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ADDITIONAL MULTIVARIABLE CALCULUS MATERIAL: HANDOUT 1

Please review material about vectors, dot and cross products and
local optimization of functions of several variables from the textbook
in its entirety before attempting to read this material. We have already
encountered matrices and determinants when computing cross products
in R3 and more recently as a part of the discriminant formula when
we locally optimized functions of several variables. In this handout
we will cover matrices in a somewhat more general sense. Please note
that matrices have a huge and complicated theory which is covered in a
branch of mathematics called Linear Algebra. In this handout we will
only cover a very small portion of this wonderful theory.

� �

1. The Basics

We have already seen that a matrix is a rectangular grid of objects.
Typically, these objects are numbers, but (as we have already seen),
there is no restriction on using functions instead of numbers, or even
other matrices. Here is an example of a matrix of numbers:

M =

[
1 2 3
4 5 6

]
We say that M has two rows and three columns, or that A is a 2×3
matrix. The rows of M can be thought of as vectors: there are only two
of them, namely R1 = [ 1 2 3 ] and R2 = [ 4 5 6 ]; these are vectors in R3.
On the other hand there are three column vectors, namely C1 = [ 14 ],
C2 = [ 25 ] and C3 = [ 36 ]. Each of these is a vector in R2.

In order to refer to the actual components of M , we index them by
row and column number. For instance, M12 is the number in the first
row and second column of M , namely 2. Similarly, M21 = 4 and so on.

So we can either write M as a vertical vector of its two row vectors,
like so: M =

[
R1
R2

]
or as a horizontal vector of its three column vectors:

M = [ C1 C2 C3 ]. It is important to know that even aside from our
experiences with cross products, matrices are not new. We have seen
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matrices before and manipulated them regularly. For example, every
number is a 1 × 1 matrix. A less silly example: each vector in ~v in
Rk can be thought of as a 1 × k matrix [ v1 ... vk ] or as a k × 1 matrix[ v1

...
vk

]
. In the past, we have not emphasized the difference between “row

vectors” and “column vectors”, but we will be careful here.

Fact 1.1. Any matrix M is a rectangular grid of size m×n. Moreover,

(1) m is the number of rows of M .
(2) n is the number of columns of M .
(3) M has m row vectors. Each row vector of M is n dimensional.
(4) M has n column vectors. Each column vector of M is m di-

mensional.
(5) M may be seen as a vertical vector of its m row vectors or a

horizontal vector of its n column vectors.
(6) Every number is a 1 × 1 matrix.
(7) Each vector of dimension k may be seen as a 1 × k (row) or a

k × 1 (column) matrix.

And here are some extremely simple exercises to test these basic
concepts.

1.1. Exercises. Throughout these exercises, set M =
[
3 5 −9 1
1 7 9 0
2 3 5 6

]
.

1. How many rows and columns does M have?

2. What are the row vectors of M?

3. What are the column vectors of M?

4. What are M32, M11 and M23?

5. Give an example of a 4 × 2 matrix N . Do problems 2 and 3 for N
instead of M .

6. Rewrite [ 1 2 4 3 ] as a column vector.

� �
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2. Matrix Algebra

There are three important matrix operations that we will consider
here. In increasing order of difficulty, they are: scaling, addition and
multiplication.

Scaling of matrices is very similar to the scaling of vectors. Given
a number r and a matrix M , the matrix rM has the same size as M
but each individual component in the matrix is multiplied by r. For
example, if M = [ 1 2

3 4 ] then 2M = [ 2 4
6 8 ]. Thus the operation of scaling

requires as input a number and a matrix, and its output is a matrix of
the same size as the input matrix.

Addition of matrices is also very similar to adding vectors; everything
happens componentwise. Obviously this requires the sizes of the two
matrices being added to be the same. So for example, if we have

M =
[
1 2 3
4 5 6
7 8 9

]
, N =

[
5 1 −3
−7 2 0
3 3 1

]
and P =

[ −4 5 1
3 6 −9

]
then we can add M

and N to each other, but neither M nor N can be added to P because
the number of columns don’t match. In any case, adding M and N
gives a new matrix M +N which has the same size as M and N . Here
is that matrix:

M + N =

1 2 3
4 5 6
7 8 9

+

 5 1 −3
−7 2 0
3 3 1

 =

 6 3 0
−3 7 6
10 11 10


As you can see, each component of the matrix M + N is the sum of
the corresponding components from M and N . Thus, the operation of
adding matrices takes as input two matrices of the same size m × n,
and the output is another matrix of size m× n.

