
The Amarel Cluster: An Extended Example

Yonah Biers-Ariel

May 20, 2019

1 Introduction

The Amarel cluster is a powerful tool, particularly when you need to run the
same code on many different inputs1. In this example, we will use it to answer
the following question: of the 24 permutation classes consisting of permutations
avoiding a single length 4 pattern, how many have finite schemes which can be
found using Doron Zeilberger’s package VATTER?

The purpose of this tutorial is to walk the reader through a non-trivial
example using Amarel. The purpose of this tutorial is not to describe how
Amarel works or how any of the tools which we will use work. The best way
to learn about those topics is to attend an Introduction to the Amarel Cluster
Workshop (see the schedule). It also may be useful to read the guides and
examples written by the Office of Advanced Research Computing (the people
who run Amarel) which are available here.

This tutorial assumes no knowledge of command line operations.

Disclaimer: Neither I nor this tutorial is affiliated with or en-
dorsed by the Office of Advanced Research Computing. This tutorial
is not a substitute for attending the OARC’s official workshops which
I highly recommend doing.

2 Getting An Account & Logging In

Before using Amarel, you need to sign up for an account. You can do so by
filling out the form here. It takes a day or two for them to create an account
for you. The form asks for a bunch of information that is only relevant if you’re
buying into the system (to get priority access). Don’t worry about those parts.

Once you have an account you can login via ssh. If you aren’t familiar
with ssh, you first need to pull up a command prompt (if you’re on running
MacOS or Linux open the Terminal application - if you’re running Windows
then google how to get a terminal window). At the command prompt, type ssh

1Amarel is also useful if you are running code only once if your code has built-in paral-
lelization. Since I have not tried doing that, this example does not cover it

1

https://oarc.rutgers.edu/events/
https://rutgers-oarc.github.io/training/
https://oarc.rutgers.edu/access/

netid2@shell.math.rutgers.edu You will then be prompted to enter your
netid password, so enter it. Next, type ssh amarel.rutgers.edu and again
enter your password when prompted. You’re now on the cluster!

Notice that we first logged into the math server, and, from there logged
into Amarel. This method of logging in will work as long as you have any
internet connection. If you are on a Rutgers wireless network, you can take a
shortcut and login directly to Amarel with ssh netid@amarel.rutgers.edu.
For maximum generality, this tutorial assumes that you are not on a Rutgers
network (everything will still work if you are on a Rutgers network, you might
just miss out on some shortcuts).

On Amarel, you have two personal directories. Your home directory is for
your code and outputs that you want to save indefinitely. Your scratch directory
is for output that you don’t need permanently. While you’re here, you can make
folders to store the output that you’re going to generate. Navigate to the scratch
directory by typing cd /scratch/netid. Then make a new folder to hold the
output of our test by typing mkdir VATTER eg.

If you want to logout of Amarel, you can do so by typing exit at the
command prompt.

3 Writing Your Maple Code

To get Maple code onto the cluster, you have two options: write the file on your
computer like you would any other code and then transfer it to the cluster or
write the code directly on the cluster. Later, we’ll see how to transfer files from
your computer to the cluster, so here we’ll cover creating a new file while on
the cluster. If you’re still reading this, I’ll assume that you’re not familiar with
command-line text editors; if you are you can skip the next paragraph.

There are a number of text editors which can be accessed from the command
line on Amarel (or just about any other computer). The one I use is Vim. To
create a new document called, say, sample.txt type vim sample.txt at the
command line. You now enter this document in what’s called normal mode
(Vim has several different modes, right now we will only discuss two of them).
To write text in the file, you need to enter insert mode by pressing i. Now that
you’re in insert mode, you can type whatever you want into your document.
When you’re done go back to normal mode by pressing the Esc key, save your
work by typing :w and pressing the return key, and quit by typing :q and
pressing the return key. If you’re interested, Vim has many useful tricks and
shortcuts which are well worth learning if you use it a lot.

