Notes on the Review Problems for Midterm 2

(1)(a) The partial fractions expansion $\frac{1}{(x-3)(x-4)} = \frac{1}{x-4} - \frac{1}{x-3}$ gives

$$\int_{5}^{\infty} \frac{dx}{(x-3)(x-4)} = \lim_{b \to \infty} \left(\ln|x-4| - \ln|x-3| \right) \Big|_{5}^{b} = \lim_{b \to \infty} \ln\left(\frac{b-4}{b-3}\right) + \ln 2 = \ln 2.$$

(1)(b) L'Hôpital's Rule lets us write

$$\lim_{x \to 0+} x \ln x = \lim_{x \to 0+} \frac{\ln x}{1/x} = \lim_{x \to 0+} \frac{1/x}{-1/x^2} = \lim_{x \to 0+} -x = 0.$$

This can be rewritten $\lim_{a\to 0^+} a \ln a = 0$. Now we get

$$\int_0^1 \ln x \, dx = \lim_{a \to 0+} \int_a^1 \ln x \, dx = \lim_{a \to 0+} (x \ln x - x) \Big|_a^1 = -1$$

(1)(c) Integration by parts gives $\int x^n e^{-x} dx = -x^n e^{-x} + n \int x^{n-1} e^{-x} dx$. Now the fact $\lim_{b\to\infty} b^n e^{-b} = 0$ (which we get from l'Hôpital's Rule) lets us write

$$\int_0^\infty x^n e^{-x} \, dx = n \int_0^\infty x^{n-1} e^{-x} \, dx.$$

Therefore, $\int_0^\infty x^3 e^{-x} dx = 3 \int_0^\infty x^2 e^{-x} dx = 6 \int_0^\infty x^1 e^{-x} dx = 6 \int_0^\infty e^{-x} dx = 6.$ (1)(d) The substitution $x = 3 \tan \theta$ gives

$$\int \frac{dx}{9+x^2} = \int \frac{3\sec^2\theta \,d\theta}{9(1+\tan^2\theta)} = \int \frac{d\theta}{3} = \frac{\theta}{3} + C = \frac{1}{3}\tan^{-1}\left(\frac{x}{3}\right) + C.$$

Therefore, $\int_{-\infty}^{\infty} \frac{dx}{9+x^2} = \lim_{b \to \infty} \left(\frac{1}{3} \tan^{-1} \left(\frac{b}{3} \right) - \frac{1}{3} \tan^{-1} \left(\frac{-b}{3} \right) \right) = \frac{1}{3} \left(\frac{\pi}{2} - \left(-\frac{\pi}{2} \right) \right) = \frac{\pi}{3}.$ (2)(a) For $x \ge 7$ we know $0 < x - |\cos x| \le x$, hence $\frac{1}{x - |\cos x|} \ge \frac{1}{x} > 0$. The divergence of $\int_{7}^{\infty} \frac{dx}{x}$ implies the divergence of $\int_{7}^{\infty} \frac{dx}{x - |\cos x|}.$ (2)(b) For $x \ge 5$ we know $0 < \frac{1}{e^{x^2}} < \frac{1}{e^x}.$ The convergence of $\int_{5}^{\infty} \frac{dx}{e^x}$ (which is just $\int_{5}^{\infty} e^{-x} dx$) implies the convergence of $\int_{5}^{\infty} \frac{dx}{e^{x^2}}.$

(3) The length is

$$\int_{0}^{2\pi} \sqrt{r^{2} + (dr/d\theta)^{2}} \, d\theta = \int_{0}^{2\pi} \sqrt{(1 - \cos\theta)^{2} + \sin^{2}\theta} \, d\theta = \int_{0}^{2\pi} \sqrt{2 - 2\cos\theta} \, d\theta$$
$$= 2 \int_{0}^{2\pi} \sqrt{\frac{1 - \cos\theta}{2}} \, d\theta = 2 \int_{0}^{2\pi} \sqrt{\sin^{2}(\theta/2)} \, d\theta$$
$$= 2 \int_{0}^{2\pi} |\sin(\theta/2)| \, d\theta = 2 \int_{0}^{2\pi} \sin(\theta/2) \, d\theta = 8.$$

(4) The area is $\frac{1}{2} \int_0^{2\pi} (1 - \cos \theta)^2 d\theta = \frac{1}{2} \int_0^{2\pi} (1 - 2\cos \theta + \cos^2 \theta d\theta) = \frac{1}{2} (2\pi - 0 + \pi) = \frac{3\pi}{2}.$

(5) The substitution $u = 1 + \frac{9}{4}(x+2)$ leads to

length
$$= \int_0^1 \sqrt{1 + \frac{9}{4}(x+2)} \, dx = \frac{8}{27} \left(\frac{11}{2} + \frac{9x}{4}\right)^{3/2} \Big|_0^1.$$

