Notes on the Review Problems for Midterm 2

(1)(a) The partial fractions expansion $\frac{1}{(x-3)(x-4)}=\frac{1}{x-4}-\frac{1}{x-3}$ gives

$$
\int_{5}^{\infty} \frac{d x}{(x-3)(x-4)}=\left.\lim _{b \rightarrow \infty}(\ln |x-4|-\ln |x-3|)\right|_{5} ^{b}=\lim _{b \rightarrow \infty} \ln \left(\frac{b-4}{b-3}\right)+\ln 2=\ln 2
$$

(1)(b) L'Hôpital's Rule lets us write

$$
\lim _{x \rightarrow 0+} x \ln x=\lim _{x \rightarrow 0+} \frac{\ln x}{1 / x}=\lim _{x \rightarrow 0+} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0+}-x=0
$$

This can be rewritten $\lim _{a \rightarrow 0+} a \ln a=0$. Now we get

$$
\int_{0}^{1} \ln x d x=\lim _{a \rightarrow 0+} \int_{a}^{1} \ln x d x=\left.\lim _{a \rightarrow 0+}(x \ln x-x)\right|_{a} ^{1}=-1 .
$$

(1)(c) Integration by parts gives $\int x^{n} e^{-x} d x=-x^{n} e^{-x}+n \int x^{n-1} e^{-x} d x$. Now the fact $\lim _{b \rightarrow \infty} b^{n} e^{-b}=0$ (which we get from l'Hôpital's Rule) lets us write

$$
\int_{0}^{\infty} x^{n} e^{-x} d x=n \int_{0}^{\infty} x^{n-1} e^{-x} d x
$$

Therefore, $\int_{0}^{\infty} x^{3} e^{-x} d x=3 \int_{0}^{\infty} x^{2} e^{-x} d x=6 \int_{0}^{\infty} x^{1} e^{-x} d x=6 \int_{0}^{\infty} e^{-x} d x=6$.
(1)(d) The substitution $x=3 \tan \theta$ gives

$$
\int \frac{d x}{9+x^{2}}=\int \frac{3 \sec ^{2} \theta d \theta}{9\left(1+\tan ^{2} \theta\right)}=\int \frac{d \theta}{3}=\frac{\theta}{3}+C=\frac{1}{3} \tan ^{-1}\left(\frac{x}{3}\right)+C .
$$

Therefore, $\int_{-\infty}^{\infty} \frac{d x}{9+x^{2}}=\lim _{b \rightarrow \infty}\left(\frac{1}{3} \tan ^{-1}\left(\frac{b}{3}\right)-\frac{1}{3} \tan ^{-1}\left(\frac{-b}{3}\right)\right)=\frac{1}{3}\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right)=\frac{\pi}{3}$.
(2)(a) For $x \geq 7$ we know $0<x-|\cos x| \leq x$, hence $\frac{1}{x-|\cos x|} \geq \frac{1}{x}>0$. The divergence of $\int_{7}^{\infty} \frac{d x}{x}$ implies the divergence of $\int_{7}^{\infty} \frac{d x}{x-|\cos x|}$.
(2)(b) For $x \geq 5$ we know $0<\frac{1}{e^{x^{2}}}<\frac{1}{e^{x}}$. The convergence of $\int_{5}^{\infty} \frac{d x}{e^{x}}$ (which is just $\int_{5}^{\infty} e^{-x} d x$) implies the convergence of $\int_{5}^{\infty} \frac{d x}{e^{x^{2}}}$.
(3) The length is

$$
\begin{aligned}
\int_{0}^{2 \pi} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta & =\int_{0}^{2 \pi} \sqrt{(1-\cos \theta)^{2}+\sin ^{2} \theta} d \theta=\int_{0}^{2 \pi} \sqrt{2-2 \cos \theta} d \theta \\
& =2 \int_{0}^{2 \pi} \sqrt{\frac{1-\cos \theta}{2}} d \theta=2 \int_{0}^{2 \pi} \sqrt{\sin ^{2}(\theta / 2)} d \theta \\
& =2 \int_{0}^{2 \pi}|\sin (\theta / 2)| d \theta=2 \int_{0}^{2 \pi} \sin (\theta / 2) d \theta=8 .
\end{aligned}
$$

