

Positivity of interpolation polynomials

Emily Sergel
Rutgers University, New Brunswick

Rutgers Lie Group/Quantum Mathematics Seminar
February 12, 2021

Interpolation Polynomials

- Inhomogenous symmetric polynomials: $P_\lambda^\rho(x) = P_\lambda^\rho(x_1, \dots, x_n)$.
- Their coefficients depend on n parameters $\rho = (\rho_1, \dots, \rho_n)$.
- They are indexed by partitions

$$\Lambda_n = \{\lambda \in \mathbb{Z}^n : \lambda_1 \geq \dots \geq \lambda_n \geq 0\}.$$

- The total degree of $P_\lambda^\rho(x)$ is $|\lambda| = \lambda_1 + \lambda_2 + \dots + \lambda_n$
- $P_\lambda^\rho(x)$ vanishes at points of the form

$$\{\mu + \rho : \mu \in \Lambda_n, |\mu| \leq |\lambda|, \mu \neq \lambda\}.$$

- These properties characterize P_λ^ρ up to a scalar multiple.
- They were introduced by S. Sahi in 1994; motivated by earlier work with B. Kostant on generalizations of the Capelli identity.

Connection with Jack polynomials

- The special case $\rho = r\delta$, $\delta_i = n - i$, is of particular interest.
- This was studied by F. Knop and S. Sahi in [KS1].
- The main result of [KS1] is that

$$P_{\lambda}^{r\delta} = P_{\lambda}^{(\alpha)} + \text{ terms of degree } < |\lambda|.$$

- Here $P_{\lambda}^{(\alpha)}$ is the Jack polynomial with parameter $\alpha = 1/r$.
- Thus $P_{\lambda}^{r\delta}$ is sometimes called an interpolation Jack polynomial, or shifted Jack polynomial, or even a Knop-Sahi polynomial.

Jack polynomials

- Jack polynomials play a prominent role in Macdonald's remarkable monograph [M] on symmetric functions.
- They are eigenfunctions of Debiard-Sekiguchi differential operators
- Macdonald introduced a normalized version $J_\lambda^{(\alpha)} = c_\lambda(\alpha) P_\lambda^{(\alpha)}$ and considered its coefficients with respect to symmetric monomials m_μ .
- He conjectured ([M], VI.10.26?) that these coefficients belong to $\mathbb{N}[\alpha]$, i.e. they are positive integral polynomials in the parameter α .
- Knop and Sahi proved this conjecture in [KS2] and obtained a combinatorial formula in terms of certain “admissible” tableaux.

Positivity of interpolation polynomials

- We prove a conjecture of Knop and Sahi ([KS1]).
- This generalizes the positivity result for Jack polynomials.
- It involves the normalized interpolation polynomials

$$J_\lambda^{r\delta} := (-1)^{|\lambda|} c_\lambda(\alpha) P_\lambda^{r\delta}(-x),$$

- and their monomial coefficients

$$J_\lambda^{r\delta} = \sum_{\mu} \alpha^{|\mu| - |\lambda|} a_{\lambda, \mu}(\alpha) m_\mu.$$

Theorem ([Naqvi-Sahi-Sergel 2020])

The coefficients $a_{\lambda, \mu}(\alpha)$ belong to $\mathbb{N}[\alpha]$.

Example

- $$J_{(2,0)}^{r\delta} = \left(\frac{1}{r} + 1\right) \left((x_1 + r + 1)(x_1 + r) + r(x_2) \right) + 2x_1x_2 + \left(\frac{1}{r} + 1\right)(x_2 + r + 1)x_2.$$
- This vanishes at the points $-(0+r, 0), -(1+r, 0), -(1+r, 1)$
- When $x_1 = -1 - r$ and $x_2 = -1$, we have
$$\left(\frac{1}{r} + 1\right)(0 - r) + 2(1 + r) + \left(\frac{1}{r} + 1\right)(r)(-1).$$

Nonsymmetric Jack polynomials

- The Jack positivity results of [KS2] are proved in greater generality.
- Jack polynomials have nonsymmetric analogs $E_\eta^{(\alpha)}$, which are indexed by compositions $\eta \in \mathbb{N}^n$.
- They are eigenfunctions of the “trigonometric Dunkl operators” due to Cherednik, and were first considered by Heckman and Opdam [O].
- Knop and Sahi defined a certain normalized version $F_\eta^{(\alpha)} = d_\eta(\alpha) E_\eta^{(\alpha)}$
- The main result of [KS2] is that $F_\eta^{(\alpha)}$ has $\mathbb{N}[\alpha]$ -coefficients with respect to ordinary monomials $x^\gamma = x_1^{\gamma_1} \cdots x_n^{\gamma_n}$.

