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ABSTRACT OF THE DISSERTATION
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Let ¢ be a prime. For any algebraically closed field F of positive characteristic p # ¢,
we show that there is an isomorphism wfl[%] >~ m0(F )[%] for all n > 0 of the nth stable
homotopy group of spheres with the (n,0) motivic stable homotopy group of spheres over
F after inverting the characteristic of the field F. For a finite field F, of characteristic
p, we calculate the motivic stable homotopy groups wnyo(Fq)[%] for n < 18 with partial
results when n = 19 and n = 20. This is achieved by studying the properties of the

motivic Adams spectral sequence under base change and computer calculations of Ext

groups.
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Chapter 1

Introduction

For any field F', Morel and Voevodsky construct a triangulated category SHg in which
one can use techniques of stable homotopy theory to study schemes over F [MV99].
Just as for the stable homotopy category SH of topology, it is an interesting problem
to compute the stable motivic homotopy groups of spheres 7, ,(F) = SHp(X5"1,1)
over F', where 1 denotes the motivic sphere spectrum. In this dissertation, we use the
motivic Adams spectral sequence (MASS) to determine the structure of the motivic stable
homotopy groups of spheres m, o(F,) over finite fields F, when n < 18 with the assistance
of computer calculations.

For a field F' of characteristic different from ¢, write A**(F’) for the bigraded mod ¢
motivic Steenrod algebra over F' and H**(F") for the mod ¢ motivic cohomology ring of
F', which are discussed in chapter 3. The mod ¢ motivic Adams spectral sequence of the

sphere spectrum 1 over F' is defined in chapter 4 and has second page

B = Bxt{ G (Y (F), 7 (F).

The motivic Adams spectral sequence of 1 over F' converges to the homotopy groups of the
H-nilpotent completion of the sphere spectrum s, (1 (F)) = SHp (X% 1, 1)) for fields
F of finite mod ¢ cohomological dimension by proposition 4.17. We show in proposition
4.21 that the motivic Adams spectral sequence over finite fields and algebraically closed
fields converges to the ¢-primary part of 7., (F') for s > w > 0. Our argument relies on
the fact that the groups s, (F') are torsion for s > w > 0 [ALP15].

Dugger and Isaksen have calculated the 2-complete stable motivic homotopy groups
of spheres up to the 34 stem over the complex numbers [DI10] by using the motivic
Adams spectral sequence. Isaksen has extended this work largely up to the 70 stem

[Isalda,Isal4b]. We are led to wonder, how do the motivic stable homotopy groups vary



for different base fields?

Morel determined a complete description of the 0-line 7, ,,(F') in terms of Milnor-Witt
K-theory [Mor12]. In particular, mo(F') is isomorphic to the Grothendieck-Witt group
of F' and for all n > 0 there is an isomorphism 7, ,(F') = W (F') where W (F) is the Witt
group of quadratic forms of F. See [Weil3, I1.5.6] for a definition of GW (F') and W (F).

For the 1-line 7,11, (F), partial results have been obtained in [O©14]. Ormsby has
investigated the case of related invariants over p-adic fields [Orm11] and the rationals
[0O013], and Dugger and Isaksen have analyzed the case over the real numbers [DI15]. It
is now possible to perform similar calculations over fields of positive characteristic, thanks
to work on the motivic Steenrod algebra in positive characteristic [HK?13].

Denote the nth topological stable stem by 7). Over the complex numbers, Levine
showed there is an isomorphism =) = m,((C) [Levl4, Cor. 2]. We obtain a similar
result in theorem 5.6 for an algebraically closed field F of positive characteristic after
(-completion away from the characteristic of F. Our argument uses the motivic Adams
spectral sequence and properties of the motivic Adams spectral sequence under base
change. In particular, we must work with the motivic stable homotopy category over
the ring of Witt vectors of a field of positive characteristic. We use the construction of
a spectrum which represents motivic cohomology by Spitzweck [Spil3] to construct the

motivic Adams spectral sequence over Dedekind domains.

Theorem 1.1. Let F be an algebraically closed field of positive characteristic p. For all

s > w > 0, there are isomorphisms 7rs7w(17)[%] = 7rs7w((C)[%].

Proof. When s > w > 0, the groups wsyw(ﬁ) and 7,,(C) are torsion by proposition
4.21. The isomorphism 7rs7w(F)[%] = 7r57w((C)[1%] follows when s > w > 0 from theorem
5.6 by summing up the ¢-primary parts. When s = w > 0 the result follows by Morel’s

identification of the 0-line in [Mor12]. O

Corollary 1.2. Let F be an algebraically closed field of positive characteristic p. For all

n > 0 the homomorphism Le : 75 [ ] — m,0(F)[

% ] is an isomorphism.

T =

For a finite field F, with an algebraic closure E,, theorem 1.1 helps us analyze the

mod ¢ motivic Adams spectral sequence over F, by comparing the spectral sequences over



F, and Fp. In particular, we obtain the following calculation of the motivic stable stems

over Fg.

Theorem 1.3. Let F, be a finite field of characteristic p. For all 0 < n < 18, there is an

isomorphism 7, o (]Fq)[%] = (m @ 772_’_1)[%].

Proof. Propositions 6.8, 6.11, 6.12 calculate the ¢-completion of 7, o(F,) for primes ¢ # p
when the Bockstein acts trivially on H**(F,;Z/¢). Propositions 7.8, 7.10, and 7.11 cal-
culate the ¢-completion of m, o(F,) for primes ¢ # p when the action of the Bockstein
on H*(F4;Z/?) is non-trivial. The ¢-completions of m, o(F,) are shown to agree with
the ¢-primary part of m,o(F,) for n > 0 in proposition 4.21. When n = 0, the result
follows by Morel’s identification of 7 (F,) with the Grothendieck-Witt ring of F,, since
GW(F,) = Z & 7,2 [Sch85, Ch. 2, 3.3]. 0

In the case of a finite field F, where the Bockstein acts non-trivially on the motivic
cohomology of F, with Z/2 coefficients, i.e., when ¢ = 3 mod 4, we use computer calcula-
tions to identify the Fo page of the mod 2 motivic Adams spectral sequence. We discuss
the methods of calculation in chapter 8.

It is interesting to note that at the prime ¢ = 2, the pattern my, o(Fy)5 = (75 & 75 )5
obtained in theorem 1.3 does not hold in general. Recall that (754)) = Z/8 © Z/2,
(m50)5 2 7Z/8, and (75,)5 = Z/2 & Z/2. We show that if ¢ =5 mod 8, then

m10,0(Fq)2 = (mlg)a @ Z/4 and ma,0(Fg)y = (m3)5 & Z/2.

In the mod 2 Adams spectral sequence of topology, the class & € 735 is detected by the
class g which is in Adams filtration 4. The calculation in proposition 6.9 implies that the
class & € m0,0(Fq) is in Adams filtration 3 when ¢ = 5 mod 8 but in Adams filtration 4 if
g = 1 mod 8. See 6.10 for more details and references. It is still an open question whether
or not m,0(Fy)5 = (75, & 75,1 )5 holds when ¢ = 3 mod 4 and n =19 or n = 20.

The 2-primary calculations presented in this dissertation have been submitted for

publication [W@16]. The odd primary calculations have not yet appeared elsewhere.



Chapter 2

The stable motivic homotopy category

We first sketch a construction of the stable motivic homotopy category that will be con-
venient for our purposes and set our notation. Treatments of stable motivic homotopy

theory can be found in [Ayo07, DR®03, DLO*07,Jar00, Hu03].

2.1 Base schemes

A base scheme S is a Noetherian separated scheme of finite Krull dimension. We write
Sm/S for the category of smooth schemes of finite type over S. Denote the category of
presheaves of sets on Sm/S by Pshv(Sm/S). A space over S is a simplicial presheaf on
Sm/S. The collection of spaces over S forms the category Spc(S) = A°’Pshv(Sm/S5),
where morphisms are natural transformations of functors. We write Spc, (S) for the cat-
egory of pointed spaces. Note that Spc(S) is naturally equivalent to the category of
presheaves on Sm/S with values in the category of simplicial sets sSet. We will occasion-
ally switch between the two perspectives.

We will be focused on the special cases where S is the Zariski spectrum of a Hensel
local ring in which £ is invertible or a field of positive characteristic different from ¢. For a
field F of positive characteristic, the ring of Witt vectors of F' is a complete Hensel local
ring W (F') with residue field F. A thorough analysis of the ring of Witt vectors is given
in [Ser79, II §6].

2.2 The projective model structure

We are able to perform familiar constructions from homotopy theory with schemes thanks

to the construction of the motivic model category due to Morel and Voevodsky [MV99].



