Some Liouville theorems and applications

YanYan Li*

Department of Mathematics
Rutgers University
110 Frelinghuysen Road
Piscataway, NJ 08854
USA

Dedicated to Haim Brezis with high respect and friendship

2000 Mathematics Subject Classification: 35J60, 35J70, 53A30

Abstract

We give exposition of a Liouville theorem established in [6] which is a novel extension of the classical Liouville theorem for harmonic functions. To illustrate some ideas of the proof of the Liouville theorem, we present a new proof of the classical Liouville theorem for harmonic functions. Applications of the Liouville theorem, as well as that of earlier ones in [5], can be found in [6, 7] and [9].

The Laplacian operator Δ is invariant under rigid motions: For any function u on \mathbb{R}^n and for any rigid motion $T: \mathbb{R}^n \to \mathbb{R}^n$,

$$\Delta(u \circ T) = (\Delta u) \circ T.$$

*Partially supported by NSF grant DMS-0401118. To appear in a volume in honor of Haim Brezis’ sixtieth birthday.
The following theorem is classical:

\[u \in C^2, \quad \Delta u = 0 \text{ and } u > 0 \text{ in } \mathbb{R}^n \text{ imply that } u \equiv \text{ constant}. \quad (1) \]

In this note we present a Liouville theorem in [6] which is a fully nonlinear version of the classical Liouville theorem (1).

Let \(u \) be a positive function in \(\mathbb{R}^n \), and let \(\psi : \mathbb{R}^n \cup \{ \infty \} \to \mathbb{R}^n \cup \{ \infty \} \) be a Möbius transformation, i.e. a transformation generated by translations, multiplications by nonzero constants and the inversion \(x \to x/|x|^2 \). Set

\[u_\psi := |J_\psi|^{\frac{n-2}{2n}}(u \circ \psi), \]

where \(J_\psi \) is the Jacobian of \(\psi \).

It is proved in [3] that an operator \(H(u, \nabla u, \nabla^2 u) \) is conformally invariant, i.e.

\[H(u_\psi, \nabla u_\psi, \nabla^2 u_\psi) \equiv H(u, \nabla u, \nabla^2 u) \circ \psi \text{ holds for all positive } u \text{ and all Möbius } \psi, \]

if and only if \(H \) is of the form

\[H(u, \nabla u, \nabla^2 u) \equiv f(\lambda(A^u)) \]

where

\[
A^u := - \frac{2}{n-2} u^{-\frac{n+2}{n-2}} \nabla^2 u + \frac{2n}{(n-2)^2} u^{-\frac{2n}{n-2}} \nabla u \otimes \nabla u - \frac{2}{(n-2)^2} u^{-\frac{2n}{n-2}} |\nabla u|^2 I,
\]

\(I \) is the \(n \times n \) identity matrix, \(\lambda(A^u) = (\lambda_1(A^u), \cdots, \lambda_n(A^u)) \) denotes the eigenvalues of \(A^u \), and \(f \) is a function which is symmetric in \(\lambda = (\lambda_1, \cdots, \lambda_n) \).

Due to the above characterizing conformal invariance property, \(A^u \) has been called in the literature the conformal Hessian of \(u \). Since

\[\sum_{i=1}^n \lambda_i(A^u) = - \frac{2}{n-2} u^{-\frac{n+2}{n-2}} \Delta u, \]

Liouville theorem (1) is equivalent to

\[u \in C^2, \quad \lambda(A^u) \in \partial \Gamma_1 \text{ and } u > 0 \text{ in } \mathbb{R}^n \text{ imply that } u \equiv \text{ constant}, \quad (2) \]

where

\[\Gamma_1 := \{ \lambda \mid \sum_{i=1}^n \lambda_i > 0 \}. \]
Let
\[\Gamma \subset \mathbb{R}^n \] be an open convex symmetric cone with vertex at the origin \hspace{0.1cm} (3)
satisfying
\[\Gamma_n := \{ \lambda \mid \lambda_i > 0, 1 \leq i \leq n \} \subset \Gamma \subset \Gamma_1. \hspace{0.1cm} (4) \]

Examples of such \(\Gamma \) include those given by elementary symmetric functions. For \(1 \leq k \leq n \), let
\[\sigma_k(\lambda) := \sum_{1 \leq i_1 < \cdots < i_k \leq n} \lambda_{i_1} \cdots \lambda_{i_k} \]
be the \(k \)-th elementary symmetric function and let \(\Gamma_k := \{ \lambda \in \mathbb{R}^n \mid \sigma_1(\lambda), \cdots, \sigma_k(\lambda) > 0 \} \), which is equal to the connected component of \(\{ \lambda \in \mathbb{R}^n \mid \sigma_k(\lambda) > 0 \} \) containing the positive cone \(\Gamma_n \), satisfies (3) and (4).

For an open subset \(\Omega \) of \(\mathbb{R}^n \), consider
\[\lambda(A^u) \in \partial \Gamma, \quad \text{in } \Omega. \hspace{0.1cm} (5) \]

The following definition of viscosity super and sub solutions of (5) has been given in [6].

