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Abstract

In this final project of Experimental Mathematics Class (Spring 2019), we use the data
of the tenured and tenure-track faculty in the Rutgers math department as a case study to
demonstrate the statistical and mathematical relationships among several variables, e.g., the
number of publications and citations, the rank of professorship and of course, the salaries.
Different statistical tools, including simple and multi-variable regression, logistic regression,
lasso and ridge regression, neural network and unsupervised learning, are exploited so that the
results obtained from various methods can be easily compared.

1 Introduction

This paper is a final project of Experimental Mathematics Class at Rutgers in Spring 2019 taught by
Prof. Doron Zeilberger. In this project, we collect public data online of the tenured and tenure-track
faculty members at the department of mathematics at Rutgers University-New Brunswick.

In our data set, there are 59 professors. The variables are Lastname, Firstname, Rank (Assis-
tant Professor=1, Associate Professor=2, Full Professor=3, Distinguished Professor=4), Number
of Publication, Number of Citations, H-Index, Base Salary, AMS Fellow (Yes=1, No=0), the Year
of Ph.D. Awarded.

The data of names and ranks are from the website of Rutgers math department. The numbers of
publications, citations and h-index are from MathSciNet. The data of salaries are also publicly avail-
able online from the following link: https://php.app.com/agent/rutgersemployees/search.
The binary data on whether a professor is an AMS fellow is from the website of AMS. And the
data of the year when the Ph.D. degree was awarded can be easily obtained from Mathematics
Genealogy.
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2As a class project, we intend to study the statistical, and of course, mathematical relationship
between these variables we collect. Especially, much of our study focuses on the prediction of
salaries and ranks with the data of numbers of publications, citations and h-indices.

Accompanying Maple package and data files

This article is accompanied by multiple Maple packages available from the front of this article

https://sites.math.rutgers.edu/ yao/DAMF.html ,

where the readers can also find the raw data file.

2 Exploratory Data Analysis

At first, we would like to do exploratory data analysis for mean, variance, percentiles (with his-
tograms) and the co-variance matrix of the fields [NumberOfPublications, NumberOfCitations,
H-index, Salary, YearOfPhD]. Of course, our silicon servant and Maple computed the mean and
standard deviations for each field across all professors:

Field Mean Standard Deviation

Rank 3.153 0.971
Number of Publications 71.661 62.223

Number of Citations 1027.526 1119.278
h-index 14.271 7.783

Base Salary 158295.424 45632.948
Year of PhD 1989.051 15.105

Table 1: Means and standard deviations across all professors (n=59)

The following tables are means and standard deviations across professors in each rank and various
percentiles for each field and the covariance matrix. All these results are obtained via Maple rather
than Python or R.

Field Mean Standard Deviation

Number of Publications 13.167 6.094
Number of Citations 50.000 31.332

h-index 4.000 1.633
Base Salary 99083.333 2863.807

Year of PhD 2013.833 1.772

Table 2: Means and standard deviations across Assistant Professors (n=6)



3Field Mean Standard Deviation

Number of Publications 26.833 18.685
Number of Citations 145.667 88.009

h-index 6.000 2.000
Base Salary 125592.333 27075.982

Year of PhD 2003.167 12.020

Table 3: Means and standard deviations across Associate Professors (n=6)

Field Mean Standard Deviation

Number of Publications 42.500 21.381
Number of Citations 593.100 426.532

h-index 12.400 4.271
Base Salary 134656.750 13648.669

Year of PhD 1991.550 10.749

Table 4: Means and standard deviations across Professors (n=20)

Field Mean Standard Deviation

Number of Publications 116.222 64.911
Number of Citations 1762.519 1239.229

h-index 19.778 6.768
Base Salary 196231.148 39484.961

Year of PhD 1978.556 9.199

Table 5: Means and standard deviations across Distinguished Professors (n=27)

Field 5-th 10-th 25-th 50-th 75-th 90-th 95-th

Publications 9.300 15.000 26.167 58.000 106.833 139.467 156.400
Citations 35.200 71.133 203.000 632.000 1456.000 2552.733 3541.300

h-index 3.300 5.000 8.167 13.000 18.833 26.733 27.700
Base Salary 97200.000 102000.000 126681.500 143601.000 190641.333 214756.200 264902.800

Year of PhD 1967.300 1969.000 1977.000 1989.000 2000.833 2011.733 2014.700

Table 6: Various percentiles

Rank Publications Citations h-index Base Salary Year of PhD

Rank 0.959 37.484 635.636 5.544 33293.589 -11.473

Publications 37.484 3938.469 52316.612 358.731 210680.394 -624.879

Citations 635.625 52316.612 127348.301 8189.872 3594213.250 -9719.269

h-index 5.544 358.731 8189.872 61.615 258841.538 -72.617

Base Salary 33293.589 210680.394 3594213.250 258841.538 2202648298.421 -480151.487

Year of PhD -11.473 -624.879 -9719.2689 - 72.617 -480151.487 232.084

Table 7: The covariance matrix
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Figure 1: Histograms for each data field