We will assume the reader is familiar with the basic properties of model categories, which
can be found in [Hir03, Hov99).
The first model category structure we endow Spc(S) with is the projective model

structure, see [Bla01, 1.4], [DR®O03, 2.7], [Hir03, 11.6.1].

Definition 2.1. A map f : X — Y in Spc(S) is a (global) weak equivalence if for any
U € Sm/S the map f(U) : X(U) — Y (U) of simplicial sets is a weak equivalence. The
projective fibrations are those maps f : X — Y for which f(U) : X(U) —» Y(U) is a Kan
fibration for any U € Sm/S. The projective cofibrations are those maps in Spc(S) which
satisfy the left lifting property for trivial projective fibrations. The projective model
structure on Spc(S) consists of the global weak equivalences, the projective fibrations,

and the projective cofibrations.

The category Spc(S) equipped with the projective model structure is cellular, proper,
and simplicial [Bla01, 1.4]. Furthermore, Spc(S) has the structure of a simplicial monoidal
model category, with product x and internal hom Hom. We write Map(X',)) for the

simplicial mapping space for spaces X and ).

Definition 2.2. For a smooth scheme X over S, we write hx for the representable
presheaf of simplicial sets. For U € Sm/S, the simplicial set hx(U) is given by hx(U), =
Sm/S(U, X) for all n € A where the face and degeneracy maps are the identity map. We
will frequently abuse notation and write X for hx.

The constant presheaf functor ¢ : sSet — Spc(S) associates to a simplicial set A the

presheaf cA defined by cA(U) = A for any U € Sm/S.

The functor ¢ is a left Quillen functor when Spc(S) is equipped with the projective
model structure. Its right adjoint Evg : Spc(S) — sSet satisfies Evg(X) = X(S). One
can show that representable presheaves and constant presheaves in Spc(S) are cofibrant

in the projective model structure.

2.3 The Nisnevich local model structure

Although the representable presheaf functor embeds Sm/S into Spc(S), colimits which

exist in Sm/S are not necessarily preserved in Spc(S). That is, if X = colim X; in Sm/S,



it need not be true that hx = colimhy,, e.g., colim(hg1 < hg,, — ha1) # hpr. To fix

this, one introduces the Nisnevich topology on Sm/S.

Definition 2.3. Let S be a base scheme. For any X € Sm/S, let 4 = {U; — X} be
a finite family of étale maps in Sm/S. We say U is a Nisnevich covering of X if for
any x € X there exists a map U; — X in U and a point v € U; for which the induced
map of residue fields k(z) — k(u) is an isomorphism. The Nisnevich covers determine a

Grothendieck topology on Sm/S, which is called the Nisnevich topology.

Definition 2.4. An elementary distinguished square is a pull-back square in Sm/S

V/ X/

L, )

V1

for which f is an étale map, j is an open embedding, and f~1(X — V) = X — V is an

isomorphism, where these subschemes are given the reduced structure.

Morel and Voevodsky proved in [MV99, 3.1.4] that the Nisnevich topology is generated
by covers coming from the elementary distinguished squares. That is, a presheaf of sets
F on Sm/S is a Nisnevich sheaf if and only if for any elementary distinguished square, as

in definition 2.4, the resulting square

is a pull-back square.

We now set out to modify the projective model structure on the category of spaces
over a base scheme S. In particular, we would like to declare a collection of maps C to be
weak equivalences which may not already be weak equivalences in the projective model
structure. The general procedure for this is Bousfield localization, which is defined by
Hirschhorn in [Hir03, 3.3.1] and proven to exist in good circumstances in [Hir03, 4.1.1],
such as when C is a set. To be brief, for a model category M and a class of morphisms
C in M, the left Bousfield localization of M at C—if it exists—is a model category L¢c M

with the same underlying category as M, but the weak equivalences are the C-local weak



equivalences, the cofibrations are the same as in M, and the fibrations are determined by
the right lifting property. The C-local weak equivalences include the weak equivalences of

M and all maps in C.

Definition 2.5. For a pointed space X and n > 0, the nth simplicial homotopy sheaf
X of X is the Nisnevich sheafification of the presheaf U — 7, (X (U)).

Write Wy;s for the class of maps f : X — )Y which satisfy f, : 7,X — m,) is an
isomorphism of Nisnevich sheaves for all n > 0. The Nisnevich local model structure on
Spc, (S) is the left Bousfield localization of the projective model structure with respect

to Whis.

Definition 2.6. Let Wy be the class of maps 7x : (X x Al), — X, for X € Sm/S.
The motivic model structure on Spc, (S) is the left Bousfield localization of the projective
model structure with respect to Wyy;s U Wyi. We write Spcf}l(S) for the category of
pointed spaces equipped with the motivic model structure. The pointed motivic homotopy
category ’H‘fl (S) is the homotopy category of Spc‘fl(S).

For pointed spaces X and Y, write [X, )] for the set of maps H‘fl(S)(X, Y). The nth
motivic homotopy sheaf of a pointed space X over S is the sheaf m, X associated to the

presheaf U — [S™ AU, X].

There are two circles in the category of pointed spaces: the constant simplicial presheaf
S1 pointed at its O-simplex and the representable presheaf G,, = A \ {0} pointed at 1.

These determine a bigraded family of spheres 49 = (S1)Ni=i A Gp/.

Definition 2.7. For a pointed space & over S and natural numbers i and j, write m; ;X

for the set of maps [S™/, X].

The category of pointed spaces Spc,(S) equipped with the induced motivic model
category structure has many good properties which make it amenable to Bousfield lo-
calization. In particular, Spc,(S) is closed symmetric monoidal, pointed simplicial, left

proper, and cellular.



2.4 The stable Nisnevich local model structure

With the unstable motivic model category in hand, we now construct the stable motivic
model category using the general framework laid out in [Hov01].

Let T be a cofibrant replacement of A'/(A! — {0}). One can show that T is weak
equivalent to S*! in Spcfl(S) [MV99, 3.2.15]. The functor T'A — on Spc‘fl(S) is a left

Quillen functor, which we may invert by creating a category of T-spectra.

Definition 2.8. A T-spectrum is a sequence of spaces X,, € Spcfl(S) equipped with
structure maps o, : T'A X, = Xp+1. A map of T-spectra f : X — Y is a collection of
maps fp : X;, — Y, which is compatible with the structure maps. We write Spt,(S) for
the category of T-spectra of spaces.

The level model structure on Spty(S) is given by declaring a map f: X — Y to be a
weak equivalence (respectively fibration) if every map f, : X,, — Y, is a weak equivalence
(respectively fibration) in the motivic model structure on Spc,(S). The cofibrations
for the level model structure are determined by the left lifting property for trivial level

fibrations.

Definition 2.9. Let X be a T-spectrum. For integers i and j, the (i, ) stable homotopy
sheaf of X is the sheaf m; ;X = colim, M2, j4nXn. A map f : X — Y is a stable
weak equivalence if for all integers ¢ and j, the induced maps f, : m; ;X — m ;Y are

isomorphisms.

Definition 2.10. The stable model structure on Spty(S) is the model category where the
weak equivalences are the stable weak equivalences and the cofibrations are the cofibra-
tions in the level model structure. The fibrations are those maps with the right lifting
property with respect to trivial cofibrations. We write SHg for the homotopy category

of Spt1(S) equipped with the stable model structure.

The stable model structure on Spty(S) can be realized as a left Bousfield localization
of the level-wise model structure [Hov01, 3.3].
Just as for the category Sptg: of simplicial S'-spectra, there is not a symmetric

monoidal category structure on Spt(S) which lifts the smash product A in SHg. One



remedy is to use a category of symmetric T-spectra Spt%(S). The construction of this
category is given by Hovey in [Hov0l, 7.7]. It is proven in [Hov01, 9.1] that there is a
zig-zag of Quillen equivalences from Spt%(S) to Spty(S), so SHg is equivalent to the
homotopy category of Spt%(S ) as well. Since Quillen equivalences induce equivalences of
homotopy categories, the category SHg is a symmetric monoidal, triangulated category,

where the shift functor is given by [1] = S10 A —.

Definition 2.11. For a T-spectrum FE over S, write m; jF for the group SHs(XW1, E).

In the case where £ = 1 and S = Spec(D), we simply write 7; ;(D) for SHg(X%1,1).

In addition to the category of T-spectra, we will find it convenient to work with the

category of (G,,, S') bispectra, see [Jar00, DL@OT07].

Definition 2.12. Consider the simplicial circle S! as a space over S, given by the constant
presheaf. An S!-spectrum over S is a sequence of spaces X,, € Spc,(S) equipped with
structure maps o, : S' A X,, = X,,11. A map of S'-spectra over S is a sequence of maps
fn: X,y = Y, that are compatible with the structure maps. The collection of S'-spectra
over S with compatible maps between them forms a category Sptgi(S).