Nonsymmetric interpolation polynomials

- The interpolation polynomials admit nonsymmetric analogs $E_\eta^\rho(x)$.
- $E_\eta^\rho(x)$ has degree $|\eta| = \eta_1 + \dots + \eta_n$ and vanishes at the points

$$\{\bar{\gamma} : \gamma \in \mathbb{N}^n, |\gamma| \leq |\eta|, \gamma \neq \eta\},$$

- Here $\bar{\gamma} = \gamma + w_\gamma(\rho)$ where w_γ is the shortest permutation such that $w_\gamma^{-1}(\gamma)$ is a partition.
- These properties characterize E_η^ρ up to a multiple.
- In the special case $\rho = r\delta$ we have

$$E_\eta^{r\delta} = E_\eta^{(\alpha)} + \text{ terms of degree } < |\eta|.$$

- For these and other properties of E_η^ρ see [Kn1, S2].

Positivity of nonsymmetric interpolation polynomials

- We now formulate the nonsymmetric generalization of our result.
- This involves the normalized nonsymmetric interpolation polynomial

$$F_\eta^{r\delta} := (-1)^{|\eta|} d_\eta(\alpha) E_\eta^{r\delta}(-x),$$

- and its ordinary monomial coefficients

$$F_\eta^{r\delta} = \sum_{\gamma} \alpha^{|\gamma| - |\eta|} b_{\eta, \gamma}(\alpha) x^\gamma.$$

Theorem ([Naqvi-Sahi-Sergel 2020])

The coefficients $b_{\eta, \gamma}(\alpha)$ belong to $\mathbb{N}[\alpha]$.

- As we explain below, we actually prove a stronger result.

Examples

- $F_{(2,0)}^{r\delta} = \left(\frac{2}{r} + 1\right)\left(\frac{1}{r} + 1\right) \left((x_1 + 1 + r)(x_1 + r) + r(x_2) \right)$
 $+ \left(\frac{2}{r} + 1\right)x_1 x_2 + \left(\frac{1}{r} + 1\right)(x_2 + 1 + r)(x_2)$
- Check: It vanishes at these points:
 $-\overline{(0,0)} = (-r, 0), \quad -\overline{(1,0)} = (-1-r, 0), \quad -\overline{(0,1)} = (0, -1-r).$
 $-\overline{(1,1)} = (-1-r, -1), \quad -\overline{(0,2)} = (0, -2-r).$
- Similarly,
 - $F_{(1,1)}^{r\delta} = \left(\frac{1}{r} + 2\right)\left(\frac{1}{r} + 1\right)x_1 x_2$
 - $F_{(0,2)}^{r\delta} = \left(\frac{2}{r} + 2\right)x_1 x_2 + \left(\frac{2}{r} + 2\right)\left(\frac{1}{r} + 1\right)(x_2 + 1 + r)(x_2)$

The dehomogenization operator

- The homogenous $F_\eta^{(\alpha)}$ and the inhomogeneous $F_\eta^{r\delta}$ are both linear bases for the polynomial algebra $\mathbb{F}[x_1, \dots, x_n]$ over the field $\mathbb{F} = \mathbb{Q}(\alpha) = \mathbb{Q}(r)$.
- Thus there is a unique \mathbb{F} -linear operator $\Psi = \Psi_r$, which we call the *dehomogenization* operator, that satisfies

$$\Psi(F_\eta^{(\alpha)}) = F_\eta^{r\delta} \text{ for all } \eta \in \mathbb{N}^n.$$

- In fact, Ψ preserves the space of symmetric polynomials; moreover it maps $J_\lambda^{(\alpha)}$ to $J_\lambda^{r\delta}$ and hence $P_\lambda^{(\alpha)}(-x)$ to $P_\lambda^{r\delta}(-x)$.
- Thus Ψ is a generalization of the symmetric dehomogenization operator of [KS1] that maps $P_\lambda^{(\alpha)}$ to $P_\lambda^{r\delta}$.

