Math 152, Spring 2011, Review Problems for Midterm Exam 2

Your second midterm examination is likely to contain some problems that do
not resemble these review problems.

(1) Evaluate the following improper integrals:
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(2) Show that one of these improper integrals converges, and that one them diverges:
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(3) Find the length of the cardioid » =1 — cosf, 0 < 6 < 2.

(4) Find the area inside the cardioid r =1 — cosf, 0 < 6 < 27.

(5) Find the length of the curve y = (z +2)3%/2, 0 <z < 1.

(6) Use calculus to find the surface area of a sphere of radius R.

(7) Find the center and radius of the circle r =sinf, 0 < 6 < 7.

(8) Find a parametrization = = f(t), y = g(¢) of the ellipse 922 + 163> = 36.

(9) Find the length of the curve given parametrically by z =2, y =13, 1 <t < 2.
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(10) Find the Taylor polynomial T5(z) of the function f(z) = — with center at a = 1.
T

Find an estimate for |f(3/2) — T5(3/2)| using the Error Bound.

(11) Evaluate the following limits:
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(12) Write the repeating decimal 5.273273273 ... in the form p/q, where p and ¢ are natural
numbers.



(13) Evaluate each of the following sums. Your answers must be simple numbers.
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(14) For each series below, determine whether it converges or diverges. Explain your

reasons.
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(15) Estimate the error involved in taking the sum of the first 10 terms of each of the
following series as an approximation to the full sum.

DD Dl
n=1 n=1

(16) Define absolute convergence, and give an example of a series that converges condition-
ally, but does not converge absolutely.

(17) An infinite sequence is defined by a; = 1 and a,4+1 = v/12+a, forn =1,2,3,... .

Assume that the sequence converges. Find lim a,,.
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