Workshop 4

1. Suppose that C_{1} and C_{2} are two curves in the plane, given parametrically by

$$
C_{1}:\left\{\begin{array}{c}
x(t)=0 \\
y(t)=2 t-1
\end{array} \text { for } 0 \leq t \leq 1 ; \quad C_{2}:\left\{\begin{array}{c}
x(t)=-\cos t \\
y(t)=\sin t
\end{array} \text { for }-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}\right.\right.
$$

a) Sketch these curves.
b) If f is a function defined in the plane, let $I_{1}(f)$ and $I_{2}(f)$ be the line integrals of f over these curves with respect to arc length: $I_{1}(f)=\int_{C_{1}} f(x, y) d s$ and $I_{2}(f)=\int_{C_{2}} f(x, y) d s$. In each case below determine which of $I_{1}(f)$ and $I_{2}(f)$ is greater or whether they are equal (that is, whether $I_{1}(f)>I_{2}(f), I_{1}(f)<I_{2}(f)$ or $\left.I_{1}(f)=I_{2}(f)\right)$ without evaluating the integrals. Explain your reasoning carefully. Then check your answer by computing the integrals.
i) $f(x, y)=17$;
ii) $f(x, y)=x$;
iii) $f(x, y)=y$.
2. a) Create a two-dimensional force field $\mathbf{F}=M \mathbf{i}+N \mathbf{j}$ defined on all of \mathbf{R}^{2} except $(0,0)$ with the following properties:
i) \mathbf{F} is always perpendicular to the level curves of the function $g(x, y)=x^{2}+4 y^{2}$.
ii) The magnitude of \mathbf{F} at (x, y) is inversely proportional to the distance of (x, y) to the origin.
iii) \mathbf{F} at $(1,0)$ is \mathbf{i}.
b) Compute $\int_{C} M d x+N d y$ where C is the curve given $\left\{\begin{array}{c}x=2 \cos \left(t^{78}\right) \\ y=\sin \left(t^{78}\right)\end{array} .34 \leq t \leq .56\right.$. (Think physically!)