First equip Sptg1 (S) with the level model structure with respect to the Nisnevich local
model structure on Spc, (S). The nth stable homotopy sheaf of an S'-spectrum E over S
is the Nisnevich sheaf 7, F = colim 7,4 ;E;. Amap f: E — F of § Lspectra over S is a
simplicial stable weak equivalence if for all n € Z the induced map f, : 7, F — m, F is an
isomorphism of sheaves. The stable Nisnevich local model category structure on Sptgi(.S)
is obtained by localizing at the class of simplicial stable equivalences, as in definition 2.10.

The motivic stable model category structure on Sptgi (S) is obtained from the simplicial
stable model category structure by left Bousfield localization at the class of maps W1 =
{(¥°X, AAl - ¥°X, | X € Sm/S}. Write Sptgi(S) for the motivic stable model
category Lw,, Sptgi(S) and write S?—[éi () for its homotopy category. For S'-spectra E
and F over S, write [E, F] for the group S’H‘gi (S)(E, F). The nth motivic stable homotopy
sheaf of an S'-spectrum E is the Nisnevich sheaf ﬂﬁlE associated to the presheaf U

[S" A E®U,, E].

Definition 2.13. In the projective model structure on Spc,(S), the space G,, pointed
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at 1 is not cofibrant. We abuse notation, and write G,, for a cofibrant replacement of
Gm. A (G, SY) bispectrum over S is a G,,-spectrum of S'-spectra. More concretely, a
(G, S1) bispectrum E is a bigraded family of spaces E,,, with bonding maps o, ., :
St A Enn = Empt1 and Yn 0 Gy A Epyn — Erq1,, which are compatible, meaning
that the following diagram commutes.

TAEm,n

G AS'A Epn SYAGm A Emp
Gm/\al islm

Gm A Bt ——> Bmy1ne1 =<2—S' A Enyin
We write Sptg, g1(S) for the category of (G, S') bispectra over S. Consider Sptg,, 51(5)
as the category of G,,-spectra of S'-spectra, we first equip SptGmSl(S) with the level
model category structure with respect to the motivic stable model category structure on
Sptg1(S). The motivic stable model category structure on Sptg, = ¢1(.S) is the left Bousfield

localization at the class of stable equivalences.

There are left Quillen functors 33 : Spc,(S) — Sptg:(S) and ¥F @ Sptgi(S) —
Sptg,, s1(S). Additionally, the category Sptg,, ¢1(S) equipped with the motivic stable
model structure is Quillen equivalent to the stable model category structure on Spt,(S);

see [DLOT07, p. 216].

Definition 2.14. To any S'-spectrum of simplicial sets £ € Sptg1 we may associate the
constant S'-spectrum cE over S with value E. That is, cE is the sequence of spaces cE,,
with the evident bonding maps. For a simplicial spectrum FE, we also write cE for the
(Gyn, S1) bispectrum g cE. This defines a left Quillen functor ¢ : Sptg1 — Sptg,, ¢1(95)

with right adjoint given by evaluation at S. Compare with [Lev14, 6.5].

2.5 Base change of stable model categories

Definition 2.15. Let f : R — .S be a map of base schemes. Pull-back along f determines
a functor f~!:Sm/S — Sm/R, which induces Quillen adjunctions (f*, f.) : Spc‘fl(S) —

Spet’ (R) and (f*, f.) : Sptr(S) — Spt(R).

We now discuss some of the properties of base change. A more thorough treatment is

given in [Mor05, §5]. The map f, sends a space X over R to the space X o f=! over S.
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The adjoint f* is given by the formula (f*Y)(U) = ch}lci_nllvy(V), as described in [HW14,
§12.1]. For a smooth scheme X over S, a standard calculation shows f*X = f~1X.
Additionally, if cA is a constant simplicial presheaf on Sm/S, it follows that f*(cA) = cA.

The Quillen adjunction (f*, fi) extends to both the model category of T-spectra and
(G, S) bispectra by applying the maps f*, and respectively f,, term-wise to a given
spectrum. In the case of f* for T-spectra, for instance, the bonding maps for f*E are
given by

TN By = [T AEp) = [*(Ent1)

as f*T = T. The same reasoning shows that the adjunction (f*, f.) extends to (G,,, S*)
bispectra.

Write @ (respectively R) for the cofibrant (respectively fibrant) replacement functor
in Spty(S). The derived functors Lf* and R f, are given by the formulas L f* = f*@Q and
Rf. = f«R.

Let f : C' — B be a smooth map. The functor fyx : Sm/C — Sm/B sends a scheme
X5CtoX 504 B, and induces a functor fu : Spc‘f1 (B) — Spc‘f1 (C) by restricting
a presheaf on Sm/B to a presheaf on Sm/C. The functor f* is canonically equivalent to

f4 on the level of spaces and spectra.

2.6 The connectivity theorem

Morel establishes the connectivity of the sphere spectrum 1 over fields F' by studying
the effect of Bousfield localization at W1 of the stable Nisnevich local model category
structure on Sptgi(Spec(F)) (see definition 2.12).

An Sl-spectrum E over S is said to be simplicially k-connected if for any n < k, the
simplicial stable homotopy sheaves 7, E of definition 2.12 are trivial. An S'-spectrum E

is k-connected if for all n < k the motivic stable homotopy sheaves wﬁlE are trivial.

Theorem 2.16 (Morel’s connectivity theorem). If E is an Sl-spectrum over S which is

simplicially k-connected, then F is also k-connected.

Proof. When F' is an infinite field, the argument given in [Morl2] goes through. When
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F is a finite field, Morel’s argument relies on a proof of Gabber’s presentation lemma in
the case of one point for a finite field (see [Morl2, 1.15] for the statement). A letter of
Gabber to Morel [Gabl15] establishes this case of Gabber’s presentation lemma, and so

the connectivity theorem holds without qualification on the field F'. O

The connectivity theorem along with the work in [Mor04, §5] yield the following. This

also follows from [Voe98, 4.14].

Corollary 2.17. Over a field F, the sphere spectrum 1 is (—1)-connected. In particular,

for all s —w < 0 the groups 7, ,(F) are trivial.

2.7 Comparison to the classical stable homotopy category

The following result of Levine plays a fundamental role in our calculations [Lev14, Thm. 1].
Theorem 2.18. If S = Spec(C), the map Lc: SH — SHg is fully faithful.

Proposition 2.19. Let f: R — S be a map of base schemes. The following diagram of

stable homotopy categories commutes.

70X
Lf*

SHg

Proof. The result follows by establishing f* o ¢ = ¢ on the level of model categories. For

a constant space cA € Spc(S), we have f*cA = cA by the calculation

(FeA)(U) = colim cA(V) = A

given the formula for f* in section 2.5. As the base change map is extended to T-spectra

by applying f* term-wise, the claim follows. O

Proposition 2.20. Let S be a base scheme equipped with a map Spec(C) — S. Then
Lc: SH — SHg is faithful.

Proof. For symmetric spectra X and Y, the map Le : SH(X,Y) — SHc(eX, cY') factors
through SHg(cX,cY) by proposition 2.19. Hence Lc : SH(X,Y) — SHg(cX,cY) is

injective by theorem 2.18. O
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Chapter 3

Motivic cohomology

Spitzweck has constructed a spectrum HZ in Spty(S) which represents motivic cohomol-
ogy H%*(X;Z) defined using Bloch’s cycle complex when S is the Zariski spectrum of
a Dedekind domain [Spil3]. Spitzweck establishes enough nice properties of HZ so that
we may construct the motivic Adams spectral sequence over general base schemes and
establish comparisons between the motivic Adams spectral sequence over a Hensel local

ring in which £ is invertible and its residue field.

3.1 Integral motivic cohomology

Definition 3.1. Over the base scheme Spec(Z), the spectrum HZgye(z) is defined by
Spitzweck in [Spil3, 4.27]. For a general base scheme S, we define HZg to be f*HZgpec(z)

where f : S — Spec(Z) is the unique map.

Let S be the Zariski spectrum of a Dedekind domain D. For X € Sm/S, there is
a canonical isomorphism SHg(X*° X, X" HZ) = H**(X;Z), where H**(—;Z) denotes
motivic cohomology [Spil3, 7.19]. The isomorphism is functorial with respect to maps in
Sm/S. Additionally, if i : {s} — S is the inclusion of a closed point with residue field

k(s), there is a commutative diagram for X € Sm/S.

o)

SHe(E®X,, S HZ) H®(X;7)

| |

SHy (o) (Li*S® X4, S®HZ) —> HY(Li* X, Z)

If the residue field k(s) has positive characteristic, there is a canonical isomorphism

of ring spectra Li*HZg = HZj ) [Spil3, 9.16].

