Quiz 7
Math 250
Determine whether each of the sets below is a subspace of \mathcal{R}^{2}. Justify your answer.
(1) $V=\left\{\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] \in \mathcal{R}^{2}: v_{1}-3 v_{2}=0\right\}$
(2) $W=\left\{\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] \in \mathcal{R}^{2}: w_{1}\left(1-w_{2}\right)=0\right\}$
(1) (a) Let $\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Then $v_{1}-3 v_{2}=0-3(0)=0$, so $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is in V.
(b) Suppose $\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$ and $\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ are in V. Then $u_{1}-3 u_{2}=0$ and $v_{1}-3 v_{2}=0$. Therefore,

$$
\left(u_{1}+v_{1}\right)-3\left(u_{2}+v_{2}\right)=u_{1}-3 u_{2}+v_{1}-3 v_{2}=0+0=0,
$$

and so $\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]+\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is in V.
(c) Suppose $\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is in V. Then $v_{1}-3 v_{2}=0$. Therefore

$$
c v_{1}-3 c v_{2}=c\left(v_{1}-3 v_{2}\right)=c(0)=0
$$

and so $c\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is in V.
Thus, V is a subspace of \mathcal{R}^{2}.
(2) The vectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ are both in W (since $1-w_{2}$ is 0 in each case). However, their sum $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ is not in W, since $w_{1}\left(1-w_{2}\right)=-3$ in this case. Therefore, W is not closed under addition, and hence is not a subspace of \mathcal{R}^{2}.