Rank Publications Citations h-index Base Salary Year of PhD

Rank 1 0.609886 0.574939 0.721209 0.724367 -0.769026

Publications 0.609886 1 0.738458 0.728221 0.715299 -0.653597

Citations 0.574939 0.738458 1 0.924239 0.678393 -0.565147

h-index 0.721209 0.728221 0.924239 1 0.702617 -0.607262

Base Salary 0.724367 0.715299 0.678393 0.702617 1 -0.671558

Year of PhD -0.769026 -0.653597 -0.565147 -0.607262 -0.671558 1

Table 8: The correlation matrix

3 Simple Regression to Predict Salaries

In this section, we’d like to use simple linear regression model to predict the salaries of math
professors. We try to use (i) the number of publications, (ii) the number of citations and (iii) both
(i) and (ii) to do the prediction.

3.1 The Number of Publications

Using the built-in function Fit in Maple and the database MR in DATA.txt we have built already,
it follows that the coefficient in model y = ax+ b is [698.117924677398, 108267.583295999].



5The following is a graph of the model

Figure 2: The simple regression model to predict salaries from the number of publications

where x denotes the number of publications and y denotes the salary.

3.2 The Number of Citations

Similarly, using the built-in function Fit in Maple and the database MR DATA.txt, it follows that
the coefficient in model y = ax+ b is [39.9464245189426, 117249.456948536].

The following is a graph of the model

where x denotes the number of citations and y denotes the salary.

3.3 The Numbers of Publications and Citations

Using the built-in function Fit in Maple and the database MR, it follows that the coefficient in
model y = a1x1 + a2x2 + b is [552.468114188644, 10.9647258343195, 107438.462275095].

The following is a graph of the model where x1 denotes the number of publications, x2 denotes
the number of citations and y denotes the salary.

4 Multi-Variable Regression to Predict Salaries

In this section, we develop multi-variable linear regression models for the dependent variable Base
Salary. In particular, we will be comparing two regression models. In the first model, we take



6

Figure 3: The simple regression model to predict salaries from the number of citations

the independent variables to be Number of Publications, Number of Citations, and H-index. In the
second model, we include the same three independent variables in addition to a fourth variable
Year of PhD.

For the obvious reasons, an R1 University would most likely value the research efforts of the profes-
sors the University employs. Does a research-intensive university, however, compensate productive
research efforts? To gain insight into this question, we examine a linear multiple-regression model
considering three independent variables: Number of Publications, Number of Citations, and H-index.
These three variables are often-used proxies for researcher productivity and research impact, and
so these three variables would presumably have some relationship with the base salary a professor
earns.

To examine this relationship, we used Maple’s Statistical capabilities to develop a multiple-regression
model with Base Salary as the dependent variable. The code and data used to develop the model
is available at the project website.

Using Maple’s Fit(f,X,Y,v) procedure, we produced the following regression model:

There are a few important observations to make about the model above:

First, note that of the three variables of interest, the only one that achieved a level of significance
is the Number of Publications (p < .005). On the other hand, both the H-Index and the Number
of Citations were far from the standard thresholds for statistical significance. Based on our sample
of 59 professors from a single R1 University, we fail to reject the hypothesis that the Number of
Citations and the H-Index do not predict Base Salary.

Second, the model we’ve generated here accounts for approximately 58% of the variation in the
sample. Our model was a fairly good predictor of Base Salary at the institution from which we
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Figure 4: The simple regression model to predict salaries from the numbers of publications and
citations

Model: y=102213.93+323.73663x[1]+0.19726192 x[2]+2289.8942x[3]

Coefficients Estimate Standard Error t P>|t|

NumOfPubs 323.737 98.2510 0.3.29500 0.00172617
NumOfCites 0.197262 9.80409 0.0201204 0.984020
HIndex 2289.89 1387.26 1.65065 0.104509
Constant 102213.93 11871.3 8.61019 0.00000

R-Squared 0.581963
Adjusted R-Squared: 0.559161

Table 9: The Three Variable Regression Model considering Number of Publications, Number of
Citations, and H-Index. Statistically significant predictors are printed in bold.

collected the data. Given that only one of the three variables was a statistically significant predictor,
however, could we potentially do better? In the next section, we explore the accuracy of the model
using one additional variable: The year the Ph.D. was received.

Folk wisdom indicates that with increasing age comes increasing wisdom, though the authors of this
paper have no convincing empirical evidence that this claim is true. It may be the case, however,
that with age of a terminal research degree comes an increase in Base Salary. We added this fourth
variable, Year of PhD, to explore how our model was affected by the amount of time a professor
has spent in their career outside of the PhD program. Below is the model generated by Maple. As
before, the Maple code and the data is available at the project website.

We again make some interesting observations about this model.