Proposition 3.2. If f: R — S is a smooth map of base schemes, then Lf*HZg = HZR.
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Proof. Since f is smooth, Lf* = f* by the discussion in [Mor05, p.44]. The result now

follows, as it is straightforward to see that f*HZg = HZpR. O

3.2 Motivic cohomology with coefficients Z//

For a prime ¢, write HZ /¢ for the cofiber of the map ¢- : HZ — HZ in SHg. The spectrum
HZ/¢ represents motivic cohomology with Z/¢ coefficients. For a smooth scheme X over
S, we write H**(X;Z/{) for the motivic cohomology of X with Z/¢ coefficients. If S is
the Zariski spectrum of a ring R, we will write H**(R;Z/¢) for the motivic cohomology
of R. In this section, we calculate H**(Fy;Z/¢) when g and ¢ are relatively prime.

The now established Beilinson-Lichtenbaum conjecture gives a ring homomorphism
HOY(Fy; Z/€) — HE(Fy; u°) which is an isomorphism when a < b; when a > b, the
groups H%*(F,;Z/¢) vanish [MVWO06, 3.6]. Furthermore, H""(F;Z/l) = KM (F)/t
where KM (F) denotes the Milnor K-theory of F. In particular, KM (F) = F* is the
group of units of F and KM (F)/¢ = F*/F** is the group of units of F modulo fth
powers.

We will also identify the action of the Bockstein homomorphism 5 on H**(F,;Z/?).
The Bockstein homomorphism is the connecting homomorphism in the long exact se-

quence associated to the short exact sequence of coefficients

0— Z/0 — ZJ0? — 7/ — 0.

Definition 3.3. We set some notation which will be used in our description of the mod
£ motivic cohomology of finite fields. For a field F' with characteristic different from 2,
—1 € pe(F) is a non-trivial second root of unity. We write 7 for the class corresponding
to —1 via the isomorphism H%!(F;Z/2) = us(F) and p for the class corresponding to
—1in HYY(F;Z/2) = F*/F*2. Note that the class p is trivial if and only if v/—1 € F.
For a finite field F, of odd order, the group of units ]F;< is cyclic, there is an isomorphism,
HYW(Fy;7/2) = 7/2, and we write u for the non-trivial class of H(F,;Z/2). We remark
that u = p if and only if ¢ = 3 mod 4.

For a prime ¢ > 2, write ¢ for a primitive ¢th root of unity in a field F', should the

field F' have one. If F' has a primitive ¢th root of unity {, we write «y for the class of ¢ in
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F*/F** which is trivial if and only if ¥/C € F.

A finite field F, will contain an ¢th root of unity if and only ¢ = 1 mod ¢. For a general
finite field Iy, let ¢ be the smallest positive integer for which ¢ =1 mod ¢. Then the field
extension F; contains an (th root of unity, and we write ¢ for the class corresponding
to a primitive (th root of unity in H%(Fg;Z/¢) = py(F,). We write ~ for the class
corresponding to the primitive fth root of unity ¢ in HM(Fy;Z/¢) = H;t(IE‘q;u?i) =
F; /IE‘qX/, and u for a generator of HY(F,;Z/{). Note that « is trivial in HY(F;Z/¢) if

and only if ¢ = 1 mod 2. When ¢* # 1 mod ¢?, ~ is non-trivial and we take u to be .

Proposition 3.4. 1. For any finite field F, with ¢ odd, there are isomorphisms

Fo[r,u]/(u?) if ¢ =1mod 4
H™(Fy;Z,/2) =

Fa[7, p]/(p?) if ¢ =3 mod 4.
The action of the Bockstein is determined by §(7) = p which is trivial if and only
if ¢ =1 mod 4. The bidegree of 7 is (0,1) and the bidegree of p and w is (1, 1).

2. Suppose / is an odd prime, [F is a finite field with characteristic different from ¢, and
let i be the smallest positive integer for which £ | ¢¢ — 1. The motivic cohomology

of IF, is the associative, graded-commutative Z/{-algebra

Fo[¢,u]/(u?) if ¢ = 1 mod ¢2
H*™(Fy; Z2)0) =

F2[¢,7]/(7?) if ¢" # 1 mod ¢2
The action of the Bockstein is determined by () = «, which is trivial if and only
if ¢ = 1 mod £2. The bidegree of ¢ is (0,7) and the bidegree of u and + is (1,17).

Proof. Because of the Beilinson-Lichtenbaum conjecture, we reduce the problem to cal-
culating Hft(Fq;p?q) when p < ¢. A calculation in Galois cohomology by Soulé in
[Sou79, I11.1.4] shows that HY,(Fy; u?j ) and HY(Fy; u?j ) are the cyclic group of order
ged(4,¢7 — 1), and all higher cohomology groups vanish. When ¢ # 2, the sheaf ,u?i is the

constant sheaf Z/¢, and so the products
HO(Fg; ") © HE(Fgs 1) = HE(Fgs ")

are isomorphisms.
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For z,y € H**(Fy;Z/¢), the Bockstein homomorphism is a derivation, i.e.,

Bwy) = Bla)y + (-1)"zp(y)
where |z| denotes the topological degree [Voe03, (8.1)]. It then suffices to identify the
action of the Bockstein on 7 or (.
The Bockstein fits into the following exact sequence in weight .

Hgt(FqQM%)HHSt(Fq;M?l) ’ Hgt(Fq;“%)

Lk -

fig2 (F g ) p1e(F ) i /F¢

Hence the Bockstein then is trivial if and only if F,: contains a primitive 2 root of unity.

This occurs if and only if ¢* = 1 mod ¢2. 0

We remark that in the case of a finite field Fy, the element ¢ € py(F i) is the analog
of 7 € pa(F,) at an odd prime ¢. Furthermore, v € JF;- /F;e is the analog of the class
p € Fy/Fx 2 at an odd prime ¢. We use distinct notation to avoid confusion with the
specific role 7 and p play in Voevodsky’s calculation of the motivic Steenrod algebra and
its dual in [Voe03].

We will make frequent use of Geisser’s rigidity theorem for motivic cohomology [Gei04,

1.2(3)], which we adapt to our needs.

Proposition 3.5. Let D be a Hensel local ring in which /¢ is invertible. Write F for
the residue field of D and write 7 : D — F for the quotient map. Then the map
™  H*(D;Z/l) — H**(F;Z/) is an isomorphism of Z/(-algebras. Furthermore, the

action of the Bockstein is the same in either case.

Proof. The rigidity theorem for motivic cohomology [Gei04, 1.2(3)] gives the isomor-
phism. The map Lz* gives comparison maps for the long exact sequences which define
the Bockstein over D and F. The rigidity theorem shows that the long exact sequences

are isomorphic, so the action of the Bockstein is the same in either case. O
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3.3 Mod ¢ motivic cohomology operations of finite fields

The mod ¢ motivic Steenrod algebra over a base scheme S, which we write as A**(.9), is the
algebra of bistable mod ¢ motivic cohomology operations. A bistable cohomology operation
is a family of operations 0y, : H**(—;Z/{) — H**%*+b(—.7Z/¢) which are compatible with
the suspension isomorphism for both the simplicial circle S' and the Tate circle G,,.

In the case where S is the Zariski spectrum of a characteristic 0 field, Voevodsky
identified the structure of this algebra in [Voe03, Voel0]. Voevodsky’s calculation was
extended to hold where the base is the Zariski spectrum of a field of positive characteristic
p # ¢ by Hoyois, Kelly, and @stveer in [HK(13]. In both cases, the structure of the algebra
of mod ¢ motivic cooperations was also identified. We now adapt these calculations to

the particular case where the base scheme is Spec(F,).

Proposition 3.6. The mod 2 motivic Steenrod algebra A**(FF,) over F, with ¢ odd is
the associative Z/2-algebra generated by the Steenrod square operations Sq’ for i > 1
and the cup products x U — for x € H**(F;;Z/2). The Steenrod square operation Sq%
has bidegree (2i,4) and Sq?*! has bidegree (2i +1,i). The operation Sq' agrees with the
Bockstein 5. The Steenrod square operations Sq' satisfy modified Adem relations which
are listed below. We include these formulas for completeness, as they are explicitly used
in the computer calculations discussed in chapter 8. See definition 3.3 for our notation of

the elements 7, p, and v in H**(F,;Z/2)

1. (Cartan formula): For cohomology classes  and y, the following relations hold.

