Counting Words Avoiding a Short Increasing Pattern and the Pattern 1k...2
By Yonah BIERS-ARIEL

Abstract: We find finite-state recurrences to enumerate the words on the alphabet [n]”
which avoid the patterns 123 and 1k(k — 1)...2, and separately, the words which avoid the
patterns 1234 and 1k(k —1)...2.

Maple package and Sample Input and Output Files: This article is accom-
panied by the Maple packages 123Avoid.txt, 1234Avoid.txt, and 123Recurrences.txt
along with several input and output files available from the front of the article’s webpage
sites.math.rutgers.edu/"yb165/SchemesForWords/SchemesForWords.html.

1 Introduction

A word W = wqiws...w, on an ordered alphabet contains the pattern pips...py if there
exists a (strictly) increasing sequence iy, s, . . ., 4 such that w; < w;, if and only if p, < p;
and w; > w;, if and only if p, > ps. If both W and pyps...pr are permutations (i.e. are
words on the alphabet [n] = {1,2,...,n} with all letters distinct), then w;. < w;, if and only
if p, < ps is an equivalent and more common definition. If W does not contain pips ... ps,
then W awvoids it. The study of pattern-avoiding permutations began with Donald Knuth in
The Art of Computer Programming, and has become an active area of combinatorial research.
See [7] for a summary of the major results in this field, or [6] for an in-depth survey.

The study of pattern-avoiding words other than permutations is comparatively recent,
being inaugurated by Burstein in [I]. The most important contributions since then are, for
our purposes at least, the paper of Shar and Zeilberger [5] in which the authors provide an
algorithm for finding the ordinary generating functions enumerating the words on [n]|" =
{1,1,..., 15,\2, 2,..., 22,11, n,... ,73} which avoid the pattern 123 and the paper of Zeilberger

T c?);ies r c?)gies r c?)gies
[9] which proved that the generating functions enumerating words on [n]" avoiding 12...1
are D-finite.

Our contribution is to find finite, linear recurrences for the numbers of words on [n]" that
avoid 123 and 1k(k — 1)...2 as well as the ones that avoid 1234 and 1k(k —1)...2. It is
well known (see [8] for instance) that this fact implies that these quantities have rational
generating functions, and, moreover, gives a way to compute them (in principle if not always
in practice - see Section . While generating functions were previously found in [4] for the
permutations avoiding 123 and 1k(k — 1)...2, this is the first time that such a result has
been extended to more general words. In the 1234 and 1k(k — 1)...2 case, the result was,
to the best of our knowledge, previously not even known for permutations with k£ as small
as o.

2 Words Avoiding 123

We begin this section with an algorithm for counting 123 avoiding permutations due to
Zeilberger in [10]. For L = [ly,ls,...1,], let A(L) be the number of words containing I; copies
of i for 1 < i <n which avoid 123. The following result allows us to quickly compute A(L).

Theorem 2.1. A(L) = Z?:l A([ll, lg, ey ll',l, ll — 1, li+1 —+ li+2 + 4 ln])

Proof. Let A;(L) be the number of words with letter counts [y, 1ls, ... [, which avoid 123
and begin with the letter i. We will biject the words counted by A;(L) with those counted
by A([ly,lo, ..., lic1, L — 1 liyq + lLizo + -+ - + 1,]). Let W = 4wy, ..., w, have letter counts
in L and let f(WW) be given by removing the initial ¢ from W and then replacing all letters
greater than ¢ with ¢ + 1. Also, for some word V' = wvjvs,...,v;_1 with letter counts in
I, loy oyl L — 11+ - -+ 1), let f71 be given by replacing the sequence of i + 1’s with
lp n’s, l,_1 n—1’s, and so on in that order, and then prepending 7 to this word.

We claim that f~! is the inverse of f. To find f(f~*(V)), we would replace the sequence
of 1 + 1s with [, n’s, [,_1 n — 1’s, and so on, and then prepend an i, before removing that
1 and replacing all those letters larger than ¢ with 7 + 1 again, giving us back V. To find
f7Lf(W), we would replace all the letters larger than i with ¢ + 1 and remove the initial
i, before replacing that ¢ and putting back all the letters larger than i (note that they had
to be in descending order to begin with or else W would contain a 123 pattern). Thus,
Ai(L) = A([ly,ls, ... liz1, 1 — 1 lipq + liyo + -+ - + 1,]) and summing over all ¢ gives the
promised equality. O