8Model: y=1.88663*10ˆ6+220.97760*x[1]+2.4400278*x[2]+1542.0680*x[3]-889.20919*x[4]

Coefficients Estimate Standard Error t P>|t|

NumOfPubs 220.97760 102.186 2.16250 0.0350271
NumOfCites 2.4400278 9.80409 0.0201204 0.790132
HIndex 1542.0680 1387.26 1.65065 0.260633
PHDYear -889.20919 351.619 -2.52890 0.0143961
Constant 1.88663x106 11871.3 8.61019 0.00991043

R-Squared 0.626229
Adjusted R-Squared: 0.598542

Table 10: The Four Variable Regression Model considering Number of Publications, Number of
Citations, H-Index, and Year of PhD. Statistically significant predictors are printed in bold.

As before, we see that H-Index and Number of Citations do not rise to the level of statistical
significance in our model. On the other hand, Number of Publications and Year of PhD are both
statistically significant predictors of base salary in our data (p < .05). The fact that Year of PhD
negatively correlates with Base Salary supports the claim that professors generally earn more the
later they are in their career.

In this four variable model, we’ve explained approximately 63% of the variance in the data, cap-
turing more variance than the three variable model. As before, our model is a fairly good predictor
of base salary. Moreover, the increase in the amount of variance captured is most likely significant.
comparing the adjusted R-squared value, we see that the improvement is more than what would
be expected by chance alone. Thus, we have reason to believe that Year of PhD is an acceptable
variable to add to our model.

5 Logistic Regression to Predict Rank

The file EM19-Sec5.txt contains methods for doing logistic regression, and also methods to get the
data in the proper format.

NormPrep(D,Descs,Target,k,L) reorganizes a data set in the usual format as [[Descriptive Fea-
tures],Target Feature] (where the chosen descriptive features are given by Descs and the chosen
target feature is given by Target). Instead of using the Target feature directly, we change it to 0 or
1: it will be 1 if it has value ≥ k, and 0 otherwise. We then normalize the i-th descriptive feature
by dividing by L[i]. The L[i] should be chosen as approximate upper bounds for the values of the
descriptive features, so that the new descriptive features take values approximately between 0 and
1.

LogRegress(D,rate,K,x,tolerance,numTries) takes a data set D in the format outputted by
NormPrep and uses gradient descent to find the weights of the logistic regression function. The
algorithm stops when it runs more than numTries iterations or when the sum of squared errors is
less than tolerance.



9First we calculated the data sets using publications, citations, and h-index to predict rank, nor-
malizing by 400, 5000, and 30 respectively. We let k vary from 2 to 4. The command to do this
is:

for k from 2 to 4 do

S[k]:=NormPrep(MR, [4,5,6],3,k,[400, 5000, 30]);

od:

We then ran logistic regression on each of those data sets with the following commands:

for k from 2 to 4 do

W[k]:=LogRegress(S[k], 2.0, 1.0, x, 0.01, 100000);

od;

Note that we made the tolerance very low: we decided to essentially discard the tolerance, instead
recalculating each set of weights 100,000 times. we chose a step size of 2.0 because experimentally,
it seemed to give smaller errors faster for the k = 4 case.

My output has the form [sum of squared errors, regression function]. For k = 2, 3, 4 respectively,
we obtained:

• [1.949937354, 1/(1.+exp(2.016456500−28.67062169∗x[1]−154.0659487∗x[2]+10.21190166∗
x[3]))].

• [2.405193364, 1/(1.+exp(8.323091810+10.98823741∗x[1]+18.38531024∗x[2]−42.23399707∗
x[3]))].

• [5.233781077, 1/(1.+exp(8.135517535−34.32290447∗x[1]+7.142634696∗x[2]−7.459781090∗
x[3]))].

Note that after 100,000 tries, the error for the k = 4 case is still very high compared to the others.
(Further, with fewer than 10,000 tries one can get the errors for k = 2 and k = 3 to be below
3.0.) This seems to indicate that the distinction between rank 4 and the rest (distinguished or non-
distinguished professor) is not as easily predicted by number of publications, number of citations,
and h-index.

6 Lasso Regression to Predict Salaries

Lasso Regression is an extension of linear regression that tries to remove “redundancy“ by pushing
unnecessary coefficients close to 0. For instance, if we are trying to determine a way to guess a
variable z using a linear function in the variables v, x, y and in all our data, v ≈ 2x + 3y, we
may want to make the coefficient of v zero since we really can’t measure its impact based on our
data.

Recall that for standard linear regression, we seek to find a vector ~w such that we minimize



10∑
i

(~w · ~xi − yi)2.

If we wish to add a constant vector, we can append 1 to the end of each element of our data
set.

For Lasso regression (with parameter λ), we seek to minimize

∑
i

(~w · ~xi − yi)2 + λ|w|

As we make λ larger, we will see some coefficients push to 0; in the limit all coefficients will become
0 (which is meaningless). In practice, one will use split the data into training data, validation
data and testing data. The training data is used to compute the ~w (which depends on λ) and the
validation data is used to determine which value of λ is best. The test data is used to measure how
good the final choice is.