(6) A sphere with radius R is obtained by rotating the semicircle $y = \sqrt{R^2 - x^2}$, $-R \le x \le R$ about the x-axis. In this case,

$$\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{1 + \left(\frac{-x}{\sqrt{R^2 - x^2}}\right)^2} = \sqrt{\frac{R^2}{R^2 - x^2}} = \frac{R}{\sqrt{R^2 - x^2}}$$

The surface area is $2\pi \int_{-R}^{R} \sqrt{R^2 - x^2} \cdot \frac{R}{\sqrt{R^2 - x^2}} dx = 4\pi R^2.$

(7) Multiplying $r = \sin \theta$ by r, we get $r^2 = r \sin \theta$, which is $x^2 + y^2 = y$. This is $(x - 0)^2 + (y - 1/2)^2 = (1/2)^2$. The center of the circle is (0, 1/2). The radius of the circle is 1/2.

(8) We can use $x = \frac{6\cos t}{3}, y = \frac{6\sin t}{4}, 0 \le t \le 2\pi$.

(9) The length is $\int_{1}^{2} \sqrt{4t^2 + 9t^4} dt = \int_{1}^{2} t\sqrt{4 + 9t^2} dt$. We can compute this integral using the substitution $u = 4 + 9t^2$.

(10) Since $f(x) = x^{-1}$, we get $f'(x) = -x^{-2}$, $f''(x) = 2x^{-3}$, $f'''(x) = -6x^{-4}$. This implies f(1) = 1, f'(1) = -1, f''(1) = 2, f'''(1) = -6. Now we know

$$T_3(x) = 1 + (-1)(x-1) + \frac{2(x-1)^2}{2} + \frac{-6(x-1)^3}{6}$$
$$= 1 - (x-1) + (x-1)^2 - (x-1)^3.$$

We know $|f^{(4)}(u)| = 24|u^{-5}| \le 24$ when $1 \le u \le 3/2$. This says that we can use K = 24. This implies

$$|f(3/2) - T_3(3/2)| \le \frac{24|3/2 - 1|^4}{4!} = \frac{1}{16}.$$

(11)(a) The inequalities $-1 \le \sin n \le 1$ lead to $-\frac{1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$. Since $\lim_{n \to \infty} -\frac{1}{n} = 0 = \lim_{n \to \infty} \frac{1}{n}$, the Squeeze Theorem implies $\lim_{n \to \infty} \frac{\sin n}{n} = 0$.

(11)(b) L'Hôpital's Rule gives $\lim_{x \to \infty} \ln \left((3x)^{1/x} \right) = \lim_{x \to \infty} \frac{\ln(3x)}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0$. Exponentiating this, we get $\lim_{x \to \infty} (3x)^{1/x} = e^0 = 1$. This implies $\lim_{n \to \infty} (3n)^{1/n} = 1$.

(11)(c) L'Hôpital's Rule gives

$$\lim_{x \to \infty} \ln\left(\left(1 - \frac{5}{x}\right)^x\right) = \lim_{x \to \infty} x \ln\left(1 - \frac{5}{x}\right) = \lim_{x \to \infty} \frac{\ln\left(1 - \frac{5}{x}\right)}{1/x} = \lim_{x \to \infty} \frac{\left(\frac{5/x^2}{1 - 5/x}\right)}{-1/x^2} = -5$$

Exponentiating this, we get $\lim_{x \to \infty} \left(1 - \frac{5}{x}\right)^x = e^{-5}$. This implies $\lim_{n \to \infty} \left(1 - \frac{5}{n}\right)^n = e^{-5}$.

(11)(d) Since $\lim_{x \to 0} \frac{\sin x}{x} = 1$ and $\lim_{n \to \infty} 1/n = 0$, we conclude $\lim_{n \to \infty} \frac{\sin(1/n)}{1/n} = 1$. This is equivalent to $\lim_{n \to \infty} n \sin(1/n) = 1$.

(11)(e) L'Hôpital's Rule gives $\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2}.$ Since $\lim_{n \to \infty} \frac{1/n}{n} = 0$, we conclude $\lim_{n \to \infty} \frac{1 - \cos(1/n)}{(1/n)^2} = \frac{1}{2}.$ This is equivalent to $\lim_{n \to \infty} n^2(1 - \cos(1/n)) = \frac{1}{2}.$

(12) Since $\left|\frac{1}{1000}\right| < 1$, the formula for the sum of a geometric series gives

$$5.273273273\ldots = 5 + \frac{273}{1000} + \frac{273}{(1000)^2} + \frac{273}{(1000)^3} + \cdots$$
$$= 5 + \frac{273}{1000} \left(1 + \frac{1}{1000} + \left(\frac{1}{1000}\right)^2 + \left(\frac{1}{1000}\right)^3 + \cdots \right)$$
$$= 5 + \frac{273}{1000} \left(\frac{1}{1 - \frac{1}{1000}}\right) = 5 + \frac{273}{999} = \frac{5268}{999} .$$

$$(13)(a) \sum_{n=3}^{\infty} \frac{2^n}{3^{n+1}} = \frac{2^3}{3^4} \left(1 + \frac{2}{3} + \left(\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^3 + \cdots \right) = \frac{2^3}{3^4} \cdot \frac{1}{1 - 2/3} = \frac{8}{27}.$$

