Quiz 9
Math 250
Let A be a 2×2 matrix having eigenvalues 5 and -4 , and corresponding eigenvectors $\left[\begin{array}{c}-1 \\ 3\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -2\end{array}\right]$.
(1) What is the characteristic polynomial of A ?
(2) Find A^{3}.
(1) $\operatorname{det}\left(A-t I_{2}\right)=(5-t)(-4-t)$
(2) $A=P D P^{-1}$, where

$$
P=\left[\begin{array}{cc}
-1 & 1 \\
3 & -2
\end{array}\right]
$$

and

$$
D=\left[\begin{array}{cc}
5 & 0 \\
0 & -4
\end{array}\right] .
$$

We can also find the inverse of P, which is given by

$$
P^{-1}=\left[\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right]
$$

Now we know that

$$
\begin{aligned}
A^{3} & =P D^{3} P^{-1} \\
& =\left[\begin{array}{cc}
-1 & 1 \\
3 & -2
\end{array}\right]\left[\begin{array}{cc}
5^{3} & 0 \\
0 & (-4)^{3}
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-(5)^{3} & (-4)^{3} \\
3(5)^{3} & -2(-4)^{3}
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-2(5)^{3}+3(-4)^{3} & -(5)^{3}+(-4)^{3} \\
6(5)^{3}-6(-4)^{3} & 3(5)^{3}-2(-4)^{3}
\end{array}\right] .
\end{aligned}
$$