The method we use in this paper is coordinate descent with soft thresholding. This is one of the
older methods but its complexity suffices.

In this section of the project, we seek to estimate a professor’s salary based on their number
of citations and publications and a professor’s rank based on these numbers and the year they
graduated from a Ph.D. program. One can expect these inputs to be strongly correlated, so Lasso
regression may be preferred to standard linear regression, but we need a lot more data to know this
for sure.

Unfortunately, coordinate descent does not converge when appending a 1 to the end of our data
points [This is something I will look more into. It makes no sense and I haven’t been able to fully
verify the derivation of the method used;‘ when that is done it may shed some light]. But it does
converge without. Since we are not using a constant term, we use years since earning a Ph.D.
instead of the year they earned a Ph.D.

First, we approximate ~w with ~x = {num publications, num citations} and y representing the base
salary. We use error tolerance .01

For λ = 10i, we have:



11i ~w
−3 [1204.802738, 20.48713152]
0 [1204.802735, 20.48713167]
1 [1204.802702, 20.48713341]
2 [1204.802380, 20.48715046]
3 [1204.799146, 20.48732224]
4 [1204.766829, 20.48904015]
5 [1204.443636, 20.50621793]
6 [1201.211721, 20.67799697]
7 [1168.892572, 22.39578733]
8 [845.7010724, 39.57369030]
9 [0, 82.08941057]
10 [0, 49.05144060]

Next, we approximate ~w with ~x = {num publications, num citations, 2019-year of Ph.D.} and y
representing the rank (recall that 1 for Asst. Professor, 2 for Assoc. Professor, 3 for Professor, 4
for Distinguished Professor). We use error tolerance .01.

For λ = 10i, we have:

i ~w
−3 [0.02917311079, 0.001673821023, 0.09394253627]
0 [0.02917217085, 0.001673817356, 0.09393501152]
1 [0.02916370288, 0.001673784318, 0.09386722104]
2 [0.02916370288, 0.001673784318, 0.09386722104]
3 [0.02907902313, 0.001673453938, 0.09318931622]
4 [0.02823222572, 0.001670150141, 0.08641026800]
5 [0.01976425160, 0.001637112171, 0.01861978578]
6 [0, 0.001306732472, 0]
7 [0, 0, 0]

7 Ridge Regression to Predict Salaries

In this section, we are going to find whether our data have multicolinearity or not with Ridge regres-
sion. Additionally we will use this method to predict salary from [NumberOfPublications, Num-
berOfCitations] and predict the rank from [NumberOfPublications, NumberOfCitations, YearOf-
PhD].

7.1 Ridge Regression

Here we consider a general situation to introduce our method which uses Ridge regression to
predict. For all observations i, we denote the i-th observation on the k-th explanatory variable
by Xki and the outcome variable by Yi. The we can explore the issue caused by multicolinearity
by examining the process of attempting to obtain estimation for the parameters of the multiple



12regression equation
Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki.

Further we get
Y = XβT

where

X =


1 X11 . . . Xk1

1 X12 . . . Xk2
...

...
. . .

...
1 X1N . . . XkN


is an N× (k+1) matrix, where N is the number of observations and k is the number of explanatory
variables.

Here we want to get the approximate values for β. We apply the Tikhonov regularization which is
also known as ridge regression in statistics. Then the explicit formula of β given by this method
is

β := (XTX + ΓTΓ)−1XTY

where in most situations Γ = αI. Here α is to be determined and I is the identity matrix. Moreover,
α is always determined by cross-validation method. Further, we use 70 percent of the data set to
train and the remaining data to test.

7.2 Error

It is a good way to use MSE to test the errors. In our problem, it is indeed an accessible way, but
when we use it to test the prediction of salary, we found it extremely upset because of the large
difference (around 108). It will become a big challenge for us to judge if our method is appropriate
or not. We can’t say it is definitely an inappropriate way because of the big difference, since we
have to notice that the value of Y , i.e., the salary, is large, so some perturbation will be amplified.
Thus we have to look for a new method to test our error and we adopt the new formula for error
as follows

E :=

√√√√ 1

N

N∑
i=1

(
Yi − Ŷi
Yi

)2.

7.3 Prediction for Salary

In this part we use [NumberOfPublications, NumberOfCitations] to construct a linear prediction
for salary. By apply our algorithm. First input

Main(0.7, 1, [4, 5, 7],2)

where 0.7 means we use 70% to train and use the remaining to test and 1 means we select α from
[0, 1] where we choose 0.1 to be initial step and the 2 means way that is if way = 1 then output a



13picture if way = 2 then output solution combined by error and β.. It will output the data and the
corresponding error. And the output is as following

[[[102536.973741645, 523.186015435636, 27.1832340825623]], 0.00331248298977668]

which means the error the this model is only 0.331%. Further we can write the formula for our
model.

Rank :=102536

+ 523.186 ∗NumberOfPublications
+ 27.1832 ∗NumberOfCitations

And the picture which is consists of the initial value of Y and the Ŷ is as Figure1.