Matrix multiplication is much trickier than scaling or adding, and
we will deal with it later. First, here are some more exercises on adding
and scaling.

2.1. Exercises. Let M =
[

1 −2 1 6
3 −4 5 2
−5 1 2 5

]
for these exercises.

1. Compute 2M and 0M .

2. Which of the following matrices are we allowed to add to M?

(1) N =
[

5 1 0 −3
−7 4 2 0

]
(2) P =

[
−4 5
3 6
3 8

]
(3) Q =

[
2 1 8 −4
10 −1 4 6
−3 −1 0 9

]
3. Compute the sum of M with each matrix from Exercise 2 that can
be added to M .



4 ADDITIONAL MULTIVARIABLE CALCULUS MATERIAL: HANDOUT 1

4. Compute M − 2Q and 2M + Q. Remember that you have already
computed 2M in Exercise 1 and that Q is defined in Problem 2.

� �

3. Matrix Multiplication

Computationally, multiplication is the hardest of the matrix opera-
tions that we will consider. Unfortunately, it is also the most useful.

We represent the product of two matrices A and B as AB. There
are a few rules first: the number of columns of A must be equal to the
number of rows of B. We will define the matrix product AB using
dot products. So if A has size m × n then we require B to have size
n × p. Note that the n must be common to the sizes of both A and

B. Write A =
[

R1
:

Rm

]
as a collection of row vectors. Also write B =

[ C1 ... Cp ] as a collection of column vectors. Note that all vectors here,
R1, . . . , Rm, C1, . . . Cn are n-dimensional. Now, AB is the m×p matrix
defined by

AB =

R1 · C1 . . . R1 · Cp
...

. . .
...

Rm · C1 . . . Rm · Cp


Here each component is a dot product. For instance, AB11 is the dot
product of R1 with C1. A quick reminder about the size of the product
matrix:

(m× n)-matrix times (n× p)-matrix = (m× p)-matrix

3.1. A Real Example. We will multiply the matrix A = [ 1 2 3
4 5 6 ] with

the matrix B =
[

2 1
3 4
−1 3

]
. First check that this is possible: the size of A

is 2× 3 and the size of B is 3× 2. As required by the rule, the number
of columns of A equals the number of rows of B since both quantities
equal 3. We also know that the size of AB will be 2 × 2. Let’s try to
compute this matrix: we will find values of a through d in the following
equation.

AB =

[
1 2 3
4 5 6

] 2 1
3 4
−1 3

 =

[
a b
c d

]
Let’s use the definition above. First, the decomposition of A into row
vectors gives us R1 = [ 1 2 3 ] and of course R2 = [ 4 5 6 ]. Similarly,

the decomposition of B into column vectors yields C1 =
[

2
3
−1

]
and
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C2 =
[
1
4
3

]
. Now a = AB11 = R1 · C1. This dot product equals (1 ×

2 + 2 × 3 + 3 × −1) = 5. Similarly, b = AB12 is the dot product of
R1 · C2 = 18. Similarly, c = AB21 = R2 · C1 = 17 and d = R2 · C2 = 6.
So,

AB =

[
5 18
17 42

]
Note that computing BA is a very different proposition. Again we have
to check that the product is even possible. Since B has size 3 × 2 and
A has size 2 × 3, we know that BA will have size 3 × 3. BA does not
even have the same size as AB, so clearly there is no hope of getting
AB to be the same matrix as BA. Applying the same principles as
above, we see that

BA =

 6 9 12
11 26 31
11 13 15


As a sample computation, BA11 is the dot product of [ 2 1 ] with [ 1 4 ]
which equals 6.

