Workshop 4

1. Suppose that C_1 and C_2 are two curves in the plane, given parametrically by

$$C_1: \begin{cases} x(t) = 0\\ y(t) = 2t - 1 \end{cases} \text{ for } 0 \le t \le 1; \quad C_2: \begin{cases} x(t) = -\cos t\\ y(t) = \sin t \end{cases} \text{ for } -\frac{\pi}{2} \le t \le \frac{\pi}{2}.$$

a) Sketch these curves.

b) If f is a function defined in the plane, let $I_1(f)$ and $I_2(f)$ be the line integrals of f over these curves with respect to arc length: $I_1(f) = \int_{C_1} f(x, y) \, ds$ and $I_2(f) = \int_{C_2} f(x, y) \, ds$. In each case below determine which of $I_1(f)$ and $I_2(f)$ is greater or whether they are equal (that is, whether $I_1(f) > I_2(f)$, $I_1(f) < I_2(f)$ or $I_1(f) = I_2(f)$) without evaluating the integrals. Explain your reasoning carefully. Then check your answer by computing the integrals.

i)
$$f(x,y) = 17$$
; ii) $f(x,y) = x$; iii) $f(x,y) = y$.

2. a) Create a two-dimensional force field $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ defined on all of \mathbf{R}^2 except (0,0) with the following properties:

- i) **F** is always perpendicular to the level curves of the function $g(x, y) = x^2 + 4y^2$.
- ii) The magnitude of **F** at (x, y) is inversely proportional to the distance of (x, y) to the origin.
- iii) **F** at (1,0) is **i**.

b) Compute $\int_C M dx + N dy$ where C is the curve given $\begin{cases} x = 2\cos(t^{78}) \\ y = \sin(t^{78}) \end{cases}$.34 $\leq t \leq$.56. (Think physically!)