(4) The area is $\frac{1}{2} \int_{0}^{2 \pi}(1-\cos \theta)^{2} d \theta=\frac{1}{2} \int_{0}^{2 \pi} 1-2 \cos \theta+\cos ^{2} \theta d \theta=\frac{1}{2}(2 \pi-0+\pi)=\frac{3 \pi}{2}$.
(5) The substitution $u=1+\frac{9}{4}(x+2)$ leads to

$$
\text { length }=\int_{0}^{1} \sqrt{1+\frac{9}{4}(x+2)} d x=\left.\frac{8}{27}\left(\frac{11}{2}+\frac{9 x}{4}\right)^{3 / 2}\right|_{0} ^{1}
$$

(6) A sphere with radius R is obtained by rotating the semicircle $y=\sqrt{R^{2}-x^{2}},-R \leq$ $x \leq R$ about the x-axis. In this case,

$$
\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=\sqrt{1+\left(\frac{-x}{\sqrt{R^{2}-x^{2}}}\right)^{2}}=\sqrt{\frac{R^{2}}{R^{2}-x^{2}}}=\frac{R}{\sqrt{R^{2}-x^{2}}}
$$

The surface area is $2 \pi \int_{-R}^{R} \sqrt{R^{2}-x^{2}} \cdot \frac{R}{\sqrt{R^{2}-x^{2}}} d x=4 \pi R^{2}$.
(7) Multiplying $r=\sin \theta$ by r, we get $r^{2}=r \sin \theta$, which is $x^{2}+y^{2}=y$. This is $(x-0)^{2}+$ $(y-1 / 2)^{2}=(1 / 2)^{2}$. The center of the circle is $(0,1 / 2)$. The radius of the circle is $1 / 2$.
(8) We can use $x=\frac{6 \cos t}{3}, y=\frac{6 \sin t}{4}, 0 \leq t \leq 2 \pi$.
(9) The length is $\int_{1}^{2} \sqrt{4 t^{2}+9 t^{4}} d t=\int_{1}^{2} t \sqrt{4+9 t^{2}} d t$. We can compute this integral using the substitution $u=4+9 t^{2}$.
(10) Since $f(x)=x^{-1}$, we get $f^{\prime}(x)=-x^{-2}, f^{\prime \prime}(x)=2 x^{-3}, f^{\prime \prime \prime}(x)=-6 x^{-4}$. This implies $f(1)=1, f^{\prime}(1)=-1, f^{\prime \prime}(1)=2, f^{\prime \prime \prime}(1)=-6$. Now we know

$$
\begin{aligned}
T_{3}(x) & =1+(-1)(x-1)+\frac{2(x-1)^{2}}{2}+\frac{-6(x-1)^{3}}{6} \\
& =1-(x-1)+(x-1)^{2}-(x-1)^{3} .
\end{aligned}
$$

We know $\left|f^{(4)}(u)\right|=24\left|u^{-5}\right| \leq 24$ when $1 \leq u \leq 3 / 2$. This says that we can use $K=24$. This implies

$$
\left|f(3 / 2)-T_{3}(3 / 2)\right| \leq \frac{24|3 / 2-1|^{4}}{4!}=\frac{1}{16}
$$