Definition 1 A positive continuous function \(u \) in \(\Omega \) is a viscosity subsolution [resp. supersolution] of (5) when the following holds: if \(x_0 \in \Omega, \psi \in C^2(\Omega), (u - \psi)(x_0) = 0 \) and \(u - \psi \leq 0 \) near \(x_0 \) then
\[\lambda(A^\psi(x_0)) \in \mathbb{R}^n \setminus \Gamma. \]
[resp. if \((u - \psi)(x_0) = 0 \) and \(u - \psi \geq 0 \) near \(x_0 \) then \(\lambda(A^\psi(x_0)) \in \overline{\Gamma} \).]

We say that \(u \) is a viscosity solution of (5) if it is both a viscosity supersolution and a viscosity subsolution.

Remark 1 If a positive \(u \) in \(C^{1,1}(\Omega) \) satisfies \(\lambda(A^u) \in \partial \Gamma \) a.e. in \(\Omega \), then it is a viscosity solution of (5).

Here is the Liouville theorem.

Theorem 1 ([6]) For \(n \geq 3 \), let \(\Gamma \) satisfy (3) and (4), and let \(u \) be a positive locally Lipschitz viscosity solution of
\[\lambda(A^u) \in \partial \Gamma \quad \text{in } \mathbb{R}^n. \hspace{0.1cm} (6) \]

Then \(u \equiv u(0) \) in \(\mathbb{R}^n \).
Remark 2 It was proved by Chang, Gursky and Yang in [1] that positive $C^{1,1}(\mathbb{R}^4)$ solutions to $\lambda(A^u) \in \partial \Gamma_2$ are constants. Aobing Li proved in [2] that positive $C^{1,1}(\mathbb{R}^3)$ solutions to $\lambda(A^u) \in \partial \Gamma_2$ are constants, and, for all k and n, positive $C^3(\mathbb{R}^n)$ solutions to $\lambda(A^u) \in \partial \Gamma_k$ are constants. The latter result for $C^3(\mathbb{R}^n)$ solutions is independently established by Sheng, Trudinger and Wang in [8]. Our proof is completely different.

Remark 3 Writing $u = w^{\frac{n-2}{2}}$, then

$$A^u \equiv A_w := w \nabla^2 w - \frac{1}{2} |\nabla w|^2 I.$$

Theorem 1, with $\lambda(A^u) \in \partial \Gamma$ being replaced by $\lambda(A_w) \in \partial \Gamma$, holds for $n = 2$ as well. See [6].

In order to illustrate some of the ideas of our proof of Theorem 1 in [6], we give a new proof of the classical Liouville theorem (1). We will derive (1) by using the

Comparison Principle for Δ: Let Ω be a bounded open subset of \mathbb{R}^n containing the origin 0. Assume that $u \in C^2_{\text{loc}}(\overline{\Omega} \setminus \{0\})$ and $v \in C^1(\overline{\Omega})$ satisfy

$$\Delta u \leq 0 \quad \text{in } \Omega \setminus \{0\} \quad \text{and} \quad \Delta v \geq 0 \quad \text{in } \Omega,$$

and

$$u > v \quad \text{on } \partial \Omega.$$

Then

$$\inf_{\Omega \setminus \{0\}} (u - v) > 0.$$

It is easy to see from this proof of the Liouville theorem (1) that the following Comparison Principle for locally Lipschitz viscosity solutions of (5), established in [5, 6], is sufficient for a proof of Theorem 1.

Proposition 1 Let Ω be a bounded open subset of \mathbb{R}^n containing the origin 0, and let $u \in C^0_{\text{loc}}(\overline{\Omega} \setminus \{0\})$ and $v \in C^{0,1}(\overline{\Omega})$. Assume that u and v are respectively positive viscosity supersolution and subsolution of (5), and

$$u > v > 0 \quad \text{on } \partial \Omega.$$

Then

$$\inf_{\Omega \setminus \{0\}} (u - v) > 0.$$
For the proof of Proposition 1 and Theorem 1, see [5, 6]. In this note, we give the

Proof of Liouville theorem (1) based on the Comparison Principle for Δ. Let
\[
v(x) := \frac{1}{2} \min_{|y| = 1} u(y) |x|^2 - n, \quad v_1(x) := \frac{1}{|x|^{n-2}} v(\frac{x}{|x|^2}), \quad u_1(x) := \frac{1}{|x|^{n-2}} u(\frac{x}{|x|^2}).
\]
Since u_1 and v_1 are still harmonic functions, an application of the Comparison Principle for Δ on $\Omega := \text{the unit ball}$ yields
\[
\liminf_{|y| \to \infty} |y|^{n-2} u(y) > 0. \tag{7}
\]

Lemma 1 For every $x \in \mathbb{R}^n$, there exists $\lambda_0(x) > 0$ such that
\[
u_{x, \lambda}(y) := \frac{\lambda^{n-2}}{|y - x|^{n-2}} u(x + \frac{\lambda^2(y - x)}{|y - x|^2}) \leq u(y) \quad \forall \ 0 < \lambda < \lambda_0(x), \ |y - x| \geq \lambda.
\]

