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Abstract:

1. One approach to finding the sizes of permutation avoidance classes is to construct easily

enumerated sets and then see if these sets avoid any interesting patterns. In this section, we

develop a method of generating sets of permutations using templates which both avoid certain

patterns, and grow quickly as the lengths of the permutations increase. We will define two kinds

of templates, but first will try to motivate their definition with a proof of the well-known fact that

the number of permutations of length n which avoid the pattern 132, a quantity which we will call

Bn, is equal to Cn, then nth Catalan number.

Theorem 1 The number of 132-avoiding permutations of length n is given by Cn.

Proof: The proof is by induction. When n = 0, it is clear that Bn = 1, so suppose that Bm = Cm

for all m < n. Consider a length-n permutation π, and suppose that n appears in position i. If π

avoids 132, it follows that the i− 1 numbers which proceed n must all be greater than all the n− i
numbers which follow n, and, moreover, the prefix of π formed by the first i− 1 numbers and the

suffix formed by the last n − i numbers must both avoid 132 themselves. Conversely, if these two

conditions are met, then π avoids 132. Any instance of 132 cannot have the 1 and the 2 on opposite

sides of the number n because every number preceding n is greater than every number following

it, but any instance of 132 also cannot have the 1 and the 2 on the same side of n because both

the prefix preceding n and the suffix following n avoid 132 (and, obviously, neither 1 nor 2 can be

represented by n). It follows by induction that Bn =
∑n

i=1Bi−1 ·Bn−i for all n ≥ 0; since Bn has

the same initial condition as Cn and follows the same recurrence, we conclude that Bn = Cn for

all n ≥ 0.

In this proof, we showed that every 132-avoiding permutation of length n has the form LnS where

L and S are 132-avoiding permutations such that every number in L is larger than every number

in S. We will generalize this idea in the following definition.

Definition 2: A template of length n ≥ 1 is a pair of strings P and B of length n. We require

that P be a permutation of length n and B be a binary string of length n. We will denote the ith

element of P by pi and the ith element of B by bi.

For every positive integer n and template T = (P,B), we define a set of permutations of length n,

which we will call Rn,T , as follows. First, R0,T is the empty string and R1,T = {1} regardless of

T . Then, Rn,T is the set of permutations π of length n which can be divided into subwords (i.e.

strings of consecutive elements of π) called W1, ...,Wt (with t = |P | = |B|) such that if pi > pj ,

then every of Wi greater than every element of Wj . Moreover, we require that each Wi of length l

be an element of Ul,T , and, if Bi = 0, then Wi must have exactly one element. If these conditions

are met, we say that W1, ...,Wt fit the template T , so a permutation of length n is an element of
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Rn,T if it can be decomposed into subwords which fit T . We now provide an example of the set of

a template.

Example 3: Let T = (231, 101); thenR1,T = {1}, R2,T = {12, 21}, andR3,T = {123, 213, 231, 312, 321}.
To find the elements of R3,T we consider a permutation π of length 3 and divide it up into subwords

W1,W2,W3. We know that W2 is the string 3, and so we can choose W1 ∈ R2,T and W3 empty,

W3 ∈ R2,T and W1 empty, or W1,W3 ∈ R1,T . Because |R2,T | = 2, each of the first two options

gives two distinct permutations in R3,T (123, 213, 312, and 321), while the last option gives one

permutation (231). Note that R3,T is exactly the set of length 3 permutations which avoid 132. In

fact Rn,T is the set of length n permutations which avoid 132; this fact can be checked by reviewing

the proof of Theorem 1. Therefore, considering sets corresponding to templates does generalize the

argument of Theorem 1.

Once we begin looking at permutations with length greater than 3 it becomes much harder (and

likely impossible) to find templates which produce entire pattern avoidance classes. However, it is

not too difficult to find templates which produce only permutations avoiding some set of patterns,

which is to say subsets of pattern avoidance classes. Therefore, looking at templates lets us find

lower bounds on the size of certain avoidance classes. The following proposition shows an application

of this method.

Proposition 4: LetQn be the set of all permutations of n which avoid every element of {2143, 2413, 3142}
and let qn = |Qn|. Then, if the sequence (rn)∞n=0 is defined by r0 = r1 = 1, and rn =

∑n−1
i=1

∑n
j=i+1 ri−1rj−i−1rn−j

for n > 1, it holds that qn ≥ rn for all n.