Bar monomials and their positivity

- We consider the application of Ψ to an ordinary monomial.
- We call this a *bar-monomial*

$$x^{\underline{\eta}} = \Psi(x^{\eta})$$

- For $n = 1$ it is the rising factorial $x^{\underline{k}} = x(x+1)\cdots(x+k-1)$
- In general, one has a monomial expansion of the form

$$x^{\underline{\eta}} = x^{\eta} + \sum_{\gamma : |\gamma| < |\eta|} c_{\eta, \gamma}(r) x^{\gamma}.$$

Theorem ([Naqvi-Sahi-Sergel 2020])

The coefficient $c_{\eta, \gamma}(r)$ is a polynomial in $\mathbb{N}[r]$ of degree $\leq |\eta| - |\gamma|$.

- This implies the positivity result for interpolation polynomials.

Vanishing and Examples

Proposition

Let f be any homogeneous polynomial of degree k . Then $\Psi(f)$ is the unique polynomial with top component f that vanishes at all points $-\bar{\gamma}$ for all $|\gamma| < k$.

- $x\underline{(2,0)} = (x_1 + 1 + r)(x_1 + r) + r(x_2)$
- The top component is x_1^2 and it vanishes at the points $-\overline{(0,0)} = (-r, 0)$, $-\overline{(1,0)} = (-1-r, 0)$, $-\overline{(0,1)} = (0, -1-r)$.
- Similarly,
 - $x\underline{(1,1)} = (x_1)(x_2)$
 - $x\underline{(0,2)} = (x_2 + 1 + r)(x_2)$
- So, how can we construct these things? Why are they positive?

- Monomials can be generated recursively from $x^0 = 1$ by

$$\Phi(x^\gamma) = x^{\Phi\gamma}, \quad s_i(x^\gamma) = x^{s_i\gamma}$$

- Here $\Phi f(x) = x_n f(x_n, x_1, \dots, x_{n-1})$ and $\Phi\gamma = (\gamma_2, \dots, \gamma_n, \gamma_1 + 1)$.
- Also s_i interchanges x_i and x_{i+1} , or γ_i and γ_{i+1} for compositions.
- It turns out that there is an analogous recursion for bar-monomials.
- Let $\Phi_1 f(x) = x_n f(x_n + 1, x_1, \dots, x_{n-1})$ and $\sigma_i = s_i - \frac{r}{x_i - x_{i+1}} (1 - s_i)$.

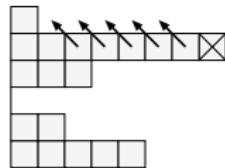
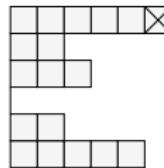
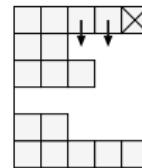
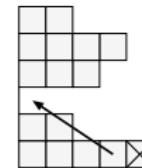
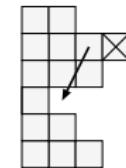
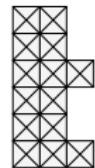
Lemma

We have $\Phi_1(x^\gamma) = x^{\Phi\gamma}$ and $\sigma_i(x^\gamma) = x^{s_i\gamma}$

- Unfortunately σ_i does *not* preserve positivity. We overcame this issue by solving the recursion to find an explicit combinatorial formula!

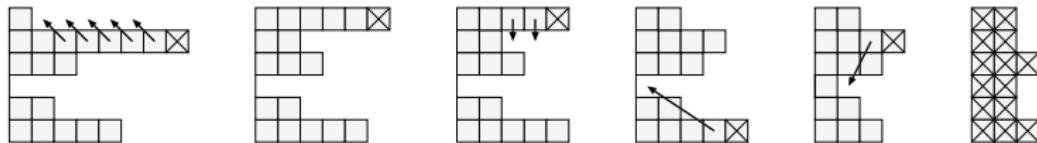
Bar games

- We play a solitaire game on the diagram of η , shrinking it gradually.
- A valid move at an intermediate composition γ has two steps:
 - ① Of the rightmost boxes of γ , delete the one in the highest row, i , say
 - ② Then move some boxes, possibly none, from the end of row i
 - either to up and strictly left of their original positions
 - or down and weakly left of their original positions.
- A game G is over when there are no more boxes left.
- Here is an example of a game on $(1, 8, 3, 0, 2, 5)$