This technique can be extended to many more avoidance classes. In this section we
use it to count words avoiding both 123 and 1k(k — 1)...2 simultaneously. We first fix
k > 3, choose integers n and r, and consider the number of words on the alphabet [n]"
which avoid both 123 and 1k(k — 1)...2. This time, however, we will need to keep track
of more information than just the letter counts. To that end, we consider the set of words
A(r,a,b, L) where r, a, and b are integers, and L = [l1, [y, ..., [l;]. This is the number of words
with r copies of the letters 1,...,a, b copies of the letter a + 1, and [; copies of the letter
a+ 1+ 4 which not only avoid both 123 and 1k(k —1)...2, but would still avoid both those
patterns if a + 1 were prepended to the word. Note that this condition implies ¢t < k — 2
because any sequence of £ — 1 distinct letters will either contain an increasing subsequence
of length 2 (and hence create a 123 pattern) or will be entirely decreasing (and hence create
a lk(k —1)...2 pattern).

Before we state the next theorem, we describe in more human-friendly language the
algorithm that it suggests. Suppose that we are building a word W. Up to this point, the
smallest letter which has been used is a + 1, and r — b copies of it have been used. We
have a list L = [ly,ls,...[;] indicating how many copies of each letter greater than a + 1
remain to be added. To complete W, we need to add r copies each of 1,2, ..., a, b copies of
a+ 1, and [; copies of a + 1+ for all 1 < ¢ < t. Examine W’s next letter wq; considering
only the requirement that w; be succeeded by at most k — 2 distinct letters larger than
it, we find that if w; can be any element of {a +2,a+ 3,...,a+ 1+ t} or else it can be
an element of {a — (k—2)+t+1,a—(k—2)+t+2,...,a+ 1}. But, we also need to
consider the requirement that prepending a+1 to W will not create a 123 pattern. Therefore,

wy €{a—(k—-2)+t+1l,a—(k—2)+t+2,...,a+1l,a+1+t}. fw, =a+1+tor
a + 1, then removing it gives a word counted by A(r,a,b, L") or A(r,a,b— 1, L) respectively
where L' = [l,...,l;_1,l; — 1]. Otherwise, we need to add all the letters larger than w; to L
in order to ensure that future letters don’t create 123 patterns.

Since we want L to contain only letter counts for letters which will be added to W, i.e.

we don’t want it to contain 0, define the operator R which removes all the zeroes from the
list L.

Theorem 2.2. Ifb > 1, then
A(r,a,b, L) = Z A(ryi— L — 1, [ryry oo e bl .o 1))
i=a—(k—2)+t+1 v

a—1 copies

+ A<T7a7b - 17L) + A(T’,CL, b7 R([lla l27 s 7lt - 1]))

If b =0, then

A(r,a,b, L) = Z A(ryi—1or =1, [ryry oo e ly, o L)
i=a—(k—2)+t+1 -

+ A(T’,CL, b7 R([l17l27 ceey lt - 1]))

a—1 copies

Proof. As noted in the previous paragraph, wy € {a — (k —2) +t+ l,a — (k—2) +t +
2,...,a+ 1,a+ 1+ t}; each member of this set corresponds to a term of the summation.
Fix ¢ with a — (k — 2) + ¢t + 1 < i < a, and consider those words W with w; = i. Suppose
we remove w; from one of these words to form a word W’. We are left with r copies of the
letters 1 through i — 1, r — 1 copies of i (because ¢ < a there were r copies of it including w,),
and I copies of (i — 1) + 1+ j where L' = [I},...,] = [r,7,...,7,b,11,...,l;]. We are left
w.—/
a—1 copies
with a word which avoids 123 and 1k(k — 1) ...2, and, moreover, avoids 123 even when i is
prepended. Furthermore, prepending an ¢ to any word fitting this description gives a word
counted by A(r,a,b, L), and so the number of words counted by A(r,a,b, L) which begin
with i is A(r,i — Lr — 1, [r,r, ..., b0y,]) foralla — (k= 1)+t +1<i<a.
H'_/
a—1 coples

This leaves two other possibilities for wy: a+ 1 and a +t+ 1. If w; = a + 1, then the
only difference between the letter counts of W and W’ is that W has b copies of a + 1 and
W' has only b— 1. In terms of avoidance, both W and W' avoid 123 and 1k(k—1)...2 even
with a + 1 prepended. Thus, the number of W with wy = a+11is A(r,a,b— 1, L) as long as
b>1,and, 0if b =0.