Sq' (zy) = Sq' (z)y + 2Sq* (v)

7 i—1
Sa*(wy) = D> Sq™ (2)SA™ ¥ (y) + 7> Sq” T (2)Sa* T (y)
r=0 r=0
Sq2i+1($y) — (Sq2r+1(l,)sq2i—2r(y) + SqQT(:L,)Squ—Qr—H(y)) +

r=0

1—1
p Z Sq2r+1 (x)SqufQTfl (y)
r=0
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2. (Adem relations): If a + b = 0 mod 2, then

Sq°S b Zg‘zg] (ba_—IQ_jj) Sqa+b_jsqj a, b odd
qQ»oq =
Zgaz/g] (ba_—12_jj)7jsqa+b7jsqj a, b even.

If a is odd and b is even, then

Sasb[az:m b_l_j S(H-b]S +[az/%] b_l Sa-l—bl]S
qasq = a—1-2j q q q.

Jj=0
j even i odd

If a is even and b is odd

[a/2] [a/2]
b—1-
Sqasqb: § : ( a_2j )S a+b— ]Sq 4 E ( ‘ >psqa+b J— lSq
=0 J odd

3. (Right multiplication by H*™*):
Sqlt = 7S¢ + p

For i > 0, one can derive the following formulas from the Cartan relation.

Sq*T = 7Sq* + 7pSq*

Sq2i+17_ — TSqQ’H-l + psq2z

For all a > 0,

Sq%p = pSq® and Sq“u = uSq“.

Proposition 3.7. Let ¢ be an odd prime and suppose I, is a finite field of characteristic
p with p # £. The mod ¢ Steenrod algebra is an associative Z/f-algebra generated by the
Bockstein 3, the reduced power operations P? for i > 1, and the cup products z U — for
x € H*(Fy;Z/¢) subject to the usual Adem relations [Voe03, 10.3].

In the case where () = 7, we have the additional relations 5¢ = (5 + v, 5y = v/,
and the reduced power operations commute with cup products. If 5(¢) = 0, the reduced

power operations and the Bockstein commute with cup products.
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3.4 The Hopf algebroid of cooperations for HZ/¢

The dual Steenrod algebra A, = Hom g+« (A**, H**) has the structure of a Hopf algebroid
which was identified over fields of characteristic 0 by Voevodsky in [Voe03, 12.6] and
over fields of positive characteristic by Hoyois, Kelly, and @stveer in [HK?13, 5.5]. A
homogeneous homomorphism f : A** — H** is said to have bidegree (a, b) if it decreases
bidegree by (a,b).

For z € H%®, consider z also as the element of A_q —p which is the left H**-module
homomorphism which kills the Steenrod squares, respectively the reduced power opera-
tions and the Bockstein, and maps 1 to z. Given the isomorphism H%? = H_, 4, this
construction defines a homomorphism 7y, : Hyxe — Ay

For a prime ¢ > 2, write A7 for the topological dual Steenrod algebra. Milnor studied
the structure of AX” in [Mil58] and found that A" is the graded-commutative Fy-algebra
Folri,&5 4> 0,4 > 1]/(7?) where the degree of 7; is 26/ —1 and the degree of &; is 2(#/ —1).
We may also give AP a second grading by declaring the weight of 7j and &; to be &/ — 1.
Furthermore, Milnor identified the Hopf algebra structure of (Fy, AX"). We now record
the structure of the motivic dual Steenrod algebra at a prime £ over a finite field, which

is due to [HK®13], cf. [Voe03].

Proposition 3.8. 1. The mod 2 dual Steenrod algebra A, (F,) for a finite field F, of
characteristic different from 2 is an associative, commutative algebra of the following

form.
Asx(Fy) & Hoa(F)[13,65 [0 > 0,5 > 1]/(17 = 7&i1 = pTist — prodis1)
Here 7; has bidegree (2/7! — 1,27 — 1) and &; has bidegree (21! —2,2¢ — 1),
The structure maps for the Hopf algebroid (H..(Fy), A (Fy)), which we write sim-
ply as (H.x, Asx), are as follows.
(a) The left unit 7z, : Hex — Aus is given by nz(z) = x.

(b) The right unit ng : H. — A is determined as a map of Z/2-algebras by
nr(p) = p and nr(7) = 7+ p719. In the case where p is trivial, i.e., ¢ = 1 mod 4,

the right and left unit agree ng = nr.
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(¢) The augmentation € : A, — H,, kills 7; and &;, and for x € H,,, €(x) = z.

(d) The coproduct A : A — Awx ®p,, As is @ map of graded Z/2-algebras
determined by A(z) = z®1 for x € Hyy, A(7;) = TZ'®1+1®7'¢+Z;;%) £fij®7'j,
AG)=&ol+1o6+T0 ;0

(e) The antipode ¢ is a map of Z/2-algebras determined by ¢(p) = p, ¢(7) = 7+ p0,

o(ri) = =7 — S0 & se(ry), and e(&) = —& — YL €2 e(&)).

2. Let £ be an odd prime and F, a finite field with characteristic different from ¢. The
mod ¢ dual Steenrod algebra over F, is the associative, graded-commutative algebra
(in the first index) given by A (F,) & H..(F,) ®F, ALP. Furthermore, (Hyx, Asx)

is a Hopf algebroid, and the structure maps are as follows.

(a) The left unit 7z, : Hewx — Aus is given by np(z) = x.

(b) The right unit ng : He — Asi is determined as a map of Z/¢-algebras by
Nr(¢) = ¢ —y1o and nr(y) = 7. In the case where the Bockstein acts trivially

on H.,,, the right and left unit agree ng = nr.
(c) The augmentation € : A, — H,, kills 7; and &, and e(z) = x for © € H,,.

(d) The coproduct A : Aux — Asx ®p1,, Awsx is a map of Z/l-algebras determined
by A(z) = 2®1 for v € Huy A(1i)) = 01 +1@ 7 + Z;;Bﬁfij ® Tj,
AG)=614+1RE&+ 23;11 §fij ® &j. Note that in A, ® A, the product
is given by (z ® 2')(y @ y/) = (—1)*' Wy @ o'y

(e) The antipode cis a map of Z/¢-algebras determined by c(y) = =, ¢(¢) = (+~70,
om) = =70 = 5o &L je(ry), and (&) = —& — i1 €7 el&).

3.5 Steenrod algebra over Dedekind domains

Let S be the Zariski spectrum of a Dedekind domain D in which ¢ is invertible. Spitzweck
shows in [Spil3, 11.24] that for an odd prime ¢, the mod ¢ dual Steenrod algebra with Z /¢
coefficients A..(D) has the structure of a Hopf algebroid similar to that of proposition
3.8. At the prime 2, Spitzweck’s result shows A, (D) is generated by the elements 7; and

&j, but does not establish the relations for Ti2.
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Definition 3.9. Let D be a Dedekind domain, and let C denote the set of sequences
(€0,71,€1,72,...) with ¢, € {0,1}, ; > 0, and only finitely many non-zero terms. The
elements 7; € Agpi_y 4i_1(D) and & € Agpi_g4i_1(D) are constructed in [Spil3, 11.23].
For any sequence I = (€,71,€1,72,...) in C, write w(I) for the element 7°&]* --- and

(a(I),b(I)) for the bidegree of the operation w([).

In [Spil3, 11.24] Spitzweck identifies the structure of the mod ¢ dual Steenrod algebra,

which we record here.

Proposition 3.10. Let D be a Dedekind domain. As an HZ/{-module, there is a weak
equivalence \/ ;o S* DY HZ /¢ — HZ/¢ANHZ/C. The map is given by w(I) on the factor
Db H7./0.

For ¢ > 2, this establishes the isomorphism A,.(D) & H,.(D) ®p, AP as an associa-

tive, graded-commutative Z/(-algebra.

In the case £ = 2, one must be careful about the relations for 72 in A,.. In particular,

we need the analog of [Voe03, 6.10]. We give an argument when D is a Hensel local ring.

Proposition 3.11. Let D be a Hensel local ring in which 2 is invertible and let F' denote

the residue field of D. Then the following isomorphism holds.
H™ (B, Z/2) = H™ (D, Z/2)[[u,v]]/ (u® = Tv + pu)

Here p € HV(D;Z/2) & F*/F*? and 7 € HY(D;Z/2) = us(F) are given in defi-
nition 3.3. Further, v is the class vo € H*'(Bus) defined in [Spil3, p. 81], and u €
HY“(Bpgy;Z/2) is the unique class satisfying 3(u) = v, where § is the integral Bockstein

determined by the coefficient sequence Z — Z — 7Z/2.