You should now be back at the command line. To see that your file was
successfully created, type ls to list all the files in your home directory. There
should be one called sample.txt now.

The actual Maple code that you should write now is pretty similar to what-
ever Maple code you would run on your own computer3. The biggest change is

2here, and anywhere else you see netid, type your netid
3Unless you’re trying to use Maple’s built-in parallelization in which case I can’t help you

2

that you need to worry about where you’re going to print your output to since
you can’t just print it all to your screen. The following script (which we’ll just
call vscript.txt) will run the VATTER procedure SchemeFast on the permuta-
tion [1, 2, 3, 4] and print the success or failure to an output file. Note that ‘ is
a tick mark while ’ is a single quotation mark.

read ‘VATTER.txt‘:

s:=SchemeFast({[1,2,3,4]},6,2):

f:=fopen(cat("/scratch/netid/VATTER_eg/", 1, ".txt"), ’WRITE’, ’TEXT’):

if s[1] = FAIL then

fprintf(f, "Failed. Could not find a scheme for {[1,2,3,4]}"):

else

fprintf(f, "Succeeded! The scheme for {[1,2,3,4]} is: %a", s):

fi:

fclose(f):

Before we can run this on the cluster, though, we need to transfer the file
VATTER.txt. Logout of Amarel by typing exit, and then logout of the math
server by typing exit again. Download VATTER.txt from Zeilberger’s website,
and save it to your computer.

Back in your terminal window, navigate to the directory where you saved
VATTER. Mine is saved in a subdirectory of my home directory called Research,
so I type cd ∼/Research. Once you’re in the right directory, type sftp

netid@shell.math.rutgers.edu and enter your password when prompted
(this is the other place where you can take a shortcut if you’re on a Rutgers
network). Then, type put VATTER.txt to transfer the file to your home direc-
tory on the math server. Log out of the math server, and ssh back in. Then
sftp into Amarel (sftp amarel.rutgers.edu) and put the file into your home
directory in Amarel (put VATTER.txt). Exit Amarel, and then ssh back into
Amarel. Type ls to list the contents of your home directory. You should see
two files: vscript.txt which you made and VATTER.txt which you transferred
from your computer (if you made sample.txt you should see that too).

4 Running Your Maple Code

Now we try to run this on the cluster. Initially, Amarel does not know the
command maple, so we have to teach it by typing module load maple/2018.
This is essentially the same as typing with(somepackage): in Maple, it just
gives you access to new commands.

Now we come to the most important rule (really the only important rule)
of the cluster. DO NOT RUN MAPLE CODE ON THE LOGIN NODE. This
is basically the only way to accidentally do something bad. So, while we’d like
to just type maple vscript.txt, we can’t (or, rather, we can, but we’d get
an email from OARC telling us to stop). Instead, we use SLURM, which is
the cluster’s workload manager. The purpose of SLURM is to make sure that
everyone gets the computing resources that they need, and, more importantly,

3

http://sites.math.rutgers.edu/~zeilberg/tokhniot/VATTER

that the number of people using any compute node at once is no more than
what that node can handle. The first SLURM command we’ll use is srun. To
use it, type srun maple vscript.txt (and press enter). This tells Amarel to
allocate resources to us, and then to run maple using those resources.

To check to see if our code worked, we navigate to the directory where we
printed output (cd /scratch/netid/VATTER eg) and open the file 1.txt (vim
1.txt). If everything worked correctly you should see Succeeded! followed by
the scheme.