Proof: The proof is complicated and not especially enlightening, and Theorem 5 will allow a

computer to quickly prove the proposition (the last paragraph of this proof, which is simple and

straightforward is still necessary). This proof is included to illustrate the headache that Theorem

5 will help alleviate. The main step of the proof is to show that Qn contains Rn,T where T =

(45312, 10101). We will show that every permutation in Rn,T avoids 2143, 2413, and 3142. First,

note that for 2413, and 3142, no proper subword with length greater than 2 contains only consecutive

numbers. When we divide a permutation into subwords to fit into the template, each subword

must contain only consecutive numbers. Thus we can conclude that if a pattern is present in a

permutation in Rn,T , then it is contained entirely in a single subword or each element is in a different

subword. The second case cannot occur because the permutation 45312 avoids both patterns. To

see that the first case cannot occur, suppose by way of contradiction that it does, and pick n

minimally so that a permutation of Rn,T contains one of the two patterns under consideration.

When we divide up this permutation into subwords so that it fits into T , we must choose some

subword to contain pattern, but then this subword is a shorter permutation which contains the

pattern, providing a contradiction. This shows that every permutation in Rn,T avoids 2413 and

3142.

Next we will see that every permutation also avoids 2143. Again suppose by way of contradiction

that there is a permutation in Rn,T which contains 2143, and pick n minimally so that this occurs.
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Then, if we divide up the permutation into 5 subwords, W1, ...,W5, which fit the template T the

occurrence of 2143 cannot be contained entirely in any one subword. Therefore, W1 either contains

no part of the occurrence, contains the 2, or contains the 21. In the first two cases W2 must not

contain any part of the occurrence either; it cannot contain the 2 or 1 because it is the largest

element of the permutation. If W1 was empty, then we must fit 2143 into W3W4W5, which is

impossible because either the 2 will go in W3 even though each element of W3 must be greater than

each element of W4 and W5, or else we would need to fit 143 into W5 which can’t happen because

they are not consecutive integers (the 2 is missing). If W1 contained 2, then W2 must contain 4 and

3 because all the elements of every other subword must be less than the elements of W1. Therefore,

the permutations in Rn,T avoid 2143, and so Rn,T ⊆ Qn.

Now, we just need to show that |Rn,T | = rn. First, it follows from the definition of Rn,T that

|R0,T | = |R1,T | = 1. Then, for a permutation in Rn,T , we will say that n occurs at position i and

1 at position j. We get that 1 ≤ i ≤ n − 1 and i + 1 ≤ j ≤ n. Then, W1 can be any of the ri−1

elements of Ri−1,T , W3 can be any of the rj−i−1 elements of Rj−i−1,T , and W5 can be any of the

rn−j elements of Rn−j,T . Therefore, rn =
∑n−1

i=1

∑n
j=i+1 ri−1rj−i−1rn−j for n > 1.

While this recurrence for (rn) is reminiscent of the Catalan recurrence, it does not appear to have

a similarly nice closed form solution.

Fortunately, it is possible to prove results of this kind experimentally without the need for detailed

write-ups. The following theorem establishes a sufficient condition for Rn,T to avoid a set of patterns

which is independent of n, and so can be tested for all n at once using a computer.

Theorem 5: Let T = (P,B) be a template, let B have k 0’s, and let σ be a pattern of length

l > 0. Then, if there exists an n such that Rn,T contains a permutation which has σ as a pattern,

there also exists an m ≤ (l − 1)(k + 1) + 1 such that Rm,T also contains a permutation which has

σ as a pattern.

Proof: This Theorem will be an immediate corollary of Theorem 6, and, while it can be proved

separately, the proof is almost identical to that of Theorem 6, so we omit it.

With this result in hand, the author’s laptop was able to prove Proposition 4 in 16 seconds using

Maple.

There is no particular reason to consider templates just one at a time. Analogously to how we

originally defined templates, we define the set of length n permutations corresponding to the set

of templates T = {T1, ..., Tr}. We will call this set of permutations Sn,T , and define it recursively

as follows. First, S0,T is the empty string and S1,T = {1} regardless of T . Then, Sn,T is the

set of permutations π of length n such that, for some T = (P,B) ∈ T , we can divide π into

subwords W1, ...,Wt such that if pi > pj , then every element of Wi greater than every element of

Wj . Moreover, we require that each Wi of length l be an element of Sl,T (rather than of Rl,T ),

and, if Bi = 0, then Wi must have exactly one element.
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We will finish this section by proving a generalization of Theorem 5 for sets of templates, and giving

an example of its application.