Weighted sums of bar games

- The *weight* of a move is
 - r if any boxes are moved in step 2;
 - $x_i + (\gamma_i - 1) + r | \{j > i : \gamma_j < \gamma_i\} \cup \{j < i : \gamma_j < \gamma_i - 1\}|$ if not.
- The weight $w(G)$ of G is the product of its move weights.
- The game



has weight $r \cdot (x_1 + 5 + 5r) \cdot r \cdot r \cdot r \cdot (x_3 + 2 + 2r) \cdot (x_6 + 2) \cdot (x_1 + 1) \cdot (x_2 + 1) \cdots (x_6 + 1) \cdot x_1 x_2 \cdots x_6.$

Theorem ([Naqvi-Sahi-Sergel 2020])

We have $x^{\eta} = \sum_G w(G)$, summed over all possible G that start with η .

Proof: The operators σ_i and Φ_1 act nicely on weighted sums of games.

Computing a bar monomial

- Now we give an example of the full computation of $x^{\underline{\eta}}$.
- For brevity, when we delete a box without moving anything else, we record this with an \times and continue working with the same figure.
- Below are *all* games on $(1, 0, 4)$. We use them to compute $x^{\underline{1,0,4}}$.

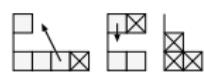
$$(x_3 + 3 + 2r) \cdot (x_3 + 2 + 2r) \cdot (x_3 + 1 + r) \cdot (x_1 + r) \cdot x_3$$

$$+ (x_3 + 3 + 2r) \cdot r \cdot x_1 \cdot x_2 \cdot x_3$$

$$+ r \cdot (x_1 + 1 + r) \cdot (x_3 + 1 + r) \cdot (x_1 + r) \cdot x_3$$

$$+ r \cdot (x_3 + 1) \cdot x_1 \cdot x_2 \cdot x_3$$

$$+ r \cdot (x_2 + 1 + r) \cdot x_1 \cdot x_2 \cdot x_3$$



$$+ r^2 \cdot (x_3 + 1 + r) \cdot x_2 \cdot x_3.$$

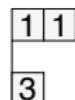
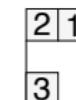
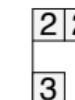
Computing an interpolation polynomial

- The dehomogenization operator Ψ is linear, so

$$F_\lambda^\alpha = \sum_T d_\lambda^0(T) x^T \quad \xrightarrow{\Psi} \quad F_\lambda^{r\delta} = \sum_T d_\lambda^0(T) x^T$$

- This gives a positive, combinatorial expansion for the interpolation polynomials in terms of admissible tableaux and games.
- Each game in the bottom row of the figure below gives a term in the expansion of $F_{(2,0,1)}^{r\delta}$.

0-admissible
tableaux:



multiplicities:

(2,0,1)

(1,1,1)

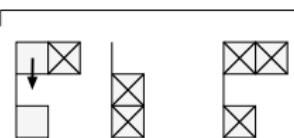
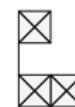
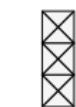
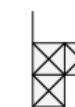
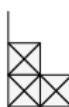
(1,0,2)

(1,1,1)

(0,2,1)

(0,1,2)

games:



References

- F. Knop. Symmetric and non-symmetric quantum Capelli polynomials. *Comment. Math. Helv.* 72: 84–100, 1997
- F. Knop and S. Sahi. Difference equations and symmetric polynomials defined by their zeros. *IMRN* 1996: 473–486, 1996
- F. Knop and S. Sahi. A recursion and a combinatorial formula for Jack polynomials. *Invent. Math.* 128: 9–22, 1997
- I. G. Macdonald. *Symmetric functions and Hall polynomials*. 2nd ed. Oxford University Press, New York, 1995
- E. Opdam. Harmonic analysis for certain representations of graded Hecke algebras, *Acta Math* 175: 75–121, 1995
- S. Sahi. The spectrum of certain invariant operators associated to a Hermitian symmetric space. *Progr. Math.* 123: 569–576. 1994
- S. Sahi. Interpolation, integrality, and a generalization of Macdonald's polynomials. *IMRN* 1996: 457–471, 1996