Figure 5: Ŷ in red&box and Y is in blue&circle

7.4 Prediction for Rank

In this part we use [NumberOfPublications, NumberOfCitations, YearOfPhD] to construct a linear
prediction for rank. By apply our algorithm. First input

Main(0.7,1,[4,5,9,3],2)

The meaning of parameters are exactly the same as above.

And the output is the following list

[[[65.75303125, 0.01315241331, 0.0002925868813,−0.03189812789]], 0.005672106778]



14which means the error the this model is only 0.567%. Further we can write the formula for our
model.

Rank :=65.753

+ 0.01315 ∗NumberOfPublications
+ 0.00029 ∗NumberOfCitations
− 0.031898 ∗ Y earOfPhD

And the picture which is consists of the initial value of Y and the Ŷ is as Figure2

Figure 6: Ŷ in red&box and Y is in blue&circle

8 Neural Network to Predict Rank

Artificial neural networks (ANNs) are used most often to extract complex relationships within a
data set. While our data set is currently small, we thought that it would be interesting to explore
how well an ANN classifies our data. In this section, we will work with the following problem: Given
a professor, who is represented by a list of length three containing the number of publications, the
number of citations on these publications, and h-index, we would like to predict what rank this
professor has. In order to use an ANN for this task, our final model should output a vector which
has length of the number of possible rankings whose elements are between zero and one and whose
entries sum to 1. We will begin with a simple linear classifier, and after experimenting with this
simple model, we may/will see if adding non-linearity through a second layer allows us to more
accurately model our data set.



158.1 Methodology

One of the simplest forms of an ANN is a one-layer linear classifier. We shall follow the arti-
cle http://cs231n.github.io/neural-networks-case-study/#linear from the Stanford cs231n
course with several modifications. The model explained in this article is known as a soft-max linear
classifier. In this model, our data undergoes a linear transformation from some k-dimensional real
space to N -dimensional real space, where k is the number of descriptive features of the data and
N is the number of target features. We interpret this N -dimensional vector as a list of unnormal-
ized log probabilities, and we apply the soft-max function which element-wise exponentiates and
normalizes this vector to obtain a list of probabilities.

We will train our neural network with hand-labeled (by the Rutgers Mathematics promotion com-
mittee) data, which is a list of professors and current rankings in the format [descriptive feature
1, descriptive feature 2,. . . , descriptive feature k, rank]. Descriptive features may be chosen from
the following: number of citations, number of publications, h-index, salary, AMS fellowness, and
year of receiving PhD. Before training the ANN, we do the following preprocessing on our training
set data: For each descriptive feature F , we transform F so that it has mean zero and standard
deviation one. In addition, since our model predicts probabilities, we convert the number professor
rank into a length-four vector (probability distribution), which is a one at position i if the professor
is of rank i and zero otherwise. This is known as a one-hot encoding of the target feature. Using
this encoding of the target feature, we can compute how far wrong our model’s current prediction
is from the truth. To this end, we use the cross-entropy loss function. For two probability distri-
butions p, the true distribution, and q, the test distribution, on a base set X, the cross-entropy
L(p, q) is defined as

L(p, q) =
∑
x∈X
−p(x) log(q(x)).

Using our one-hot encoding of the target feature, our loss for a single piece of data is thus

− log(q(xi)),

where i is the correct label for this piece of data. We sum over all of the training data to get the
loss for a single iteration (epoch) of training. Using the loss function, we back-propagate the error
after each epoch to update the weights of our ANN. In addition, we also update the ANN weights
with a small amount of regularization, which keeps the weights closer to zero. The purpose of this
is to prevent over-fitting our data and to encourage use of all target features by the ANN.

8.2 Results

We start with training the neural net using all available numerical descriptive features other than
salary. We permute the data after extracting the relevant fields and take the first 45 entries to
train the ANN. The rest we set aside for testing. After experimenting with hyper-parameters, we
find that the network seems to converge after 200 epochs. Below is a plot of the cross-entropy loss
for each epoch of training on this data set.

To test the trained network, we let the network’s prediction of a given professor rank be the argmax
of the list of probabilities. We may now evaluate the accuracy on the training set and find that the
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Figure 7: The cross-entropy loss for each epoch of training

ANN predicts professor rank correctly 12 out of 14 times! The list of predictions by the network is
[4, 4, 4, 4, 2, 4, 3, 4, 3, 3, 4, 3, 1, 3], and the correct rankings are [4, 4, 4, 4, 2, 4, 4, 4, 3, 3, 4, 3, 1,
2].

It is interesting to see how our model performs with using fewer descriptive features. It seems that
the number of publications, the number of citations, and the h-index are particularly important
criteria, so we use these to train the ANN. Using the same hyper-parameters, the neural net trains
well after 200 epochs. The loss curve is similar, yet we find that the ANN predicts the ranking
correctly only 9 out of 14 times. Here is the list of predictions [3, 2, 3, 1, 3, 3, 4, 3, 3, 4, 4, 3, 4,
1] and the true rankings [3, 3, 3, 1, 2, 3, 4, 4, 4, 4, 4, 3, 4, 2]. It is instructive to plot the data
to see how it is clustered. Below is a plot of the three-dimensional data where each points color
corresponds to the ranking of the professor. Magenta corresponds to assistant professor, blue to
associate professor, green to professor, and orange to distinguished professor.