Similarly, if w; = a + t + 1, then the only difference between the letter counts of W
and W' is that W has [; copies of a +t + 1 and W’ has a + ¢. Just as in the previous
case, the avoidance properties are identical and so the number of W with w; =a+1t+1is
A(rya,b, R([ly,ls, ..., 1y — 1])) where we needed to remove [; — 1 if it is zero so that we know
that the next letter is allowed to be [;_;.

Summing over all possible w; now gives the promised result.

3 Words Avoiding 1234

Just as we can find recurrences, and therefore generating functions, for words avoiding 123
and 1k(k — 1)...2, we can (in principle at least) find a similar system of recurrences and
generating functions for words on [n|" avoiding 1234 and 1k(k — 1)...2. The idea is to
construct a word W one letter at a time, and with each letter see if we have made a forbidden
pattern. Unfortunately, doing this naively would require keeping track of all previous letters
in W, denying us a finite recurrence. By only paying attention to the letters that could
actually contribute to a forbidden pattern, though, we find that we actually only need to
retain a bounded quantity of information regarding W'.

3.1 The Existence of a Finite Recurrence

In order to discuss the structure of words avoiding 1234 and 1k(k — 1)...2, we recall one
common definition and introduce some new ones. A left-to-right minimum (LTR min) is a
letter of a word which is smaller than all the letters which precede it. To an LTR min, we
associate an activated sequence which consists of all the letters following the LTR min which
are larger. Notice that, since 1234 is forbidden, anytime a letter w is preceded by some
smaller letter, all the letters larger than and following w must occur in reverse order. We
call these letters fized. If all the letters greater than an LTR min are fixed, then it is either
guaranteed or impossible that the LTR min and its activated sequence form a 1k(k — 1)..2
pattern; in this case we say that the activated sequence has been deactivated and we no
longer consider it an activated sequence. If an LTR min with an empty activated sequence
is followed by another LTR min (or another copy of itself), then any forbidden pattern using
the first LTR min could also be made using the second LTR min; we say that the first LTR
min is superceded and no longer consider it an LTR min.

With these definitions, we are nearly ready to state the actual set we will be recursively
enumerating. Let r, k, and a be integers, let S = [S1 = [s11, ..., S1.q1)s -+ - s Ou = [Suts - -+ Squl]
be a list of lists whose elements are in [t], let M = [my,...,m,] be a list with elements in [¢],
and let L = [ly,...,l] be a list with elements in {0} U [r]. Suppose we are building a word,
and so far the letters 1,...,a have never been used, while the letters greater than a +t + 1
have been entirely used up and, moreover, are not LTR mins or in any activated sequence.
Suppose this word has LTR mins m; +a, ..., ms+ a with corresponding activated sequences
[s11+a,..., 814 +a],...,[Sur + Qy...,Suq, + a] (excluding LTR mins which have been
superceded or whose sequences have been deactivated). Finally, assume that the word so far
avoids 1234 and 1k(k—1)...2, and that L; copies of a+1i remain to be placed for all 1 <i <t
(recall that r copies of 1,...,a and 0 copies of a +t+ 1,a+ ¢+ 2, ... remain to be placed).
Then, the number of ways to completing the word is defined to be A(r, k,a, M, S, L).

Our plan is to show that (i) A is well defined, (ii) all arguments of A besides a take on
finitely many values, and (iii) A satisfies a recurrence in which a particular non-negative
function of its arguments is always reduced (until the base case). Before carrying out this
plan, though, we provide an example to make sure our definitions are clear.

Example 3.1. Suppose we are building a word on the alphabet [9]? to avoid 1234 and 15432,
and so far have 69945. The LTR mins are 6 and 4 with corresponding activated strings 99

and 5. However, 99 has been deactivated because all the letters greater than its LTR min

are fixed and must occur in decreasing order. Thus, the number of ways to complete this
word is given by A(2,5,3, [1],[[2]],[1,1,1,2,2]).

Notice that the number of ways is also given by A(2,5,2,[2],[[3]],[2,1, 1,1,2,2]). While
this is not a problem in principle, it would be nice to have a canonical way of expressing this
quantity, and so we will eventually insist that L have a particular length given by a function
of r and k.

Theorem 3.2. A is well defined.

Proof. Suppose that Wi and W, are two partial words that give the same arguments to A.

