
Quiz 11
Math 250

Let W = Span S, where S =
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(1) Find an orthonormal basis for W .
(2) Find the orthogonal projection of ~u on W .

(1) Use the Gram-Schmidt process to find an orthogonal basis {v1, v2}. We get that:
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To get an orthonormal basis { ~w1, ~w2}, we set

~w1 =
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(The solution is continued on the next page.)
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(2) We can solve this in two different ways:
Method 1: Given an orthonormal basis { ~w1, ~w2} of W , the projection of ~u onto W is given

by:
UW (~u) = ~u · ~w1 + ~u · ~w2.

This can be calculated using the given ~u and the set { ~w1, ~w2} obtained in the
previous part.
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Method 2: The projection of ~u on W is also given by:

UW (~u) = PWu = C(CTC)−1CT~u

where C =

1 5
1 −1
1 2

.

This method will certainly give you the correct answer, but is a lot more tedious
in this case. In general, if you already have an orthogonal basis, it is much easier
to use Method 1 instead.