One can see that the data is not linearly separable, and in fact does not seem to be separable
by any simple non-linear model. Future investigation could include finding a small number of
parameters which allow for a linear separation of the data or seeing how well a non-linear model
predicts professor rankings. To experiment, one can follow the help screen in a maple worksheet
after reading EM19-Sec8.txt.

9 Unsupervised Clustering For Predictive Analysis

The method used in this section was an unsupervised clustering algorithm developed by the 2015
UCLA Applied Math REU Hyperspectral Imagery research team [1],[2]. Hyperspectral images are
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Figure 8: The three-dimensional data where each points color corresponds to the ranking of the
professor.

“photos” taken with special sensors that allow for each pixel to have measurements from hundreds
of different wavelengths. Thus instead of each pixel being identified by an RGB value, it would
instead by identified by a vector of data called its spectral signature. The spectral signature of
a pixel can identify its material content, i.e., grass or brick or asphalt, or even differentiate clear
chemical gas spills from clean air. Oftentimes, there are only five or six distinct materials in a
hyperspectral image to try to identify. Analysis of hyperspectral imagery therefore is focused on
taking hundreds of datapoints, each in the form of spectral signatures of pixels, and sorting them
into n groups, where n is the number of distinct materials expected to be in the image. The
following terminology will be borrowed from the hyperspectral lexicon: each sorted group is called
a cluster, and the average vector of a cluster is its centroid.

Most hyperspectral imagery analysis techniques require previous knowledge of the materials present
in the image (such as what the spectral signature of each material is) beforehand in order to
properly cluster the image. The NLTV algorithm developed by the 2015 UCLA Hyperspectral
team was amongst a rarer class of algorithms that would cluster the data in an unsupervised
manner. Simply input the image, and the clustered image would be output. As such, it seemed
like an incredibly promising method to adapt for the dataset of professors and their salaries. There
are four natural “clusters” within the dataset: Assistant Professor, Associate Professor, Professor,
and Distinguished Professor. If the datapoint “signatures” of publications, citations, h-index, base
salary, AMS Felloship, and year of PhD were truly distinct between these four classifications of
professorship, then an unsupervised clustering method meant for vectors of data ought to predict
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9.1 The Algorithm

The core of the sorting algorithm comes from the minimization of an energy functional

E(u) =‖ 5u ‖L1 +λ〈u, f〉, (9.1)

where u : Ω → [0, 1]n is the labeling function on the data, n is the number of clusters it is being
sorted into, and Ω is the domain of the data, and f is a fidelity function. The inspiration comes
from the imaging process technique of total variation introduced by Rudin et al in 1992 [6] for
noise reduction, which corresponds to the minimization of the gradient of u. In highly noisy images
or datasets where adjacent pixels do not matter, simply calculating the gradient directly does not
give as pertinent information. Therefore, we turn to the theory of nonlocal operators introduced
by [4],[5], Zhou and Schölkopf and adapted to image processing by Osher and Gilboa [7].

Let Ω be a region in Rk, and u : Ω→ R be a real function. Then the non-local derivative is defined
as

∂u

∂y
(x) :=

u(y)− u(x)

d(x, y)
, for all x, y ∈ Ω (9.2)

where d is a positive distance between x and y. With the following non-local weight defined as 9.3,
we can re-write the non-local derivative as 9.4.

w(x, y) = d−2(x, y) (9.3)

∂u

∂y
(x) =

√
w(x, y)(u(y)− u(x)) (9.4)

Then the non-local gradient 5wu for u ∈ L2(Ω) as a function from Ω to L2(Ω) is the collection of
all partial derivatives

5w u(x)(y) =
∂u

∂y
(x) =

√
w(x, y)(u(y)− u(x)). (9.5)

Note that here, “distance” can either refer to the standard Euclidean distance

d(x, y) =

√√√√ k∑
i=1

(xi − yi)2, (9.6)

the cosine distance
d(x, y) = 1− x · y

||x||||y||
, (9.7)

or a linear combination of them.