Whenever a letter is first added, it either is an LTR min or else it is added to an activated
sequence. Given the LTR mins of a partial word, it is easy to see in which order they occurred.
It is similarly easy to see in which order the elements of activated sequences occurred, since
they are all listed in order in the activated sequence corresponding to the first LTR min (any
element of some other activated sequence lower than or equal to the first LTR min would
fix that LTR min’s activated sequence and thus deactivate it). Finally, we can see how the
sequence of LTR mins and the sequence of other elements are interweaved by noting that
a non-LTR min occurs after an LTR min if and only if it appears in that min’s activated
sequence. Therefore, the subwords formed by the LTR mins and activated strings of W; and
W, are identical.

Suppose A is not well-defined; then there is some string which can be added to (without
loss of generality) W without creating a forbidden pattern, but which does create a forbidden
pattern when added to W5. By the argument of the previous paragraph, there is an element
of Wy which is neither an LTR min nor part of an activated sequence, but which does
participate in this pattern. But, this is not possible: when an element is fixed, so are all the
elements larger than its LTR min, which is to say all the elements which could conceivably
be part of a forbidden pattern with it. Therefore, every fixed element either must participate
in a forbidden pattern or it cannot possibly do so, and we obtain a contradiction. O]

Next, we want to establish bounds on s and ¢ as well on the number of elements in any
S;. These bounds should depend only on r and k.

Theorem 3.3. Bounds fort, u, and all |S;| are as follows: t < 6(k—2)+2, u < 2r(k—2)+1,
and |S;| < 2r(k —2) for all 1 <i < u.

Proof. Recall that the Erdos-Szekeres Theorem states that any sequence of distinct real
numbers of length (p —1)(¢ — 1) + 1 must contain either a length—p increasing sequence or a
length—q decreasing sequence [2]. Since every activated sequence must avoid both 123 and
(k—1)(k—2)...1, it follows that no activated sequence can have more than 2(k —2) distinct
letters. Since there are at most r copies of any single letter, the longest an activated sequence
could possibly be is 2r(k — 2). Each activated sequence must either have some element that
the next one lacks or correspond to the most recent LTR min (or else its LTR min would be
superseded), and in the proof of Theorem we showed that the first activated sequence
must contain all the elements of every other activated sequence. Therefore, there can be at

most 2r(k — 2) 4+ 1 activated sequences, and we have successfully bounded both u and the
size of any S;.

To find a bound on ¢, note that as soon as we have used all r copies of a letter and none of
those copies remain as either LTR mins or in activated sequences, we can ignore that letter
entirely, secure in the knowledge that if it is not already part of a forbidden pattern, it never
will be. Thus, we only need to keep track of letters which are LTR mins, are in activated
sequences, or are among the largest 2(k — 2) + 1 letters still available to be used. By the
reasoning of the previous paragraph, at most 2(k — 2) + 1 distinct letters are LTR mins, at
most 2(k — 2) are in activated sequences, and so we need to keep track of 6(k — 2) 4 2 letters
all together; all other letters either have never been used and so have r copies remaining or
else have had all copies used and can no longer participate in forbidden patterns. O

After Example [3.1, we commented that there may be several ways to describe a given
partial word using a, L, M, and S. To allow for unique descriptions, we adopt the convention
that |L| =t =6(k — 2) + 2.

3.2 Finding the Recurrence

At this point, we have finished parts (i) and (ii) of our program; all that’s left to show is
that A can be computed using a recurrence. To this end, we introduce three new functions.
Fix(m, S, L) returns S with all available letters (with counts determined by L) which exceed
m appended in decreasing order, Reduce(L, i) returns L with the i*" element decreased by
one, and Remove(r, M,S, L,i) returns the tuple M,S, L with the following changes: all
elements of M and all elements of every S in S that are below i are incremented by one, the
ith element of L is deleted and r is prepended to L.

Example 3.4. Fix(1,[2,3],[1,1,1,2,2]) = [2,3,5,5,4,4,3,2].
Example 3.5. Reduce([1,1,1,2,2],2) =[1,0,1,2,2].
Example 3.6. Remove(2, [1]7 [[27 4]]’ [17 1,0,1, 2]7 3) = ([2]7 [[3a 4“7 [2’ 11,1, 2])

The base cases are A(r,k,a, M,S, L) for all M,;S,L and 0 < a < t. Otherwise, there
are no more than 2(k — 2) + 1 possibilities for the next letter ¢ (corresponding to the largest
2(k — 2) + 1 nonzero entries of L) which we divide into u + 1 cases: when i < m,, and when
1 > my, with h chosen as small as possible. Suppose that ¢« < m,; then we calculate the
number of ways to complete the word after adding an i as follows.