3.2. Matrices as Linear Functions from Rm to Rn. Let’s pick a
matrix like our old friend M = [ 1 2 3

4 5 6 ]. The size is of course 2 × 3,
so if I wanted to multiply this matrix on the left with a vector ~v on
the right, the vector would have to have size 3 × 1. The 3 comes from
wanting to be able to multiply by M , so the number of rows of our
vector must equal the number of columns of our matrix M , i.e., 3. The
1 comes from the fact that, well, ~v is a vector after all, so it can’t have
more than one row and more than one column! So pick some vector

~v =
[

1
−1
0

]
for example. And now let’s multiply; the answer should be

a 2 × 1 matrix, like so:

M~v =

[
1 2 3
4 5 6

] 1
−1
0

 =

[
1 − 2 + 0
4 − 5 + 0

]
=

[
−1
−1

]
But why be so specific? Let’s multiply M by a completely arbitrary

vector
[
x
y
z

]
in R3. We get M

[
x
y
z

]
=
[

x+2y+3z
4x+5y+6z

]
. So we can define a

function f from R3 to R2 which describes “multiplication by M”:

f(x, y) = (x + 2y + 3z, 4x + 5y + 6z)

This is a complete description of the matrix M as a function from R3

to R2! This also shows that any such matrix M is a linear function
because no powers higher than 1 will ever show up in any component
of the output; there are no x2 terms, for instance. So a matrix of size
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2 × 3 takes as input vectors in R3 and the output is a vector in R2.
This rule generalizes to any matrix of any size!

An m× n matrix takes as input an n-vector and outputs an m-vector

Here are some exercises involving matrix multiplication. I strongly urge
you to do these exercises, because in addition to testing the concepts
defined above they will provide intuition about distributive laws of
matrix multiplication, identity matrices and so on.

3.3. Exercises.

1. For each pair of matrices A and B below, find both AB and BA
whenever possible. If multiplication is not possible, explain why not.

(1) A = [ 1 2
3 −1 ], B = [ 21 ].

(2) A = [ 1 2
3 −1 ], B = [ 2 1 ].

(3) A = [ 1 2
3 −1 ], B =

[
2
1
0

]
.

(4) A = [ 1 2
3 −1 ], B = [ 2 1

0 3 ].

2. Compute AB and BA when A =
[

1 3 0
2 1 4
−2 0 1

]
and B =

[
1 0 1
0 1 −1
−1 1 0

]
.

Confirm that even when both AB and BA are defined, they need not
be equal to each other.

3. For the matrices A and B in Exercise 2 and C =
[

0 3 0
1 0 2
−1 1 0

]
, compute

(A + 2B)(C). Then compute AC + 2(BC). Confirm that these two
matrices are equal. Multiplication distributes across addition.

4. Given A and B from Exercise 2 and C from Exercise 3, confirm that
(AB)C = A(BC).

5. Let M = [ 1 2
3 4 ] and let I2 = [ 1 0

0 1 ]. The matrix I2 is called the identity
matrix of size 2×2. I2 contains 1’s along the diagonal and 0’s elsewhere.
Check that MI2 = M and I2M = M .

6. What do you expect the identity matrix I3 of size 3 × 3 to look
like based on your experience in Exercise 5? Confirm that your guess
is correct by checking that NI3 = N and I3N = N for the matrix

N =
[
1 2 3
4 5 6
7 8 9

]
.

7. Given M =
[
3 2
1 −1
2 5

]
what is the input and output dimension for

vectors that can be multiplied to this matrix on the right?
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8. Write a function from R2 to R3 which describes the output of M
from Exercise 7 when an input vector ~v = [ xy ] is multiplied to M on
the right.

� �

4. Determinants and Volumes

We have already encounted determinants when computing cross prod-
ucts. Determinants are defined only for square matrices, i.e., matrices
for which the number of rows equals the number of columns. The deter-
minant takes as input a square matrix and produces as output a single
number. Some examples of such matrices are

(1) 1 × 1 matrices, which are just numbers. The determinant of a
number k is just k itself.

(2) 2 × 2 matrices, which look like [ a b
c d ]. The determinant det [ a b

c d ]
equals ad − bc, as we have already seen when computing the
discriminant, for instance.

