Quiz 11
Math 250
Let $W=$ Span S, where $S=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}5 \\ -1 \\ 2\end{array}\right]\right\}$, and let $\vec{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
(1) Find an orthonormal basis for W.
(2) Find the orthogonal projection of \vec{u} on W.
(1) Use the Gram-Schmidt process to find an orthogonal basis $\left\{v_{1}, v_{2}\right\}$. We get that:

$$
\begin{aligned}
\overrightarrow{v_{1}} & =\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
\overrightarrow{v_{2}} & =\left[\begin{array}{r}
5 \\
-1 \\
2
\end{array}\right]-\frac{\left[\begin{array}{c}
5 \\
-1 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
5 \\
-1 \\
2
\end{array}\right]-\frac{6}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right] .
\end{aligned}
$$

To get an orthonormal basis $\left\{\overrightarrow{w_{1}}, \overrightarrow{w_{2}}\right\}$, we set

$$
\overrightarrow{w_{1}}=\frac{\overrightarrow{v_{1}}}{\left\|\overrightarrow{v_{1}}\right\|}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \overrightarrow{w_{2}}=\frac{\overrightarrow{v_{2}}}{\left\|\overrightarrow{v_{2}}\right\|}=\frac{1}{\sqrt{18}}\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right]
$$

(The solution is continued on the next page.)
(2) We can solve this in two different ways:

Method 1: Given an orthonormal basis $\left\{\overrightarrow{w_{1}}, \overrightarrow{w_{2}}\right\}$ of W, the projection of \vec{u} onto W is given by:

$$
U_{W}(\vec{u})=\vec{u} \cdot \overrightarrow{w_{1}}+\vec{u} \cdot \overrightarrow{w_{2}} .
$$

This can be calculated using the given \vec{u} and the set $\left\{\overrightarrow{w_{1}}, \overrightarrow{w_{2}}\right\}$ obtained in the previous part.

$$
\begin{aligned}
U_{W}(\vec{u}) & =\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \cdot \frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) \frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left(\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \cdot \frac{1}{\sqrt{18}}\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right]\right) \frac{1}{\sqrt{18}}\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right] \\
& =\frac{6}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\frac{-3}{18}\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right] .
\end{aligned}
$$

Method 2: The projection of \vec{u} on W is also given by:

$$
U_{W}(\vec{u})=P_{W} u=C\left(C^{T} C\right)^{-1} C^{T} \vec{u}
$$

where $C=\left[\begin{array}{cc}1 & 5 \\ 1 & -1 \\ 1 & 2\end{array}\right]$.
This method will certainly give you the correct answer, but is a lot more tedious in this case. In general, if you already have an orthogonal basis, it is much easier to use Method 1 instead.