Proof. The motivic classifying space Bug over D (respectively F') fits into a triangle
Busy — (O(=2)pe)y — Th(O(—2)) by [Voe03, (6.2)] and [Spil3, (25)]. From this
triangle, we obtain a long exact sequence in mod 2 motivic cohomology [Voe03, (6.3)]
and [Spil3, (26)]. The comparison map L7* : SHp — SHp induces a homomorphism
of these long exact sequences. The rigidity theorem 3.5 and the 5-lemma then show that

the comparison maps are all isomorphisms. As the desired relation holds in the motivic
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cohomology of Bug over F', and the choices of u and v are compatible with base change,

the result follows. O

Proposition 3.12. Let D be a Hensel local ring in which ¢ is invertible. The coproduct

A for A,«(D) is as given in proposition 3.8(d).
Proof. This follows from the calculation in [Spil3, 11.23]. O
All that remains to identify the structure of A, (D) is the right unit and the antipode.

Proposition 3.13. Over a Hensel local ring in which £ is invertible, the right unit ng

and the antipode ¢ are given by the formulas in proposition 3.8(b,e).

Proof. Naturality of the reduced power operations guarantees that the actions on H**(D)
and H**(F’) agree, since the cohomology groups are isomorphic. This additional structure

determines the right unit and the antipode. O

Remark 3.14. Let D be a Dedekind domain in which ¢ is invertible, and consider the map
f:7Z[1/f] — D. A key observation in the proof of [Spil3, 11.24] is that f* : A..(Z[1/{]) —
A (D) satisfies f*1; = 7; and f*¢ = & for all i. For a map j : D — D of Dedekind

domains in which ¢ is invertible, it follows that j*m; = 7; and j*§ = &; for all 4.

Proposition 3.15. Let D be a Hensel local ring in which ¢ is invertible and let F
denote the residue field of D. Then the comparison map 7 : A (D) — A (F) is an

isomorphism of Hopf algebroids.

Proof. Remark 3.14 shows that the map 7* : A, (D) — A, (F) is an isomorphism of left
H,.(F)-modules. The compatibility of the isomorphism with the coproduct, right unit,

and antipode follows from propositions 3.12 and 3.13. 0

Definition 3.16. A set of bigraded objects A = {x ()} is said to be motivically finite
[DI10, 2.11] if for any bigrading (a,b) there are only finitely many objects y, ) € X for

which a > a’ and 2b — a > 2V — d/.
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We say a bigraded algebra or module is motivically finite if it has a generating set
which is motivically finite. One benefit is that a motivically finite H**(X)-module is a

finite dimensional Z//{-vector space in each bidegree.

Proposition 3.17. Let D be a Dedekind domain in which ¢ is invertible. The Steenrod

algebra over D is isomorphic to the dual of A..(D), that is,
A*(D) = Homy,. (Aou(D), HZ/L..(D)).

Proof. As the algebra of cooperations A,.(S) is motivically finite, we may identify its
dual with the Steenrod algebra. See [HK(13, 5.2] and [Spil3, 11.25]. O

Corollary 3.18. Let D be a Hensel local ring in which ¢ is invertible with residue field

F. The comparison map 7* : A**(D) — A™(F) is an isomorphism.

3.6 Base change for finite fields

Proposition 3.19. Consider a prime power ¢ = p™ and let ¢ be a prime different from
p. For a field extension f : F, — F,; where j is relatively prime to £(¢ — 1), the induced
map f*: H*(F,) — H*(F,) and f*: A**(F;) — A™(F,) are isomorphisms.

Proof. Let i be the smallest positive integer for which ¢ = 1 mod ¢. In other words,
i is the order of ¢ in F). Since j is relatively prime to ¢ — 1, the integers ¢ and I
have the same order in F ZX. By proposition 3.4, we see that there are isomorphisms
H**(Fy; Z/0) = H**(F;;Z/¢). We first show f* : H**(F,) — H**(F,;) is an isomorphism
by using the presentation in proposition 3.4. The map on mod ¢ motivic cohomology is
determined by its behavior on HY(Fy; 1) = pup(Fi) and HY(Fy; puf") = IF; /]F;iﬁ. The
map fig(Fyi) — pe(Fyij) is an isomorphism, as an £th root of unity in F; is sent to an £th
root of unity in F;.

As long as j is relatively prime to ¢, the map F; /F;E — F;j / F;f is an isomorphism.
For suppose conversely, that for a generator o € IF; / IF'qX/ there is an (th root of a in F ;.
In this case, the extension Fj — F:; would factor through the splitting field F' of zf —

over [ i. The degree of the extension Fy, — F'is £, since F; has a primitive £th root of

unity. Hence ¢ | j, contradicting (j,¢) = 1.
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Finally, remark 3.14 establishes that f* : A..(F,) — A**(qu) is an isomorphism.

Hence by proposition 3.17, f*: A**(F,;) — A*(F,;) is an isomorphism as well. O

Proposition 3.20. Let ¢ be a prime power which is relatively prime to £. Write Fq
for the union of the field extensions F,; over F, with j relatively prime to £(¢ — 1).
The field extension f : F, — INFq induces isomorphisms f* : H**(F,) — H **(ﬁ‘q) and

Fr A (Fy) — A(F).
Proof. This follows by a colimit argument, using proposition 3.19. O

Proposition 3.21. Let ¢ be a prime power and suppose /¢ is relatively prime to q. For a
field extension f : Fy, — F,; where £ j, the map f*: HY*(F,) — H%*(F,;) is trivial and

f* i HO*(Fy) — HO*(F,;) is injective.

Proof. We follow the argument given for proposition 3.19. Let ¢ be the order of ¢ in
F/. The map juy(F,i) — pe(Fyi;) is injective, so all that remains is to identify the
map IF;/IE‘;K — IF;J-/IF;U@. Let a € IF; be a generator of F;/F;E. Then since £ | j,

the extension Fj — [ i; factors through the splitting field of zt — a over F,i, so that

Vo € Fij. It now follows that the map F;/Fqﬁe = F /F;f is trivial. O

Corollary 3.22. Let F, be a finite field with algebraic closure f : F, — F, and let ¢ be
a prime different from p. Then f* : HY*(F,) — H*(F,) is trivial and f* : H**(F,) —

HY%*(F,) is injective.
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Chapter 4

Motivic Adams spectral sequence

The motivic Adams spectral sequence over a base scheme S may be defined using the
appropriate notion of an Adams resolution, see [Ada95, Swi75, Rav86] for treatments in
the topological case. We recount the definition for completeness and establish some basic
properties of the motivic Adams spectral sequence under base change. We follow Dugger
and Isaksen [DI10, §3] for the definition of the motivic Adams spectral sequence. See
also [HKOL11, §6].

Let p and /¢ be distinct primes and let ¢ = p™ for some integer n > 1. We will be
interested in the specific case of the motivic Adams spectral sequence over a field and
over a Hensel discrete valuation ring with residue field of characteristic p. We write H
for the spectrum HZ/{ over the base scheme S and H**(S) for the motivic cohomology
of S with Z/¢ coefficients. The spectrum H is a ring spectrum and is cellular in the sense

of Dugger and Isaksen [DIO5] by [Spil3, 11.4].

4.1 Construction of the mod ¢/ motivic Adams spectral sequence

Definition 4.1. Consider a spectrum X over the base scheme S and let H denote the
spectrum in the cofibration sequence H — 1 — H — YH. The standard H-Adams
resolution of X is the tower of cofibration sequences Xy 1 — Xy — Wy given by X; =

A A X and Wy = H A X; [Ada95, §15].

HAX & HANHAX <— -

HAX HANHAX

Xo =

Definition 4.2. Let X be a T-spectrum over S and let {X;, W} be the standard H-

Adams resolution of X. The motivic Adams spectral sequence for X with respect to H is
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the spectral sequence determined by the following exact couple.

=

@W**Xf @W**Xf

DT oex Wf

The F; term of the motivic Adams spectral sequence is E{’(s’w) = mswWy. The index f
is called the Adams filtration, s is the stem, and w is the motivic weight. The Adams

filtration of m, X is given by FimuX = im(mwX; — TeuX).

Proposition 4.3. Let & denote the category of spectral sequences in the category of
Abelian groups. The associated spectral sequence to the standard H-Adams resolution
defines a functor 9 : SHg — &. Furthermore, the motivic Adams spectral sequence is

natural with respect to base change.