So far, we haven’t done anything that we couldn’t have done on a personal
computer or on the compute server. The benefit of the cluster is that it allows
us to run many jobs at once, so if we’re not doing that, there’s not much point
in using it. What we want to do is to run vscript on every length-4 pattern
at once, not just [1,2,3,4]. To that end, we modify vscript.txt so that it will
input an integer p from 1 to 24 and use that p to choose which pattern to avoid.
Our new vscript.txt looks as follows:

read ‘VATTER.txt‘:

with(combinat):

perms:=permute(4):

pat:=perms[p]:

s:=SchemeFast({pat},6,2):

f:=fopen(cat("/scratch/netid/VATTER_eg/", p, ".txt"), ’WRITE’, ’TEXT’):

if s[1] = FAIL then

fprintf(f, "Failed. Could not find a scheme for {%a}" pat):

else

fprintf(f, "Succeeded! The scheme is for {%a} is: %a", pat, s):

fi:

fclose(f):

We’re ready to call our code again, but now it’s not enough to just
run vscript.txt; we also need to give a value for p on the command
line. Our new command will be srun --time=2:00:00 maple -qc p:=2:

vscript.txt. Here, we’ve added two new options to our Maple command
and one new option to srun. The q option makes Maple quiet. When we ran
Maple last time, it printed all the code we were running to our screen along with
periodic updates on how much memory it had used and how long it had run
for. I think that’s annoying (especially if we are going to run many instanced
of Maple at once) and so I use -q to suppress it. The c option tells Maple to
execute whatever line of code immediately follows it when Maple first starts up.
So, when Maple first starts, before it reads vscript.txt, it sets p equal to 2.
The time option to srun tells it to let our program keep running for up to two
hours (by default our program will be terminated after running for two minutes).
Try running this command, and then look back in /scratch/netid/VATTER eg.
Now you should see a file 2.txt which is much the same as 1.txt.

4

At this point we could just repeat this same command for all the
numbers from 3 to 24 (i.e. call srun --time=2:00:00 maple -qc p:=3:

vscript.txt, srun --time=2:00:00 maple -qc p:=4: vscript.txt, and
so on). If we wanted to test more than 24 different patterns, though, that
might not be very much fun, so we’ll write a loop to run the command for us
24 times.

The loop will be written in Bash, which is the language we’ve been using
every time we’ve run code at the command line (cd, ls, vim, etc. are all Bash
commands). To write the Bash script, use Vim to open a file called run.sh. In
the file, write:

for i in {1..24}

do

srun --time=2:00:00 maple -qc p:=$i: vscript.txt &

done

Now we only have to run this script once to start 24 instances of Maple, each of
which runs vscript on a different pattern. To run it, at the command line type
./run.sh. You should get the message “Permission denied”, which tells you
that you’re not allowed to execute the script. To let yourself execute the script
type chmod 744 run.sh. This changes the permissions on the file ./run.sh so
that everyone can read it and you can also edit and execute it. Try running it
again.

Now you should see 24 jobs being allocated resources. It takes about 90
seconds for them all to run, so while they’re running we will learn two new
SLURM commands: squeue and scancel. Enter squeue -u netid at the
command line. You will see a list of all your active jobs that are running
on Amarel. In the leftmost column are all of their jobids. Choose one (call it
id) and enter scancel id. Whatever job that was, you’ve cancelled it, and so
it will now stop running. If you ever need to cancel all your jobs, you can enter
scancel -u netid.

You’ll know that your jobs have all finished when you enter squeue -u

netid and don’t see any jobs listed. Navigate to /scratch/netid/VATTER eg

and list its contents. You should see 24 files. You can open them one by one
(using Vim) to see which patterns have schemes, but what if you had hundreds
of files? Since the files representing successes all have the word “Succeeded” in
them, we can search for that word. To do so enter grep Succeeded ./*. You
should see four lines telling you that {[1, 2, 3, 4]}, {[4, 3, 1, 2]}, {[4, 3, 2, 1]}, and
{[1, 2, 4, 3]} all have schemes.

5 Conclusion

We now know which patterns have schemes (or, rather, which have schemes
within the limited space we searched). This tutorial only scratches the surface
of all the topics that it mentions, but hopefully you now know enough keywords
that you can learn as much as you care to from Google.

5

	Introduction
	Getting An Account & Logging In
	Writing Your Maple Code
	Running Your Maple Code
	Conclusion

