Quiz 1
Math 250

1. Let $\mathbf{u}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$. Write down the rotation matrix corresponding to a clockwise rotation of 45°, and find the vector obtained by rotating \mathbf{u} in this way. (Note that $\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}$.)

The rotation matrix corresponding to an angle of 45° clockwise is given by:

$$
A_{-45}=\left[\begin{array}{cc}
\cos 45 & \sin 45 \\
-\sin 45 & \cos 45
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] .
$$

To rotate \mathbf{u} in this way, we compute the matrix-vector product $A_{-45} \mathbf{u}$. This is given by:

$$
\begin{aligned}
A_{-45} \mathbf{u} & =\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left(3\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{c}
4 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \sqrt{2} \\
-\sqrt{2}
\end{array}\right]
\end{aligned}
$$

