Workshop 1

1. Let $L_{1}(t)=\langle 1+t, 2,3-t\rangle$ be a line in \mathbb{R}^{3}.
a) Find the point p on the line L_{1} that is closest to the origin.
b) Find the Cartesian equation of the plane \mathcal{P} containing L_{1} and the point $q=(1,0,-1)$.
c) Find the equation of the line L_{2} which is perpendicular to L_{1}, contains the point p, and is contained by the plane \mathcal{P}.
2. A spaceship maneuvering in space, far from any gravitational influences, is executing a predetermined acceleration program which yields a position vector $\mathbf{r}(t)$ for the ship, relative to a small space beacon, given by

$$
\mathbf{r}(t)=(t-2) \mathbf{i}+(t-3)^{2} \mathbf{j}+(t-4)^{3} \mathbf{k}
$$

a) Suppose that the captain shuts down the engines at time t_{0}. Find the subsequent motion of the ship.
b) Show that if t_{0} is chosen appropriately then the ship will hit the beacon.
3. Find equations for two orthogonal planes, both of which contain the line $\mathbf{v}=\langle 1,0,3\rangle+$ $t\langle-1,2,1\rangle$, one of which passes through the origin.
4. Suppose that \vec{v} is a vector in \mathbf{R}^{3} which is not the zero vector.
a) If $\vec{v} \cdot \vec{w}=\vec{v} \cdot \vec{q}$, must it be true that $\vec{w}=\vec{q}$?
b) If $\vec{v} \times \vec{w}=\vec{v} \times \vec{q}$, must it be true that $\vec{w}=\vec{q}$?
c) If $\vec{v} \cdot \vec{w}=\vec{v} \cdot \vec{q}$ and $\vec{v} \times \vec{w}=\vec{v} \times \vec{q}$, must it be true that $\vec{w}=\vec{q}$?