The non-local energy functional we are trying to minimize takes the form of

E(u) =‖ 5wu ‖L1 +λ

n∑
i=1

|ui(x)g(x)− ci|2, (9.8)



19where ‖ 5wu ‖L1 is the L1 norm on the space L2(Ω, L2(Ω)) defined as

‖ v ‖L1 :=

∫
Ω
‖ v(x) ‖L2 dx =

∫
Ω

∣∣∣ ∫
Ω
v(x)(y)2dy

∣∣∣ 12dx (9.9)

and the fidelity function is explicitly given by λ
∑n

i=1 |ui(x)g(x)− ci|2, where g(x) is the datapoint
and ci is the ith cluster centroid. We explicitly discretize the labeling function and nonlocal
operators, u = (u1, u2, . . . , un) is a matrix of sizem×n, wherem is the number of datapoints and n is
the number of clusters. Each ui takes values between 0 and 1,

∑n
i=1 uki = 1 for all k ∈ 1, ...,m. Then

(5wul)i,j =
√
wi,j((ul)j − (ul)i) is the nonlocal gradient of ul; (divwv)i =

∑
j
√
wi,jvi,j −

√
wj,ivj,i

is the divergence of v at i-th datapoint; and the discrete L1 norm of 5wul are defined as:

‖ 5wul ‖L1=
∑
i

∑
j

(5wul)
2
i,j

 1
2

. (9.10)

The functional 9.8 is convex, so a global minimum exists. However, calculating ‖ 5u ‖L1 via
gradient descent involves calculating div( 5u

|5u|), which is highly unstable because | 5u | can be
equal to zero. In 2011, Chambolle and Pock introduced a first-order primal dual algorithm, which
they proved converged to a saddle point with a rate of O(1/N) in finite dimensions for the complete
class of convex problems [8]. This was used as an inspiration to craft a saddle point solution with
respect to u,u, and p. Full motivation and description can be found in [1], [2],[3]. The algorithm is
as follows:

Primal-Dual Iterations
• Iterations (n > 0): Update un, pn, ūn as follows:

pn+1 = projP (pn + σ5w ū
n)

un+1 = arg minu δU (u) + 1
2 ‖ (I + τF )

1
2u− (I + τF )−

1
2 (un + τdivwp

n+1) ‖2

ūn+1 = un+1 + θ(un+1 − un)

where F is the discretized fidelity function matrix with the inbuilt weight λ.

The overall sorting algorithm is then:

Nonlocal Total Variation Unsupervised Clustering
• Initiate parameters.
• Calculate weight matrix.
• Set n random datapoints as the first iteration of centroids, set
...u0 = u0 = Matrix(m,n,1/m) and p0 zeroed out.
while not converge do
......Inner Loop: Primal Dual Algorithm to find minimizing u.
......Outer Loop: Threshold u into an assignment function, and use the new sorting of the
data to update the centroids.
end



20There are two main changes between the algorithm written for this project, and the algorithm de-
veloped in 2015. Firstly, the calculation of the weight matrix is done directly between all datapoints
in this project; the original hyperspectral algorithm used a “patch” distance to filter for noise, and
employed an approximate nearest neighbor search to save computational time. Secondly, a smart
simplex clustering method instead of directly threshholding was developed for the hyperspectral
with inspiration from [9]. While a coded version in maple has been submitted, it was not used
in the analysis of the data as it makes the outerloop of the algorithm far more computationally
expensive, for no increase in convergence time in a dataset as clean as this one.

There are a number of parameters involved in the algorithm, but the two most vital ones are λ,
which determines the weight given to the minimization of the fidelity function vs the gradient of
u, and the choice of Euclidean vs Cosine distance for the creation of the weight matrix and fidelity
distance calculations. The value for λ ought to be comparatively large to prioritize tight sorting.
Euclidean vs Cosine vs a linear combination is something that should be tailored to the dataset.
In hyperspectral imagery, oftentimes using the Cosine distance instead of the Euclidean distance
could account for differences in direct lighting on the materials present in the image. Here, it is an
option because some of the fields (ie h-index or AMS Fellow: 0/1) have a smaller range of values,
and some of the fields (ie salary or number of citations) have a much larger range of values, so that
field does not dominate. The data can also be “normalized” via dividing by the max value of each
of the fields before clustering.

9.2 Analysis Of Data

A thorough analysis of the data with different parameters and subfields is done in this section.
The number of assignments to each cluster and centroids of the cluster are reported. The fields
are as follows: Rank (Assistant Professor=1, Associate Professor=2, Professor=3, Distinguished
Professor=4), Number of Publications, Number of Citations, MRhIndex, Base Salary, AMSfel-
low(Yes=1,No=0), and Year of PhD.

For the clustering algorithm applied to the entirety of the numeric data collected, a few interesting
patterns emerged. Oftentimes the lower ranks (Assistant Professor and Associate Professor) are
grouped together, and a “pure” Distinguished Professor and mixed Distinguised Professor and
Professor groups are output. When data is normalized first, clusters are entirely determined by
AMS yes or no, and depending on the weighting of λ there is either one entirely “no” cluster or
two entirely “no” clusters.

.

Test 1

Subfields: All (Rank, number of publications, number of citations,h-index, base salary, AMS Fellow,
year of PhD).

Parameters: Euclidean distance, λ = 106.



