Quiz 6
Math 250
For each of the following transformations $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, either show that f is linear and write down its standard matrix, or explain why f is not linear.
(1) $f\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1}+x_{2} \\ x_{1}\end{array}\right]$
(2) $f\left(\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]\right)=\left[\begin{array}{c}x_{1} x_{2} \\ x_{1}\end{array}\right]$
(1)

$$
\begin{aligned}
f\left(\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2}
\end{array}\right]\right) & =\left[\begin{array}{c}
x_{1}+y_{1}+x_{2}+y_{2} \\
x_{1}+y_{1}
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{1}+x_{2} \\
x_{1}
\end{array}\right]+\left[\begin{array}{c}
y_{1}+y_{2} \\
y_{1}
\end{array}\right] \\
& =f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)+f\left(\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right) \\
f\left(\left[\begin{array}{l}
c x_{1} \\
c x_{2}
\end{array}\right]\right) & =\left[\begin{array}{c}
c x_{1}+c x_{2} \\
c x_{1}
\end{array}\right] \\
& =\left[\begin{array}{c}
c\left(x_{1}+x_{2}\right) \\
c x_{1}
\end{array}\right] \\
& =c f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)
\end{aligned}
$$

Thus, f is linear. Its standard matrix A is given by

$$
\begin{align*}
& A=\left[f\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right) \quad f\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)\right] \\
&=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \cdot \\
& f\left(\left[\begin{array}{l}
c x_{1} \\
c x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
\left(c x_{1}\right)\left(c x_{2}\right) \\
c x_{1}
\end{array}\right] \tag{2}\\
&=\left[\begin{array}{c}
c^{2}\left(x_{1} x_{2}\right) \\
c x_{1}
\end{array}\right] \\
& c f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
c\left(x_{1} x_{2}\right) \\
c x_{1}
\end{array}\right] \\
& \Rightarrow f\left(\left[\begin{array}{l}
c x_{1} \\
c x_{2}
\end{array}\right]\right) \neq c f\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)
\end{align*}
$$

Thus, f is not linear.

