Math 152, Spring 2011, Formula Sheet for the Final Exam

$$
\begin{gathered}
\sin (0)=0 ; \quad \sin (\pi / 6)=1 / 2 ; \quad \sin (\pi / 4)=\sqrt{2} / 2 ; \quad \sin (\pi / 3)=\sqrt{3} / 2 ; \quad \sin (\pi / 2)=1 \\
\cos (0)=1 ; \quad \cos (\pi / 6)=\sqrt{3} / 2 ; \quad \cos (\pi / 4)=\sqrt{2} / 2 ; \quad \cos (\pi / 3)=1 / 2 ; \quad \cos (\pi / 2)=0 \\
\cos ^{2} x+\sin ^{2} x=1 ; \quad 1+\tan ^{2} x=\sec ^{2} x ; \quad 1+\cot ^{2} x=\csc ^{2} x \\
\sin (2 x)=2 \sin x \cos x ; \quad \cos (2 x)=\cos ^{2} x-\sin ^{2} x \\
\cos ^{2} x=\frac{1}{2}(1+\cos (2 x)) ; \quad \sin ^{2} x=\frac{1}{2}(1-\cos (2 x)) \\
\sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)] \\
\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)] \\
\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)] \\
\int \sec x d x=\ln |\sec x+\tan x|+C ; \quad \int \csc x d x=\ln |\csc x-\cot x|+C \\
\hline
\end{gathered}
$$

If T_{N}, M_{N}, S_{N} are the Trapezoidal, Midpoint and Simpson's approximations, then

$$
\begin{aligned}
T_{N} & =\frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{N-2}\right)+2 f\left(x_{N-1}\right)+f\left(x_{N}\right)\right] \\
M_{N} & =\Delta x\left[f\left(c_{1}\right)+f\left(c_{2}\right)+\cdots+f\left(c_{N}\right)\right] \text { where } c_{j}=\left(x_{j-1}+x_{j}\right) / 2 \\
S_{N} & =\frac{\Delta x}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+2 f\left(x_{N-2}\right)+4 f\left(x_{N-1}\right)+f\left(x_{N}\right)\right] .
\end{aligned}
$$

If $I=\int_{a}^{b} f(x) d x$ then

$$
\left|T_{N}-I\right| \leq \frac{K_{2}(b-a)^{3}}{12 N^{2}}, \quad\left|M_{N}-I\right| \leq \frac{K_{2}(b-a)^{3}}{24 N^{2}}, \quad\left|S_{N}-I\right| \leq \frac{K_{4}(b-a)^{5}}{180 N^{4}}
$$

The length of the curve $y=f(x), a \leq x \leq b$ is equal to $\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.
The area of the surface obtained by rotating the curve $y=f(x), a \leq x \leq b$ about the x-axis is equal to $\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x$.
The length of the parametric curve $(x(t), y(t)), a \leq t \leq b$ equals $\int_{a}^{b} \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}} d t$. If a curve is given in polar form by $r=f(\theta)$ then the area bounded by $r=f(\theta), \theta=\alpha$ and $\theta=\beta$ is $\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta=\int_{\alpha}^{\beta} \frac{1}{2}(f(\theta))^{2} d \theta$. The length of the polar curve $r=f(\theta)$ between $\theta=\alpha$ and $\theta=\beta$ is $\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{\alpha}^{\beta} \sqrt{(f(\theta))^{2}+\left(f^{\prime}(\theta)\right)^{2}} d \theta$.
Newton's Law of Cooling is given by $\frac{d T}{d t}=-k\left(T-T_{0}\right)$, where T is the temperature and T_{0} is the ambient temperature. The balance P in an annuity is given by $\frac{d P}{d t}=r(P-N / r)$, where r is the interest rate and N is the rate of withdrawal.

The nth Taylor polynomial of $f(x)$ with center a is $T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$
If $\left|f^{(n+1)}(u)\right| \leq K$ for all u between a and x, then $\left|f(x)-T_{n}(x)\right| \leq K \frac{|x-a|^{n+1}}{(n+1)!}$

$$
(1+x)^{a}=1+a x+\frac{a(a-1)}{2!} x^{2}+\frac{a(a-1)(a-2)}{3!} x^{3}+\cdots \quad \text { if } \quad|x|<1
$$