(3) 3×3 matrices, which look like
[
a b c
d e f
g h i

]
. We can reduce the com-

putation of this determinant to computing three determinants
of 2 × 2 matrices in the following way:

det

a b c
d e f
g h i

 = a · det

[
e f
h i

]
− b · det

[
d f
g i

]
+ c ·

[
d e
g h

]
Beware the minus sign in the middle! The 2 × 2 matrix whose
determinant we are multiplying by a in the first term is just the
matrix that you would get by blocking out the row and column
containing a. As you can see, there is a similar situation with
the second term, etc.

Let’s (gulp!) compute the determinant of a “random” 3 × 3 matrix.

Here it is: N =
[
1 2 −1
0 2 1
4 2 −3

]
. Applying our formula, we see that

detN = 1 · det [ 2 1
2 −3 ] − 2 · det [ 0 1

4 −3 ] + (−1) · det [ 0 2
4 2 ]

Now let’s compute each of the three 2 × 2 determinants on the right
side. This gives:

detN = 1 · (−6 − 2) − 2 · (0 − 4) + (−1) · (0 − 8)

We are very close to the answer now. Carry out the simple algebra,
and get

detN = −8 + 8 + 8 = 8
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If we are being considerably more masochistic, we can try to compute
the determinant of a simple 4 × 4 matrix. Here is an example

M =


1 1 0 −1
0 1 1 0
1 0 1 2
1 0 1 1



Here is the first step of the computation:

detM = 1 · det
[
1 1 0
0 1 2
0 1 1

]
− 1 · det

[
0 1 0
1 1 2
1 1 1

]
+ 0 · det

[
who
cares,
really?

]
− 1 ·

[
0 1 1
1 0 1
1 0 1

]

Since we all know how to compute these 3 × 3 determinants, I will
stop here, but you can see that this gets extremely messy. We will
restrict our attention to 3 × 3 as a worst case. In linear algebra you
will learn tricks to compute determinants of larger matrices much more
efficiently via row reduction. We will not worry about that here.

4.1. Relation to Areas and Volumes. Now that we know how to
compute determinants, we might ask: what is a determinant good for?
The answer is straightforward to state, but rather intricate to prove.
Let’s say we have n vectors in Rn. As an example, we can take two
vectors in R2: let’s pick v1 = [ 21 ] and v2 = [ 3

−1 ]. We know that these
two vectors represent a parallelogram with vertices (0, 0), (2, 1), (3,−1)
and (5, 0)∗. We already know that the area of this parallelogram is
the magnitude of the cross product between the vectors describing the
edges: (2, 1, 0) and (3,−1, 0). We have tacked on a z coordinate of 0 so
that these vectors sit in R3 and can be crossed. Now the cross product

equals (2, 1, 0) × (3,−1, 0) = (−2 − 3)~k = −5~k which has a magnitude
of 5.

∗The last vertex is the sum of the two non-zero vertices by the parallelogram law.
Remember?
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Now let’s compute the determinant of the vectors ~v1 = [ 21 ] and ~v2 =
[ 3,−1 ] shoved into a matrix in the obvious way. This gives us the
matrix M = [ 2 3

1 −1 ]. We can see immediately that the determinant of
M is detM = −2− 3 = −5. Up to a minus sign, this is the area of the
parallelogram that we have computed before!

If we have a box in R3 with parallel edges determined by three vectors
~u1, ~u2 and ~u3, then the determinant of the matrix N = [ u1 u2 u3 ] gives
us the 3D volume of that box. We already knew this from learning
about the scalar triple product. But if you take four vectors in R4,
what is the 4D volume of the box bounded by these vectors? Cross
products will not rescue us this time, but the determinant formula
for volume will! Here is the take-away lesson about determinants and
volumes: up to possibly a minus sign,

volume of box with edge vectors ~v1, · · · , ~vn = det
[
v1 · · · vn

]
And finally, here are some Exercises. As usual, some notions are intro-
duced here so you should definitely try to solve them.

4.2. Exercises. Let A =

[
2 3
1 4

]
and B =

[
−1 2
1 3

]
.

1. Compute detA and detB.

2. Compute detAB and detBA. It is a wonderful fact that detAB =
detA · detB = detBA, even though AB may not be equal to BA!

3. What is the 3D volume of the box in R3 with edge vectors ~v1 =
[
1
2
1

]
,

~v2 =
[
3
0
3

]
and ~v3 =

[
1
1
0

]
?
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