(11)(a) The inequalities $-1 \leq \sin n \leq 1$ lead to $-\frac{1}{n} \leq \frac{\sin n}{n} \leq \frac{1}{n}$. Since $\lim _{n \rightarrow \infty}-\frac{1}{n}=0=$ $\lim _{n \rightarrow \infty} \frac{1}{n}$, the Squeeze Theorem implies $\lim _{n \rightarrow \infty} \frac{\sin n}{n}=0$.
(11)(b) L'Hôpital's Rule gives $\lim _{x \rightarrow \infty} \ln \left((3 x)^{1 / x}\right)=\lim _{x \rightarrow \infty} \frac{\ln (3 x)}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0$. Exponentiating this, we get $\lim _{x \rightarrow \infty}(3 x)^{1 / x}=e^{0}=1$. This implies $\lim _{n \rightarrow \infty}(3 n)^{1 / n}=1$.
(11)(c) L'Hôpital's Rule gives

$$
\lim _{x \rightarrow \infty} \ln \left(\left(1-\frac{5}{x}\right)^{x}\right)=\lim _{x \rightarrow \infty} x \ln \left(1-\frac{5}{x}\right)=\lim _{x \rightarrow \infty} \frac{\ln \left(1-\frac{5}{x}\right)}{1 / x}=\lim _{x \rightarrow \infty} \frac{\left(\frac{5 / x^{2}}{1-5 / x}\right)}{-1 / x^{2}}=-5
$$

Exponentiating this, we get $\lim _{x \rightarrow \infty}\left(1-\frac{5}{x}\right)^{x}=e^{-5}$. This implies $\lim _{n \rightarrow \infty}\left(1-\frac{5}{n}\right)^{n}=e^{-5}$.
(11)(d) Since $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ and $\lim _{n \rightarrow \infty} 1 / n=0$, we conclude $\lim _{n \rightarrow \infty} \frac{\sin (1 / n)}{1 / n}=1$. This is equivalent to $\lim _{n \rightarrow \infty} n \sin (1 / n)=1$.
(11)(e) L'Hôpital's Rule gives $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\frac{1}{2}$. Since $\lim _{n \rightarrow \infty} 1 / n=0$, we conclude $\lim _{n \rightarrow \infty} \frac{1-\cos (1 / n)}{(1 / n)^{2}}=\frac{1}{2}$. This is equivalent to $\lim _{n \rightarrow \infty} n^{2}(1-\cos (1 / n))=\frac{1}{2}$.
(12) Since $\left|\frac{1}{1000}\right|<1$, the formula for the sum of a geometric series gives

$$
\begin{aligned}
5.273273273 \ldots & =5+\frac{273}{1000}+\frac{273}{(1000)^{2}}+\frac{273}{(1000)^{3}}+\cdots \\
& =5+\frac{273}{1000}\left(1+\frac{1}{1000}+\left(\frac{1}{1000}\right)^{2}+\left(\frac{1}{1000}\right)^{3}+\cdots\right) \\
& =5+\frac{273}{1000}\left(\frac{1}{1-\frac{1}{1000}}\right)=5+\frac{273}{999}=\frac{5268}{999}
\end{aligned}
$$

(13)(

$$
\text { (a) } \sum_{n=3}^{\infty} \frac{2^{n}}{3^{n+1}}=\frac{2^{3}}{3^{4}}\left(1+\frac{2}{3}+\left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+\cdots\right)=\frac{2^{3}}{3^{4}} \cdot \frac{1}{1-2 / 3}=\frac{8}{27} \text {. }
$$

(13)(b) $\sum_{n=4}^{N} \frac{1}{n(n-1)}=\sum_{n=4}^{N}\left(\frac{1}{n-1}-\frac{1}{n}\right)=\frac{1}{3}-\frac{1}{N}$ because the other terms cancel out in pairs. Now

$$
\sum_{n=4}^{\infty} \frac{1}{n(n-1)}=\lim _{N \rightarrow \infty} \sum_{n=4}^{N} \frac{1}{n(n-1)}=\lim _{N \rightarrow \infty}\left(\frac{1}{3}-\frac{1}{N}\right)=\frac{1}{3}
$$

