Quiz 8
Math 250
Let A be a 3×3 matrix such that $\operatorname{det} A=3$. Evaluate the determinant of each matrix given below.
(1) A^{3}
(2) $\left(2 A^{T}\right)^{-1}$

$$
\left[\begin{array}{ccc}
4 a_{21} & 4 a_{22} & 4 a_{23} \tag{3}\\
a_{11}+5 a_{31} & a_{12}+5 a_{32} & a_{13}+5 a_{33} \\
a_{31}-2 a_{21} & a_{32}-2 a_{22} & a_{33}-2 a_{23}
\end{array}\right]
$$

(1) $\operatorname{det}\left(A^{3}\right)=(\operatorname{det}(A))^{3}=3^{3}=27$
(2) $\operatorname{det}\left(\left(2 A^{T}\right)^{-1}\right)=\frac{1}{\operatorname{det}\left(2 A^{T}\right)}=\frac{1}{2^{3} \operatorname{det}\left(A^{T}\right)}=\frac{1}{8 \operatorname{det}(A)}=\frac{1}{(8)(3)}=\frac{1}{24}$
(3) The given matrix is obtained from A using the following elementary row operations:

$$
\begin{aligned}
5 r_{3}+r_{1} & \rightarrow r_{1} \\
-2 r_{2}+r_{3} & \rightarrow r_{3} \\
r_{1} & \leftrightarrow r_{2} \\
4 r_{2} & \rightarrow r_{2}
\end{aligned}
$$

The first two row operations do not affect the determinant, but the third one changes it by a factor of -1 and the last one changes it by a factor of 4 .
Therefore, $\operatorname{det}\left(\left[\begin{array}{ccc}4 a_{21} & 4 a_{22} & 4 a_{23} \\ a_{11}+5 a_{31} & a_{12}+5 a_{32} & a_{13}+5 a_{33} \\ a_{31}-2 a_{21} & a_{32}-2 a_{22} & a_{33}-2 a_{23}\end{array}\right]\right)=(-1)(4)(3)=-12$.