Suppose that S, = [], then adding an element less than or equal to the current LTR
min will supercede that LTR min. Symbolically, we have &' = [Si,...,S.1,[]], M’ =
[ma,...,my_1,i], and L' = Reduce(L,7). If S, # [], then we are adding a new LTR min
while leaving all existing ones in place. This gives arguments &’ = [Sy,...,S,,[]], M’ =
[my,...,my,t], and L' = Reduce(L,i). Now, suppose that J = {ji,...,jw} is a set of
all the the integers j € [t] such that L’ = 0, and j fails to appear in M’ or in any S €
S’. For all j € J from smallest to largest, update S’, M’, and L’ by setting M',S', L' =
Remove(r, M', S’ L', j). We finally have that the number of ways to complete the word after
adding an i is A(r, k,a — |J|,M',S", L").

Alternatively, we may add ¢ such that ¢ > mj, with h chosen as small as possible. Either
this ¢ is no larger than the smallest element of Si, or else it is the largest letter that still
remains to be added (otherwise a 1234 pattern is inevitable once the largest remaining letter
is added). For all m; > 1, check to see if Fix(m;, S;, L) contains a (k—1)(k—2)...1 pattern.
If so, this choice of i contributes nothing to A(r, k,a, M,S, L). If this is not true for any j,
then we can add ¢ to our word, but doing so deactivates Sy, Ss,...,S5,_1, and so we forget
about those activated sequences and their LTR mins. Thus, we take &' = [Sy,...,S4],
M' = [My,...,M,], and L' = Reduce(L,i). As before, suppose that J = {ji,...,Ju}
is a set of all the the integers j € [t] such that L) = 0, and j fails to appear in M’ or
in any S € §. For all j € J from smallest to largest, update M’,S’, and L’ by setting
M, S' L' = Remove(r, M',S', L', j). Again we have that the number of ways to complete
the word after adding an ¢ is A(r, k,a — |J|,S’, M', L’).

We have expressed A(r, k,a, M,S, L) as a sum of other terms. Notice that in each of
these other terms, the number of letters left to be added (given by r-a+ 2521 L;) decreases
by 1; eventually it will decrease below r -t and a base case will apply.

While all the base cases could in principle be computed individually, this would probably
be a long and unpleasant task. Fortunately, our recurrence can be easily tweaked to calculate
base cases. To do so, simply run the recurrence as given, but anytime A would be called
with a negative a, replace the first |a| nonzero entries of L with 0 and change a to 0. As it
turns out, the only base case that we really need is A(r, k,0, M, S,[0,0,...,0]) = 1.

3.3 From Recurrences to Generating Functions

This subsection contains an algorithm for turning the recurrences found in this section and
Section [2| into generating functions. Readers interested in a more detailed exposition should
consult Chapter 4 in [3].

Suppose the different terms in our system of recurrences are given by A;(n), As(n), ... An(n).
While we could choose n like before and let it be the number of distinct unused letters whose
counts do not appear in L, the rest of this process will be easier if each A;(n) depends only
on A;(n —1). To make this happen, we interpret n as the total number of unused letters.
For example, we might fix r = 2,k = 5 (note that ¢ = |L| is then chosen to be 20), and let
Ai(n) = A(2,5,n,[],[],[2,2,...,2]). If we let As2(n) = A(2,5,n, [1],[]],[1,2,...,2]), As(n) =
A(2,5,n,[2],]]]],[2,1,2,...,2]) and so on until As(n) = A(2,5,n,[20],[[]],[2,...,2,1]), we
find the recurrence relation A,(n) = 3271, A;(n — 1).

Let M be the matrix whose ¢,j entry is the coefficient of A;(n — 1) in the recurrence
for A;(n), and let f;(z) be the generating function)~ A;(n)z". It follows that f;(z) is a
rational function with denominator det(z/ — M) for all i. The numerator of each generating
function has degree less than the number of rows of M, and the coefficients of each one can
be determined using the system of recurrences’ initial conditions.

Since we are treating n as the total number of letters in a word, we must make the
substitution 2" — x in order to obtain the generating function for the number of words on
the alphabet [n]" avoiding the two patterns.