Proof. Without loss of generality we may take $x = 0$, and we use u_{λ} to denote $u_{0, \lambda}$. By the positivity and the Lipschitz regularity of u, there exists $r_0 > 0$ such that
\[
m^2 \cdot u(r, \theta) < s^2 \cdot u(s, \theta), \quad \forall \ 0 < r < s < r_0, \ \theta \in S^{n-1}.
\]
The above is equivalent to
\[
u_{\lambda}(y) < u(y), \quad 0 < \lambda < |y| < r_0. \tag{8}
\]
We know from (7) that, for some constant $c > 0$,
\[
u(y) \geq c |y|^{2-n}, \quad |y| \geq r_0.
\]
Let
\[
\lambda_0 := \left(\frac{c}{\max_{|z| \leq r_0} u(z)} \right)^{\frac{1}{n-2}}.
\]
Then
\[
u_{\lambda}(y) \leq (\frac{\lambda_0}{|y|})^{n-2} (\max_{|z| \leq r_0} u(z)) \leq c |y|^{2-n} \leq u(y), \quad \forall \ 0 < \lambda < \lambda_0, |y| \geq r_0. \tag{9}
\]
It follows from (8) and (9) that
\[
u_{\lambda}(y) \leq u(y), \quad \forall \ 0 < \lambda < \lambda_0, |y| \geq \lambda.
\]
Lemma 1 is established.

Because of Lemma 1, we may define, for any $x \in \mathbb{R}^n$ and any $0 < \delta < 1$, that
\[
\lambda_{\delta}(x) := \sup \left\{ \mu > 0 \mid \nu_{x, \lambda}(y) \leq (1 + \delta) u(y), \ \forall \ 0 < \lambda < \mu, |y - x| \geq \lambda \right\} \in (0, \infty].
\]
Lemma 2 For any \(x \in \mathbb{R}^n \) and any \(0 < \delta < 1 \), \(\tilde{\lambda}_\delta(x) = \infty \).

Proof. We prove it by contradiction. Suppose the contrary, then, for some \(x \in \mathbb{R}^n \) and some \(0 < \delta < 1 \), \(\tilde{\lambda}_\delta(x) < \infty \). We may assume, without loss of generality, that \(x = 0 \), and we use \(u_\lambda \) and \(\tilde{\lambda}_\delta \) to denote respectively \(u_{0,\lambda} \) and \(\tilde{\lambda}_\delta(0) \). Since the harmonicity is invariant under conformal transformations and multiplication by constants, and since

\[
u(y) = u_{\tilde{\lambda}_\delta}(y) < (1 + \delta)u_{\lambda}(y), \quad \forall |y| = \tilde{\lambda}_\delta,
\]

an application of (7) yields, using the fact that \((u_\lambda)_\lambda \equiv u \),

\[
\inf_{0 < |y| < \lambda} [(1 + \delta)u_{\tilde{\lambda}_\delta}(y) - u(y)] > 0.
\]

Namely, for some constant \(c > 0 \),

\[
(1 + \delta)u(y) - u_{\tilde{\lambda}_\delta}(y) \geq c|y|^{2-n}, \quad \forall |y| \geq \tilde{\lambda}_\delta.
\]

By the uniform continuity of \(u \) on the ball \(\{ z \mid |z| < \tilde{\lambda}_\delta \} \), there exists \(0 < \epsilon < \tilde{\lambda}_\delta \) such that for all \(\tilde{\lambda}_\delta \leq \lambda \leq \tilde{\lambda}_\delta + \epsilon \), and for all \(|y| \geq \lambda \), we have

\[
(1 + \delta)u(y) - u_\lambda(y) \geq (1 + \delta)u(y) - u_{\tilde{\lambda}_\delta}(y) + [u_{\tilde{\lambda}_\delta}(y) - u_\lambda(y)]
\]

\[
\geq c|y|^{2-n} - |y|^{2-n}|\lambda^{n-2}u(\frac{\lambda^2y}{|y|^2}) - \tilde{\lambda}_\delta^{n-2}u(\frac{\tilde{\lambda}_\delta^2y}{|y|^2})| \geq \frac{c}{2}|y|^{2-n}.
\]

This violates the definition of \(\tilde{\lambda}_\delta \). Lemma 2 is established.

\[\square\]

By Lemma 2, \(\tilde{\lambda}_\delta \equiv \infty \) for all \(0 < \delta < 1 \). Namely,

\[
(1 + \delta)u(y) \geq u_{x,\lambda}(y), \quad \forall 0 < \delta < 1, x \in \mathbb{R}^n, |y - x| \geq \lambda > 0.
\]

Sending \(\delta \) to 0 in the above leads to

\[
u(y) \geq u_{x,\lambda}(y), \quad \forall x \in \mathbb{R}^n, |y - x| \geq \lambda > 0.
\]

This easily implies \(u \equiv u(0) \). Liouville theorem (1) is established.

\[\square\]
References

