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1 Introduction

Definitions. . .
Following Bona, we define a permutation to be (in)decomposable if it

can(not) be cut into two (strictly smaller) parts such that everything before
the cut is larger than everything after the cut. We further define a permuta-
tion to be p-(in)decomposable if it can(not) be cut into two parts such that
everything before the cut is larger than everything after the cut and at least p
elements occur before the cut.

2 Permutations Avoiding 1342

We will develop a system of recurrences to count the permutations avoiding
1342. We begin with the usual prefix scheme:

A∅(n) =

n∑
i=1

A1(i;n); (1)

i.e. the number of permutations avoiding 1342 of length n is given by summing
up, over all 1 ≤ i ≤ n, the number of such permutations beginning with i. Next,
consider the second letter of the permutation and call it j. If i > j, then i is
reversely deletable; if i < j then neither is reversely deletable, and so we find:

A1(i;n) =

i∑
j=1

A1(j;n− 1) +
∑

j=i+2

A12(i, j;n). (2)

But, there is a problem. No matter how long we make the prefix 12 . . . l, none
of its elements will ever be reversely deletable. We are saved by the fact that
we know a great deal about the structure of permutation with a 12 prefix. The
following observation is immediately clear.

Observation 2.1. If a 1342-avoiding permutation begins with ij where i < j,
it follows that all elements in the interval (i, j) must precede all elements in the
interval (j, n].
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The following lemma shows that even more is true.

Lemma 2.2. Let π be a permutation avoiding 1342 which begins with ij where
i < j. Then, there exists k ≤ i such that every element in [k, j] precedes in π
every other element.

Proof. We proceed by induction on i. If i = j − 1, then the lemma is trivial.
Otherwise (i, j) is nonempty. Let k1 be the smallest element of π which precedes
an element of (i, j), and let j1 be the last-occuring element of (i, j). If k1 = i,
then the lemma follows Observation 2.1; otherwise k1 < i. Form π′ by adding
the prefix k1j1 to portion of π following j1, and reducing the resulting word.
Note that π′ is a permutation avoiding 1342 which begins with k1j1 where
k1 < j1 and k1 < i. By the induction hypothesis, there exists k ≤ k1 such that
[k, j1] precedes in π′ every other element.

We claim that, in π, every element in [k, j] precedes every other element.
Suppose that is not the case, and there is an element x ∈ [k, j] which comes after
y 6∈ [k, j]. First consider the case when y > j. By Observation 2.1, y cannot
occur before j1, and so π′ contains an element corresponding to y which is larger
than j1. Since x comes after y, it also occurs after j1, so π′ contains an element
corresponding to x which is in [k, j1] and follows the element corresponding to
y. This contradicts the fact that each element in [k, j1] precedes every other
element in π′. Next consider the case when y < k. By the choice of k1, y comes
after j1, and so π′ contains an element corresponding to y which is less than k.
As in the previous case π′ also contains an element corresponding to x which is
in [k, j1] and follows the element corresponding to y, and again this contradicts
the fact that each element in [k, j1] precedes every other element in π′. Thus,
the lemma holds.

Lemma 2.2 suggests dividing a permutation π with a 12 prefix into two
pieces: πpref consisting of the elements in [k, j] and πsuff consisting of all the
others. The following lemma establishes conditions on πpref and πsuff that guar-
antee that π will avoid 1342.

Lemma 2.3. Let π = πprefπsuff where πpref consists of the elements of π in
[k, j] (assume k < j) and πsuff consists of those elements in [1, k−1]∪ [j+1, n].
Then π avoids 1342 if and only if πpref avoids 1342 and kπsuff avoids 1342.

Proof. The only if direction is easy; πpref and kπsuff are both subpermutations
of π, and so if either contains 1342, π must as well.

To show the if direction, suppose that π contains 1342, write this oc-
currence as πi1πi2πi3πi4 where πi is the ith element of π. We claim that
either πi1πi2πi3πi4 ∈ πpref, πi1πi2πi3πi4 ∈ πsuff, or πi2πi3πi4 ∈ πsuff and
πi2 , πi3 , πi4 > k.