 $(13)(b)\sum_{\substack{n=4\\n=1}}^{\infty}\frac{1}{n(n-1)} = \sum_{\substack{n=4\\n=1}}^{\infty}\left(\frac{1}{n-1} - \frac{1}{n}\right) = \frac{1}{3} - \frac{1}{N}$ because the other terms cancel out in pairs. Now

$$\sum_{n=4}^{\infty} \frac{1}{n(n-1)} = \lim_{N \to \infty} \sum_{n=4}^{N} \frac{1}{n(n-1)} = \lim_{N \to \infty} \left(\frac{1}{3} - \frac{1}{N}\right) = \frac{1}{3}$$

(14)(a) Since $\frac{1}{\sqrt{n}}$ is decreasing and approaches 0, the Leibniz Test tells us that $\sum_{n=5}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ converges.

(14)(b)
$$\int_{5}^{\infty} \frac{dx}{x(\ln x)} = \lim_{b \to \infty} \ln(\ln x) \Big|_{5}^{b} = \infty$$
, hence $\sum_{n=5}^{\infty} \frac{1}{n(\ln n)}$ diverges by the Integral Test.

$$(14)(c) \int_{5}^{\infty} \frac{dx}{x(\ln x)^{3/2}} = \lim_{b \to \infty} -2(\ln x)^{-1/2} \Big|_{5}^{b} = 2(\ln 5)^{-1/2} < \infty, \text{ hence } \sum_{n=5}^{\infty} \frac{1}{n(\ln n)^{3/2}}$$
 converges by the Integral Test.

(14)(d) Since the answer to 14(c) is $\lim_{n\to\infty} \left(1-\frac{5}{n}\right)^n = e^{-5} \neq 0$, the Test For Divergence says that $\sum_{n=4}^{\infty} \left(1-\frac{5}{n}\right)^n$ diverges.

(14)(e) We do a limit comparison with the series $\sum_{n=4}^{\infty} \frac{1}{n}$. The answer to 14(d) says $\lim_{n \to \infty} \frac{\sin(1/n)}{1/n} = 1$. Since this limit is positive and finite, we conclude divergence of $\sum_{n=4}^{\infty} \sin(1/n)$ from the divergence of $\sum_{n=4}^{\infty} \frac{1}{n}$.

(14)(f) We do a limit comparison with the series $\sum_{n=4}^{\infty} \frac{1}{n^2}$. The answer to 14(e) says $\lim_{n \to \infty} \frac{1 - \cos(1/n)}{1/n^2} = \frac{1}{2}$. Since this limit is positive and finite, we conclude convergence of $\sum_{n=4}^{\infty} (1 - \cos(1/n))$ from the convergence of $\sum_{n=4}^{\infty} \frac{1}{n^2}$.

(14)(g) Since |2/3| < 1, we know that $\sum_{n=2}^{\infty} \frac{2^n}{3^n} = \sum_{n=2}^{\infty} \left(\frac{2}{3}\right)^n$ converges. The Comparison Test and $0 < \frac{2^n}{3^n+1} < \frac{2^n}{3^n}$ allow us to conclude that $\sum_{n=2}^{\infty} \frac{2^n}{3^n+1}$ converges.

(14)(h) The Limit Comparison Test with $\sum_{n=2}^{\infty} \frac{1}{n^2}$ is successful because

$$\lim_{n \to \infty} \frac{\frac{n^2}{n^4 - n^3 - 4}}{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{n^4}{n^4 - n^3 - 4} = 1,$$

which is a positive and finite limit. Since the series $\sum_{n=2}^{\infty} \frac{1}{n^2}$ converges, we conclude that

the series $\sum_{n=2}^{\infty} \frac{n^2}{n^4 - n^3 - 4}$ converges.

(15)(a) If we take the sum of only the first 10 terms of $\sum_{n=1}^{\infty} \frac{1}{n^2}$, then the absolute value of the error is at most $\int_{10}^{\infty} \frac{dx}{x^2} = \frac{1}{10}$.

(15)(b) If we take the sum of only the first 10 terms of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$, then the absolute value of the error is at most the absolute value of the first omitted term, which is $\frac{1}{11^2}$.

(16) An infinite series $\sum a_n$ converges absolutely when $\sum |a_n|$ converges. An infinite series $\sum a_n$ converges conditionally when it converges, but does not converge absolutely. The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges conditionally.

(17) Let L denote $\lim_{n \to \infty} a_n$. Taking the limit in the equation $a_{n+1} = \sqrt{12 + a_n}$, we get $L = \sqrt{12 + L}$. The number L must be a solution of the equation $L^2 = 12 + L$. This means that L must be either 4 or -3. The equation $L = \sqrt{12 + L}$ excludes the possibility L = -3. We must have L = 4.