Proof. The construction of the standard H-Adams resolution is functorial because SHg
is symmetric monoidal. Given X — X’ we get induced maps of standard H-Adams
resolutions { X, Wy} — { X, Wi}, As . (—) is a triangulated functor, we get an induced
map of the associated exact couples, and hence of spectral sequences M(X) — M(X").
Let f : R — S be a map of base schemes. The claim is that there is a natu-
ral transformation between M : SHg — & and Mo Lf* : SHs — SHr — &. Let
X € SHs and let {X;, W} be the standard Hg-Adams resolution of X in SHg. We
may as well assume X is cofibrant, so QX = X where @ is the cofibrant replacement
functor. Let {X},W]’c} denote the standard Hgr-Adams resolution of Lf*X = f*X.
Observe that {f*Xy, f*Wy} = {X',WJ’C}, since f*1 = 1, f*Hg = Hp, and Lf* is a
monoidal functor. We therefore have a map {Lf*Xy Lf*W} — {X }, W]’c} Applying
Lf*: SHs(E5"1, —) = SHR(E>"L,Lf*—) to {Xf, W;} gives a map of exact couples,
and therefore a map ®x : Mg(X) — Mp(Lf*X). It is straightforward to verify that &

determines a natural transformation. O

Corollary 4.4. For a map of base schemes f : R — S, there is a map of motivic Adams
spectral sequences @ : Mg(1) = Mp(1). The map P is furthermore compatible with the

induced map 7. (S) — T (R).



27

4.2 The F; page of the motivic Adams spectral sequence

We now turn our attention to the identification of the second page of the motivic Adams
spectral sequence. The arguments in topology, which can be found in [Ada95, Swi75],
largely translate to the motivic setting with some modifications. The arguments given by
Hu, Kriz, and Ormsby in [HKO11] and Dugger and Isaksen in [DI10, §7] go through in
the case where the base scheme S is the Zariski spectrum of a Dedekind domain by the
work of Spitzweck [Spil3|. There are two different approaches to identify the Ey page of
the motivic Adams spectral sequence: homological and cohomological. The homological
approach uses the structure of the Hopf algebroid of mod £ homology cooperations and the
methods turn out to be useful in greater generality. The cohomological approach uses the

structure of the mod ¢ Steenrod algebra and is more amenable to machine calculations.

Definition 4.5. A particularly well behaved family of spectra in SHg are the cellular
spectra in the sense of [DI05, 2.10]. A spectrum E € SHg is cellular if it can be con-
structed out of the spheres $°°S%? for any integers a and b by homotopy colimits. A
cellular spectrum is of finite type if for some k it has a cell decomposition with no cells

S%b for @ — b < k and at most finitely many cells $%° for any a and b [HKO11, §2].

Proposition 4.6. Suppose X is a cellular spectrum over the base scheme .S. The motivic

Adams spectral sequence for X has Es5 page given by

Eg,(s,w) o EXtﬁS-(FSJf),w)(H**S’ H,.X).

with differentials d, : Eﬂc’(s’w) — Eﬂurr’(s*l’w) for r > 2. Here Ext is taken in the category

of A,-comodules.
See [Ada95,Swi75, Rav86] for details on the homological algebra of comodules.

Proof. The argument given for [DI10, 7.10] goes through given that H is a cellular spec-
trum, as was proven in [Spil3, 11.4]. The cellularity of X and H is sufficient to ensure

that the Kiinneth theorem holds, which is needed in the argument. O

Corollary 4.7. If X and X’ are cellular spectra over S and X — X’ induces an iso-

morphism H,,X — H,,X’, then the induced map 9MM(X) — M(X’) is an isomorphism of



28

spectral sequences from the Fo page onwards.

Corollary 4.8. Let f : R — S be a map of base schemes, and consider a cellular
spectrum X over S. Suppose f* : H,.(S) = Hu(R), f* : Aw(S) — Aw(R), and
" HuX — Hu(Lf*X) are all isomorphisms. Then Mg(X) — Mr(Lf*X) is an

isomorphism of spectral sequences from the Fs page onwards.

Corollary 4.9. Let D be a Hensel local ring in which ¢ is invertible and write F' for the
residue field of D. Then the comparison map (D) — M(F) is an isomorphism at the

Fs page.
Proof. Propositions 3.15, 3.5, and corollary 4.8 give the result when X = 1. O

The argument for proposition 4.6 is based on the construction of the reduced cobar
resolution of H,,X. From the standard H-Adams resolution {X¢, Wy} of X, we extract

the following sequence
X HAX SSHAEAX 5 S20HATPAX = - (4.10)
Applying H,.(—) to this sequence yields the reduced cobar resolution of H,.X
Ho X = A @ Hiu X — A @ Ass @ Hiu X — -+ (4.11)

where A,, = H,.H is the kernel of the augmentation map € : A, — Hy, and the tensor
products are taken over H,,. Here one must take care to distinguish the left and right
module actions of H,, on A,, and A,,!

The complex obtained from (4.11) by applying Hom 4,, (H.x, —) is called the reduced
cobar complez, and its homology gives the Fy page of the Adams spectral sequence by a
standard argument, which we outline. Note that applying m..(—) to (4.10) yields the E;

term of the motivic Adams spectral sequence. The Hurewicz map
—=Af ~ T/
T (H AN A X) 2 Homu,, (Hyy, Hoo(H A HY A X)),
is an isomorphism since H..(H A H N A X) is an extended A,,-comodule, and the map
Hommu (How, Hoo(H A HY A X)) = Homu (Hew, Hoo(H A HY A X))

agrees with d; in the motivic Adams spectral sequence; see [DI10, 7.10], [Ada95, p. 323],
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[Swi75, p. 469]. When the left and right units of the Hopf algebroid (H..(S), A.(S)) do
not agree, the reduced cobar complex is difficult to use for practical calculations. However,

the (unreduced) cobar complex takes a simpler form in this case.

Definition 4.12. Let S be a base scheme, and let (H,, A..) denote the Hopf algebroid
for mod ¢ motivic homology over S. The cobar complex is the chain complex (C*(S), dc)
with terms C*(S) = Hu ®p,, AD?. The standard notation for an element @1 ®- - - @z

in C*(S) is afx1| - - |xs]. The map d sends the element afzq]---|z4] to
[r(e)|za] - - o] + Z afz] - A - |as] + (1) afz] - |21,
When s = 0, the map d2, given by a[] — [nr(a)] — [a], can be identified with ng — 7y,
The juxtaposition product of zg[z1]- -+ |xs] € C5(S) and yo[y1| - - - |z:] € CY(S) is given by
zolz| - [ws] * yolyr| - - - [ye] = wolaa| - - ws|yoya| - - - e

We now turn our attention to the cohomological approach.

Definition 4.13. Let X be a T-spectrum over S. An H**-Adams resolution of X is a
tower of cofibration sequences Xy 1 — Xy — Wy in SHg of the following form. Each
spectrum Wy has a description Wy = V,¥Po9 H where the set of indices {(pa,qa)}
is motivically finite (see definition 3.16), and the induced map H**W; — H** X is a

surjection.

Xo=X i X, 2 Xo
k 4 J\‘\ %
W() Wl

Proposition 4.14. Let X be a cellular spectrum over S, and suppose H**(X) is a
motivically finite free H**-module. The standard H-Adams resolution of X (see definition

4.1) is an H**-Adams resolution.

Proof. The conditions on X ensure that for any f the spectrum Wy is a motivically finite
wedge of suspensions of H. Furthermore, the map j; : Xy — H A Xy = Wy induces a
surjection j;ﬁ : H™Wy — H** Xy, since if x : Xy — H represents a class in H** X, the

class in H**W; represented by H A X LNy N N maps to x under ]f O
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Proposition 4.15. Suppose X € SHg satisfies the hypotheses of proposition 4.14. The

motivic Adams spectral sequence for X has E» page given by

f(sw) ~ fi(s+f, ok o
B 2 Bl ST (X, 1)

with differentials d, : Ef (sw) — Ef +r(s—lw) for r > 2. Here Ext is calculated in the

category of left modules over the Steenrod algebra A**.

Proof. The usual argument given in the topological situation goes through. The cellularity
of X and H, and consequently of W; and Xy, allow one to use the Kiinneth theorem to
calculate m..(Wy) and H**(Wy). As each Wy is a motivically finite cell spectrum, there
is an isomorphism . (Wy) = Hom g« (H**(Wy), H**). For further details, consult the

treatment in [Rav86, §2.1]. O

4.3 Convergence of the motivic Adams spectral sequence

To simplify the notation, write Ext(R) for Ext g« gy (H**(R), H**(R)) when working over
the base scheme S = Spec(R). For any Abelian group G' and any prime ¢, we write G )

for the /-primary part of G and G’ = l&n G/¢¥ for the ¢-completion of G.

Definition 4.16. Let £ be a prime and X a spectrum over S. The ¢-completion of X is
the homotopy limit X} = holim X/¢”. For H the mod ¢ motivic cohomology spectrum
and { Xy, Wy} the standard H-Adams resolution of X, the H-nilpotent completion of X is
the spectrum X7; = holim; X/X; [Bou79, §5]. The H-nilpotent completion has a tower
given by C; = holim¢(X;/X7).