Suppose that πi1πi2πi3πi4 6∈ πpref and πi1πi2πi3πi4 6∈ πsuff, it follows that
πi1 ∈ πpref and πi4 ∈ πsuff. Since πi1πi2πi3πi4 is an occurrence of 1342,
we conclude that πi2 , πi3 , πi4 > j, so πi2πi3πi4 ∈ πsuff, and, since j > k,
πi2 , πi3 , πi4 > k. Thus, kπsuff contains 1342.
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Combining Lemmas 2.2 and 2.3 suggests we compute A12(i, j;n) by finding
the number of possible πprefs and multiplying by the number of possible of
possible πsuff, which would give the (incorrect) recurrence

A12(i, j;n) =

i∑
k=1

A1(i− k + 1, j − k + 1; j − k) ·A1(k;n− j + k)). (3)

This recurrence is incorrect because the right-hand side counts permutations
once for every k such that the permutation can be written as πprefπsuff with πpref

containing the elements in [k, j] and πpref containing all other elements. This
leads to a lot of double-counting!

To fix it, we will count permutations only once, corresponding to the maximal
k that allows them to be appropriately broken up. If we write π as πprefπsuff and
find that πpref is j − i+ 1-decomposable, that would imply that we could have
actually ended πpref after a prefix and obtained a different expression πprefπsuff

with a larger k. Therefore, we define A12(p; i, j;n) to be the number of length-
n 1342-avoiding permutations beginning with ij such that there is no proper
prefix of length ≥ p whose elements are all greater than the following elements.
We redefine A1(p; i;n) similarly.

This leads us to the final and correct system of recurrences.

Theorem 2.4. The following system of recurrences holds:

A∅(n) =

n∑
i=1

A1(n; i;n)

A1(p; i;n) =

n−p−1∑
j=1

A1(n− j; j;n− 1) +

i∑
j=n−p

A1(p− 1; j;n− 1) +

n∑
j=i+2

A12(p; i, j;n)

A12(p; i, j;n) =

n−p−1∑
k=1

A1(j − i− 1; i− k + 1; j − k) ·A1(n− j + 1; k;n− j + k)

+

i∑
k=n−p

A1(j − i− 1; i− k + 1; j − k) ·A1(p− (j − k); k;n− j + k).

Proof. The first equation follows from Equation 1 and the fact that no permu-
tation can have a proper prefix of length n, so A1(n; i;n) counts all length-n
permutations which avoid 1342.

The second equation looks a great deal like Equation 2 except it keeps track
of forbidden prefix lengths. Since j is the new letter being added to the per-
mutation, it is impossible for the final permutation to be p-decomposable with
p < n− j; otherwise adding a j simply makes the prefix one letter longer. Thus,
we replace A1(j, n− 1) with A1(max(n− j, p− 1); j;n− 1) which accounts for
the first two summations. The third summation comes directly from the second
summation in Equation 2.
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Now we turn to the third equation. Each term of the two summations counts
the number of permutations of length n beginning with ij where k is the largest
value such that all elements in [k, j] precede all other elements. The first factor,
A1(j− i− 1; i− k+ 1; j− k) counts the number of ways to arrange the elements
in [k, j] (i.e. the number of potential πprefs); the length of each prefix is j−k+1,
but we ignore j because we know it occurs as the second element and does not
affect where any other element can be placed. This portion of the permutation
begins with i which is the i − k + 1th largest element of [k, j], and it must
be j − i − 1-indecomposable to ensure that k is maximal. The second factor,
A1(n− j + 1; k;n− j + k) counts the number of ways to arrange the remaining
elements in [1, k− 1]∪ [j+ 1, n] (i.e. the number of potential πsuffs). The length
of each suffix is n − j + k − 1, but we pretend that there is a k at the very
beginning since Lemma 2.3 demands that the elements [1, k − 1] ∪ [j + 1, n] be
arranged such that they avoid 1342 even when k is prepended. If k < n − p,
then we cause the final permutation to be p-decomposable if and only if πsuff is
n− j + 1-decomposable, while, if k ≥ n− p, we cause the final permutation to
be p-decomposable if and only if πsuff is p− (j − k)-decomposable.
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