(14)(a) Since $\frac{1}{\sqrt{n}}$ is decreasing and approaches 0 , the Leibniz Test tells us that $\sum_{n=5}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ converges.
(14)(b) $\int_{5}^{\infty} \frac{d x}{x(\ln x)}=\left.\lim _{b \rightarrow \infty} \ln (\ln x)\right|_{5} ^{b}=\infty$, hence $\sum_{n=5}^{\infty} \frac{1}{n(\ln n)}$ diverges by the Integral Test.
(14)(c) $\int_{5}^{\infty} \frac{d x}{x(\ln x)^{3 / 2}}=\lim _{b \rightarrow \infty}-\left.2(\ln x)^{-1 / 2}\right|_{5} ^{b}=2(\ln 5)^{-1 / 2}<\infty$, hence $\sum_{n=5}^{\infty} \frac{1}{n(\ln n)^{3 / 2}}$ converges by the Integral Test.
(14)(d) Since the answer to $14(\mathrm{c})$ is $\lim _{n \rightarrow \infty}\left(1-\frac{5}{n}\right)^{n}=e^{-5} \neq 0$, the Test For Divergence says that $\sum_{n=4}^{\infty}\left(1-\frac{5}{n}\right)^{n}$ diverges.
(14)(e) We do a limit comparison with the series $\sum_{n=4}^{\infty} \frac{1}{n}$. The answer to $14(\mathrm{~d})$ says $\lim _{n \rightarrow \infty} \frac{\sin (1 / n)}{1 / n}=1$. Since this limit is positive and finite, we conclude divergence of $\sum_{n=4}^{\infty} \sin (1 / n)$ from the divergence of $\sum_{n=4}^{\infty} \frac{1}{n}$.
(14)(f) We do a limit comparison with the series $\sum_{n=4}^{\infty} \frac{1}{n^{2}}$. The answer to 14(e) says $\lim _{n \rightarrow \infty} \frac{1-\cos (1 / n)}{1 / n^{2}}=\frac{1}{2}$. Since this limit is positive and finite, we conclude convergence of $\sum_{n=4}^{\infty}(1-\cos (1 / n))$ from the convergence of $\sum_{n=4}^{\infty} \frac{1}{n^{2}}$.
(14)(g) Since $|2 / 3|<1$, we know that $\sum_{n=2}^{\infty} \frac{2^{n}}{3^{n}}=\sum_{n=2}^{\infty}\left(\frac{2}{3}\right)^{n}$ converges. The Comparison Test and $0<\frac{2^{n}}{3^{n}+1}<\frac{2^{n}}{3^{n}}$ allow us to conclude that $\sum_{n=2}^{\infty} \frac{2^{n}}{3^{n}+1}$ converges.
(14)(h) The Limit Comparison Test with $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ is successful because

$$
\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{4}-n^{3}-4}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{4}}{n^{4}-n^{3}-4}=1
$$

which is a positive and finite limit. Since the series $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ converges, we conclude that the series $\sum_{n=2}^{\infty} \frac{n^{2}}{n^{4}-n^{3}-4}$ converges.
(15)(a) If we take the sum of only the first 10 terms of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, then the absolute value of the error is at most $\int_{10}^{\infty} \frac{d x}{x^{2}}=\frac{1}{10}$.
(15)(b) If we take the sum of only the first 10 terms of $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}}$, then the absolute value of the error is at most the absolute value of the first omitted term, which is $\frac{1}{11^{2}}$.
(16) An infinite series $\sum a_{n}$ converges absolutely when $\sum\left|a_{n}\right|$ converges. An infinite series $\sum a_{n}$ converges conditionally when it converges, but does not converge absolutely. The series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges conditionally.
(17) Let L denote $\lim _{n \rightarrow \infty} a_{n}$. Taking the limit in the equation $a_{n+1}=\sqrt{12+a_{n}}$, we get $L=\sqrt{12+L}$. The number L must be a solution of the equation $L^{2}=12+L$. This means that L must be either 4 or -3 . The equation $L=\sqrt{12+L}$ excludes the possibility $L=-3$. We must have $L=4$.