4 Computational Results

The first algorithm presented in this paper, the one which enumerates words avoiding 123
and 1k(k —1)...2, runs very quickly. With r = 2, we are able to get generating functions
for k as large as 8 (and we could go even further if we chose to). With r = 3, we are able to
get generating functions for k as large as 7.
Unfortunately, the algorithm in Section [3]is much slower. In the simplest open case of r =
—223 + 722 — 62 + 1

204 — 1123 + 1722 — 8x + 1
but rigorously deriving it seems to be out of the question without carefully pruning the

recurrence. We can also use the recurrence to just generate terms without worrying about
finding generating functions. With r» = 1, i.e. in the permutation case, we find ten terms
apiece in the enumeration sequences for k = 3,4...,10, and could easily get more terms; in
fact in the particular case of £k = 5 we found 16 in 20 minutes.

All these results can be found in the output files on this paper’s webpage.

1,k = 5, we are able to conjecture the generating function to be

5 Future Work

The driving force behind the argument in this paper is the Erdos-Szekeres theorem; it ensures
that we only have finitely many possible letters to add to a word at any point in time. For
any pair of patterns which are not of the form 12...[, 1k(k — 1) ...2, this theorem will not
apply, and so it is difficult to see how strategies like those in this paper could work.

It does seems reasonable to hope that they would work for other patterns of the form
12...1,1k(k—1)...2. The only problem with applying them to the pair 12345, 1k(k—1)...2
is that we lose the fact that any element greater than an LTR min immediately fixes all
elements above it. As a result, it is possible to have multiple activated strings, neither of
which is a subset of the other. However, we are hopeful that some clever idea can get around
this obstacle.

6 Maple Implementation

This paper is accompanied by three Maple packages. 123Avoid.txt implements the recur-
rence described in Section [2] while 123Recurrences.txt uses this recurrence to rigorously
find the generating functions enumerating the words on [n]” avoiding 123 and 1k(k—1)...2.
Finally, 1234Avoid.txt implements the recurrence described in Section It also uses
Doron Zeilberger’s package Cfinite to automatically conjecture generating functions for the
sequences of numbers of words on [n|" avoiding 1234 and 1k(k —1)...2.

After loading any of these packages, type Help(); to see a list of available functions.
You can get more details about any function by calling Help again with the function’s name
as an argument. This will also give an example of the function’s usage.

7 Acknowledgements

The author is grateful to his advisor, Doron Zeilberger, for suggesting the problem to him
and for his frequent suggestions and improvements.

References

[1] A. Burstein (1998). “Enumeration of Words with Forbidden Patterns,” Ph.D. Thesis,
University of Pennsylvania.

2] P. Erd6s and G. Szekeres (1935). “A combinatorial problem in geometry,” Compositio
Mathematica 2 463-470.

[3] M. Kauers and P. Paule. The Concrete Tetrahedron. SpringerWienNew York, 2011.

[4] C. Krattenthaler (2001). “Permutations with restricted patterns and Dyck paths,” Adv.
Appl. Math 27 510-530.

[5] N. Shar and D. Zeilberger (2016). “The (Ordinary) Generating Functions Enumerating
123-Avoiding Words with r occurrences of each of 1,2, ..., n are Always Algebraic,” Ann.
Comb. 20 387-396.
http://sites.math.rutgers.edu/ zeilberg/mamarim/mamarimhtml/words123.html

[6] V. Vatter. “Permutation Classes,” Handbook of Enumerative Combinatorics, M. Béna,
Ed. CRC Press, Boca Raton, Florida, 2015, pp. 754-833.

[7] “Permutation Patterns,” Wikipedia. 6 October 2018.
https://en.wikipedia.org/wiki/Permutation_pattern

[8] D. Zeilberger (2013). “The C-finite Ansatz,” Ramanujan J. 31 23-32.
http://sites.math.rutgers.edu/ zeilberg/mamarim/mamarimhtml/cfinite.html

9] D. Zeilberger (2014). “The Generating Functions Enumerating 12..d-Avoiding Words
with r occurrences of each of 1,2, ..., n are D-finite for all d and all r,” Personal J. of
Shalosh B. Ekhad and Doron Zeilberger.
http://sites.math.rutgers.edu/ zeilberg/mamarim/mamarimhtml/sloane75.html

[10] D. Zeilberger (2005). “A Snappy Proof That 123-Avoiding Words are Equinumerous
With 132-Avoiding Words ,” Personal J. of Shalosh B. Ekhad and Doron Zeilberger.
http://sites.math.rutgers.edu/ zeilberg/mamarim/mamarimhtml/a123.html

	Introduction
	Words Avoiding 123
	Words Avoiding 1234
	The Existence of a Finite Recurrence
	Finding the Recurrence
	From Recurrences to Generating Functions

	Computational Results
	Future Work
	Maple Implementation
	Acknowledgements