21# Elem. Rank Pub. Cit. H-Ind. B. Salary AMS Year of PhD

Centroid 1 14 2 24.9 260.5 7.1 106652 .14 2002

Centroid 2 23 3.17 52 658.3 12.9 141536 .57 1991

Centroid 3 17 3.82 112.4 1744.3 19.5 192245 .82 1980

Centroid 4 5 4 154.8 2436.2 22.8 264564 .80 1971

Test 2

Subfields: All (Rank, number of publications, number of citations,h-index, base salary, AMS Fellow,
year of PhD).

Parameters: Euclidean distance, data originally normalized λ = 1015.

# Elem. Rank Pub. Cit. H-Ind. B. Salary AMS Year of PhD

Centroid 1 11 1.45 21 82.3 5 112367 0 2011

Centroid 2 15 3.3 50.7 572 11.8 147092 0 1985

Centroid 3 21 3.5 68.3 770 14.1 158551 1 1988

Centroid 4 12 4 150.1 2914 26.2 213953 1 1974

Test 3

Subfields: All (Rank, number of publications, number of citations,h-index, base salary, AMS Fellow,
year of PhD).

Parameters: Euclidean distance, data originally normalized, λ = 1020.

# Elem. Rank Pub. Cit. H-Ind. B. Salary AMS Year of PhD

Centroid 1 26 2.5 38.1 364.8 8.9 132401 0 1996

Centroid 2 10 3 40.5 432.8 10.9 138789 1 1993

Centroid 3 13 3.9 98.4 1194.4 17.8 177696 1 1983

Centroid 4 10 4 155.3 3128.5 27 219906 1 1974

Test 4

Subfields: All (Rank, number of publications, number of citations,h-index, base salary, AMS Fellow,
year of PhD).

Parameters: Cosine distance, λ = 1020.

# Elem. Rank Pub. Cit. H-Ind. B. Salary AMS Year of PhD

Centroid 1 12 1.6 21.4 100.5 5.1 107371 0.08 2008

Centroid 2 16 3.3 51.4 756.4 14 134510 .56 1989

Centroid 3 17 3.5 70 528.4 11.7 178819 .59 1985

Centroid 4 14 3.9 139.9 2738 25.6 204207 .93 1977
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Subfields: All (Rank, number of publications, number of citations,h-index, base salary, AMS Fellow,
year of PhD).

Parameters: Cosine distance, data originally normalized, λ = 1020.

# Elem. Rank Pub. Cit. H-Ind. B. Salary AMS Year of PhD

Centroid 1 26 2.5 38.1 364.8 8.9 132401 0 1996

Centroid 2 10 3 40.5 432.8 10.9 138789 1 1993

Centroid 3 11 4 96 1077 16.8 179301 1 1982

Centroid 4 12 3.9 148.1 2913 26.4 211400 1 1977

It is also possible to run tests on limited data. Here we use cosine distance on non-normalized data.
Once more, the algorithm skewed towards lumping associate and assistant professors together,
and making sub-clusters of distinguished professors. The pair of subsets that best subcategorized
centroids were [H-index, Year of PhD].

.

Test 6

Subfields: Number of publications,base salary

Parameters: Cosine distance, λ = 1020.

# Elem. Rank Pub. Cit. H-Ind. B. Salary AMS Year of PhD

Centroid 1 27 2.4 27.4 308 8.7 124973 .30 2000.

Centroid 2 16 3.6 74.8 1105.9 15.9 169494 .68 1981

Centroid 3 14 4 121.1 2049.3 21.6 197257 .86 1979

Centroid 4 2 4 297.5 2962.5 25 245834 1 1966

Test 7

Subfields: Number of citations,base salary

Parameters: Cosine distance, λ = 1020.

# Elem. Rank Pub. Cit. H-Ind. B. Salary AMS Year of PhD

Centroid 1 23 2.2 24.2 220 7.3 122726 .22 2001

Centroid 2 21 3.6 66.5 1094.8 16.3 163636 .71 1985

Centroid 3 11 4 125.3 1849.7 20.8 192613 .82 1977

Centroid 4 4 4 224 3056.5 25.3 240409 1 1973

Test 8
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Parameters: Cosine distance, λ = 1020.

# Elem. Rank Pub. Cit. H-Ind. B. Salary AMS Year of PhD

Centroid 1 17 2.1 28.1 310.2 7.8 118049 .24 2003

Centroid 2 15 3.3 59.1 904.7 13.5 156430 .47 1983

Centroid 3 19 3.6 88.4 1115 16.4 175803 .79 1986

Centroid 4 8 4 148 2574.4 24.5 205736 .86 1978

The overall pattern emerges that NLTV Unsupervised clustering is indeed good at picking out
four clusters that do correlate to rank, but consistently there is more variation between Distin-
guished Professors within the given data than Assistant and Associate Professors, which skews the
clustering.

10 Summary

In this class project, multiple mathematical and statistical methods are used to predict the ranks
and salaries of a faculty member from other independent variables such as the number of publi-
cations and the number of citations. Various results are obtained. The future work could be the
extension of this project to other math departments in the United States or even to faculties of
other fields. It would be interesting to see the criteria to be a professor and how much they earn
in different universities and different fields.
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