Theorem 6: Let T = {(P1, B1), ..., (Pr, Br)} be a set of templates, suppose that for all i Bi has

no more than k 0’s, and let σ be a pattern of length l > 0. Then, if there exists an n such that

Sn,T contains a permutation which has σ as a pattern, there also exists an m ≤ (l − 1)(k + 1) + 1

such that Sm,T also contains a permutation which has σ as a pattern.

Proof: Fix k and n; we proceed by induction on l. If l = 1, then σ is the pattern 1 and is contained

in the permutation 1 which is the element of S1,T . Assume that the theorem holds for patterns

of length up to l − 1. Now let π′ ∈ Sn,T be the permutation which contains σ as a pattern, and

pick some occurrence of σ in π′. We can choose T = (P,B) ∈ T and divide π′ into subwords

W ′1, ...,W
′
t (where t = |P |) such that the W ′i fit the template T . We can similarly divide σ into

subwords U1, ..., Ut so that Ui is the portion of the chosen occurrence of σ which lies in W ′i . If there

exists i such that only Ui is nonempty, then W ′i contains σ and is shorter than π′, so set π′ = W ′i
and repeat the decomposition for the new π′. Repeat until either at least two Ui are nonempty or

|π′| ≤ (l − 1)(k + 1) + 1. In the second case we are done, so assume that the first case holds.

We will now find m and construct a permutation π ∈ Sm,T which contains σ. Like π′ we need to

be able to divide π into W1, ...,Wt to fit T , so we will construct the Wi individually. For each i, let

ui = |Ui|. By the induction hypothesis, there exist Wi such that |Wi| = wi ≤ (ui − 1)(k + 1) + 1,

Wi ∈ Swi,T , and Ui is a pattern in Wi. It may be that for some i, Wi is empty even though Bi = 0;

if this is the case, we must add up to k new Wi to ensure that each Wi has length 1 whenever

Bi = 0. Lastly, we choose i so that pi = 1 and j so that pj = 2 and increase every element of Wj by

the same amount so that every element of Wj is greater than every element of Wi, and we repeat

this with j = 3..t and i = j − 1. Now, concatenating all the Wi gives a permutation π of length m

in Sm,T which contains the pattern σ.

It remains to show that m ≤ (l − 1)(k + 1) + 1. Let I = {i : ui > 0}; using the construction of π

and the induction hypothesis, we find that m ≤
∑

i∈I((ui− 1)(k+ 1) + 1) + k = (k+ 1)(
∑

i∈I ui)−
k · |I| + k = (k + 1)(l) − k|I| + k ≤ (k + 1)(l − 1) + 1 because we found at the end of the first

paragraph that |I| ≥ 2. Therefore, the proof is complete by induction.

Theorem 6 can give lower bounds on the sizes of many sets of avoidance classes. As an example,

we offer the following proposition:

Proposition 7: LetQn be the set of all permutations of n which avoid every element of {2341, 2413, 2431, 3241}
and let qn = |Qn|. Then, if the sequence (sn)∞n=0 is defined by s0 = s1 = 1, and sn =

∑n−1
i=1

∑n
j=i+1 2·

si−1sj−i−1sn−j for n > 1, it holds that qn ≥ sn for all n.

Proof: Let T1 = (14253, 10101), T2 = (15243, 10101), and T = {T1, T2}. Using Maple, one can

generate Sn,T for 1 ≤ n ≤ 10, and confirm that every permutation in each of these sets avoids

2341, 2413, 2431, and 3241 (we did this on a laptop in less than 7 minutes). Because these patterns

all have length 4, both B1 and B2 have two 0’s, and (4− 1) · (2 + 1) + 1 = 10, Theorem 6 promises
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that, for all n, every permutation in Sn,T avoids 2341, 2413, 2431, and 3241.

Now we show that |Sn,T | = sn by induction. Certainly |S0,T | = |S1,T | = 1. When picking a

permutation in Sn,T , we first choose whether this permutation will follow the template T1 or T2.

This will not cause us to count any permutation twice because if a permutation has n− 1 appear

before n, then it can only follow T1, and if it has n appear before n− 1 then it can only follow T2.

Now, for T1, we must choose the location of n−1, call this i, and the location of n, call it j. For T2,

we will call the location of n i and the location of n−1 j. For either template, we have 1 ≤ i ≤ n−1,

i+1 ≤ j ≤ n. Once i and j are chosen, we can fill in the portion of the permutation before position i

in any of si−1 ways, the portion between positions i and j in sj−i−1 ways, and the portion following

position j in sn−j ways. Therefore, |Sn,T | =
∑n−1

i=1

∑n
j=i+1 2 · si−1sj−i−1sn−j = sn for n > 1.
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