Workshop 4

1. A flat circular plate has the shape of the region $x^{2}+y^{2} \leq 1$. The plate (including the boundary $x^{2}+y^{2}=1$) is heated so that the temperature T at any point (x, y) is given by $T(x, y)=x^{3}-x+y^{2}$. Locate the hottest and coldest points of the plate and determine the temperature at each of those points.
2. a) What is the maximum value of the function $f(x, y)=3 x+5 y$ subject to the constraint $x^{2}+y^{2}=1$, and where is it attained? Draw a picture of the constraint and the appropriate level set of the objective function.
b) Suppose n is a positive real number. What is the maximum value of the function $f(x, y)=$ $3 x+5 y$ subject to the constraint $x^{n}+y^{n}=1$ and where is it attained? Your answers should all be functions of n.
c) What happens to the maximum value found in b) when $n \rightarrow \infty$? Try to draw a picture of the constraint and the level set when n is large.
d) What happens to the maximum value found in b) when $n \rightarrow 0^{+}$? Try to draw a picture of the constraint and the level set when n is small.
3. a) Suppose that $z=f(x, y)$, that $x=g(t)$ and $y=h(t)$, and that the functions f, g, and h are twice differentiable. Use the Chain Rule to find expressions for $\frac{d z}{d t}$ and $\frac{d^{2} z}{d t^{2}}$.
b) An insect crawls on a metal plate in the plane. At time $t=1$ its position vector is $\mathbf{i}+2 \mathbf{j}$, its velocity is $2 \mathbf{i}-\mathbf{j}$, and its acceleration is $3 \mathbf{i}+4 \mathbf{j}$. Suppose that the temperature of the plate at the point x, y is a certain function $T(x, y)$ satisfying

$$
\begin{array}{cc}
T(1,2)=2, & T_{x}(1,2)=-1, \\
T_{x x}(1,2)=0, & T_{y}(1,2)=3 \\
T_{x y}(1,2)=1, & T_{y y}(1,2)=-2 .
\end{array}
$$

If $T(t)$ is the temperature experienced by the insect at time t, find $\frac{d T}{d t}$ and $\frac{d^{2} T}{d t^{2}}$ at time $t=1$.
4. A rectangular box is to be constructed with volume one cubic foot. The material used in the top and bottom costs a dollars per square foot, in the front and back b dollars per square foot, and in the sides c dollars per square foot. Find the dimensions which will produce the cheapest box.

