 + 1) · x1x2 · · · x6.

Theorem ([Naqvi-Sahi-Sergel 2020])

We have xη = ∑G w(G ), summed over all possible G that start with η.

Proof : The operators σi and Φ1 act nicely on weighted sums of games.

Emily Sergel (Rutgers University) February 12, 2021 16 / 19



Computing a bar monomial

Now we give an example of the full computation of xη.

For brevity, when we delete a box without moving anything else, we
record this with an × and continue working with the same figure.

Below are all games on (1, 0, 4) . We use them to compute x1,0,4.

(x3 + 3 + 2r) · (x3 + 2 + 2r) · (x3 + 1 + r) · (x1 + r) · x3

+ (x3 + 3 + 2r) · r · x1 · x2 · x3

+ r · (x1 + 1 + r) · (x3 + 1 + r) · (x1 + r) · x3

+ r · (x3 + 1) · x1 · x2 · x3

+ r · (x2 + 1 + r) · x1 · x2 · x3

+ r2 · (x3 + 1 + r) · x2 · x3.
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Computing an interpolation polynomial

The dehomogenization operator Ψ is linear, so

F α
λ = ∑

T

d0
λ(T ) xT

Ψ−→ F rδ
λ = ∑

T

d0
λ(T ) xT

This gives a positive, combinatorial expansion for the interpolation
polynomials in terms of admissible tableaux and games.

Each game in the bottom row of the figure below gives a term in the
expansion of F rδ

(2,0,1).

2

3

1

3

1 2

3

1 2

3

3

3

1 1 2

3

32

multiplicities:

0-admissible!
tableaux:

 (2,0,1)  (1,1,1)  (1,0,2)  (1,1,1)  (0,2,1)  (0,1,2)

games:
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