Quiz 7 Math 250

Determine whether each of the sets below is a subspace of \mathcal{R}^2 . Justify your answer.

(1)
$$V = \left\{ \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \in \mathcal{R}^2 : v_1 - 3v_2 = 0 \right\}$$

(2)
$$W = \left\{ \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \in \mathcal{R}^2 : w_1(1 - w_2) = 0 \right\}$$

- (1) (a) Let $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Then $v_1 3v_2 = 0 3(0) = 0$, so $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is in V. (b) Suppose $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ are in V. Then $u_1 - 3u_2 = 0$ and $v_1 - 3v_2 = 0$. Therefore, $(u_1 + v_1) - 3(u_2 + v_2) = u_1 - 3u_2 + v_1 - 3v_2 = 0 + 0 = 0$, and so $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is in V. (c) Suppose $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is in V. Then $v_1 - 3v_2 = 0$. Therefore $cv_1 - 3cv_2 = c(v_1 - 3v_2) = c(0) = 0$, and so $c \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is in V. Thus, V is a subspace of \mathcal{R}^2 .
- (2) The vectors $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 2\\1 \end{bmatrix}$ are both in W (since $1 w_2$ is 0 in each case). However, their sum $\begin{bmatrix} 3\\2 \end{bmatrix}$ is not in W, since $w_1(1 w_2) = -3$ in this case. Therefore, W is not closed under addition, and hence is not a subspace of \mathcal{R}^2 .