Recall that the homotopy limit of an inverse system of spectra (X, g,,) may be defined
as the homotopy fiber of [[, X, d-G, [] X, where G, is the composition [[ X, — X, EIN

X,_1; see [Bou79, 1.8], [Ada95, §15].

Proposition 4.17. Let S be the Zariski spectrum of a field F' with characteristic p # ¢,
and let X be a cellular spectrum X over S of finite type (definition 4.5). If either
¢ > 2 and F has finite mod ¢ cohomological dimension, or ¢ = 2 and F[y/—1] has finite

mod 2 cohomological dimension, the motivic Adams spectral sequence converges to the
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homotopy groups of the H-nilpotent completion of X
E;(&w) = Tsuw(XR)-

Furthermore, there is a weak equivalence Xj; = X7

Proof. The argument given in [HKO11] carries over to the positive characteristic case
from the work of [HK(13]. See [0014, 3.1] for the analogous argument for the motivic

Adams-Novikov spectral sequence. O

We say a line s = mf + b in the (f, s)-plane is a vanishing line for a bigraded group

G if GF# is zero whenever 0 < s < mf + b.

Proposition 4.18. If F is an algebraically closed field of characteristic p # ¢, then a
vanishing line for Ext**(F) & Ext**(W(F)) at the prime £ is s = (20 — 3)f. If F, is a
finite field of characteristic p # ¢, then a vanishing line for Ext™(FF,) = Ext™ (W (F,)) at

the prime £ is s = (20— 3)f — 1.

Proof. A vanishing line exists for Ext(F) = Ext(W (F)) when F is an algebraically closed
fields by comparison with C and the topological case [DI10]. The vanishing line s =
f(2¢ — 3) from topology [Ada61] is therefore a vanishing line for Ext(F) = Ext(W (F)).
For a finite field F,, the line s = f(2¢ — 3) — 1 is a vanishing line for Ext(F,) =
Ext(W (F,)) by the identification of the E; page of the motivic Adams spectral sequence

given in sections 7.1 and 6.1 below. O

We now discuss the convergence of the motivic Adams spectral sequence over the ring

of Witt vectors associated to a finite field or an algebraically closed field.

Proposition 4.19. Let W (F') be the ring of Witt vectors of a field F' that is either a finite
field or an algebraically closed field of characteristic p and let £ be a prime different from
p. The motivic Adams spectral sequence for 1 over W (F) converges to . (1jy) filtered by

the Adams filtration, where 17} is the H-nilpotent completion of 1 (see definition 4.16).

Proof. The convergence My (py(1) = T (1f) follows by the argument given for [DI10,
7.15] given the vanishing line in the motivic Adams spectral sequence by proposition

4.18. O
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Proposition 4.20. Let R and S be base schemes for which the motivic Adams spectral
sequence for 1 converges to . (1f}); see propositions 4.17 and 4.19 for examples. A
map of base schemes f : R — S yields a comparison map Mg(1y) — Mr(1})) which is

compatible with the induced map e (175 (S)) = T (LF*175(S)) = T (13 (R)).

Proof. Let {Xf(S), W(S)} denote the standard H-Adams resolution of 1 over S. We now
construct a map 7. (1f;(S)) = T (1 (R)). Recall from proposition 4.3 that f*X;(S) =
X¢(R). Since Lf* is a triangulated functor, there are maps Lf*(1/X¢(S)) — 1/X¢(R),
and so a map Lf*17;(S) — 17;(R) by the universal property for 1j;(R) = holim 1/ X ¢(R).
Let C;(S) denote the tower for 17;(S) over S defined in 4.16. Similar considerations give
a map of towers Lf*C;(S) — C;(R). Hence Mg(1jy) — Mp(1f;) is compatible with the

induced map . (1) (S)) = i (1)) (R)). O

Proposition 4.21. Let F' be a field of characteristic p with finite mod ¢ cohomological
dimension for all primes £ # p. Suppose the mod ¢ motivic Adams spectral sequence for
1 over F has a vanishing line, such as when F' is a finite field or an algebraically closed

field. Then the ¢-primary part of 7., (F') is finite whenever s > w > 0.

Proof. Ananyevsky, Levine, and Panin show that the groups ., (F') are torsion for s >
w > 0 in [ALP15]. It follows that the group s, (F') is the sum of its {-primary subgroups
Ts,w(F) (1) We set out to show that ms ., (F') ) is finite when £ # p.

The motivic Adams spectral sequence converges to W**(]l?) by proposition 4.17. The
vanishing line in the motivic Adams spectral sequence shows that the Adams filtration of

(s,w)

Ts,w(17) has finite length, and as each group Eg ’ is a finite dimensional [Fy-vector space

we conclude the groups m,,,(17) are finite. From the long exact sequence of homotopy
groups associated to the triangle 17" — [[1/¢” — [[1/¢” defining 1}, we extract the

following short exact sequence of finite groups.
0 = m' mor1,0(L/07) = o0 (17) = limmw(1/67) = 0 (4.22)
Similarly, from the triangles 1 LNy N | /0¥ we extract the short exact sequences

0— s w(1)/0" = Ts(1/0Y) = pms—14(1) — 0,
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which form a short exact sequence of towers. The maps in the tower {m,,,(1)/¢"} are
given by the reduction maps s, (1)/¢¥ — s (1)/€~1. Since the tower {ms.,(1)/¢"}
satisfies the Mittag-Leffler condition, we have @1 msw(1)/€” = 0. The associated long

exact sequence for the inverse limit gives the short exact sequence
0= 7w (L)g — hm s (1/€7) = Jm pms_1,(1) — 0. (4.23)
The group T&nguﬂ's_lyw(]l) is the ¢-adic Tate module of ms_1 4, (1), which is torsion-free.
Since 1'£17r57w(1l/€”) is finite by (4.22), the map 1'£17r57w(1l/€”) — &nguﬂg_lyw(l) is trivial.
But since the sequence (4.23) is exact, the group @guﬂs,lﬂu(ﬂ) is trivial, g, (1), =
Wm0, (1/€7), and s, (1)7 is finite.
Write K (i) for the kernel of the canonical map s, (1)) — 7s.,(1)/¢'. The tower
-+ K(i) CK(t—1) C--- C K(1) consists of finite groups and so it must stabilize. Hence

the tower

RN Ws,w(]l)/fy — Ws,w(]l)/fy_l — s 7"'s,w(]l)/g

must also stabilize. There is then some N for which ¢V, (1) = 75 (1) for all v > N,
and so #Nmg (1) is ¢-divisible. From the short exact sequence of towers /7, (1) —

Tsw(1) = Ts(1) /€Y, taking the inverse limit yields the exact sequence
0= MV 7g0(1) = mg(1) = Ts(1)) — 0.
Since 74, (1)} is finite it is ¢-primary, and there is a short exact sequence
0 = 70 (1) (0) = Tsw(L)(g) = Tsw(1)7 — 0.

The group /& 7s,w(1)(¢) must be zero. Suppose for a contradiction that it is non-zero.
Then (N (1) (p) must contain Z/¢>° as a summand, which shows the f-adic Tate module

of s (1) is non-zero—a contradiction. O

We now identify the groups 75 4(1)) for s > 0.

Proposition 4.24. Let F be a finite field or an algebraically closed field of characteristic
p # £. When s = w > 0, the motivic Adams spectral sequence of 1 over F' converges to

the ¢-completion of 7, 4, (F').

Proof. From proposition 4.17 it follows that at bidegree (s,w) = (s, s) the motivic Adams
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spectral sequence converges to the group ms,,(1}). Since ms_1,4(1) = 0 by Morel’s con-

nectivity theorem, the short exact sequence (see [HKO11, (2)])
0 — Ext(Z/0°,ms (1)) — 7s,5(17) = Hom(Z/0>, 75-1,5(1)) — 0

gives an isomorphism Ext(Z/€>°, s s(1)) = ms4(17). In [Morl2, 1.25], Morel has calcu-
lated m o(F) = GW (F) and mg s(F') = W(F') for s > 0 where W (F) is the Witt group of
the field F. For the fields under consideration, GW (F') and W (F) is a finitely generated
Abelian group. But for any finitely generated Abelian group A, there is an isomorphism

Ext(Z/6>,A) = A) [BK72, Ch.VI§2.1], which concludes the proof. O
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Chapter 5

Stable stems over algebraically closed fields

Let F be an algebraically closed field of positive characteristic p. We write W = W (F) for
the ring of Witt vectors of F, K = K (F) for the field of fractions of W, and K = K(F) for
the algebraic closure of K. Note that K is a field of characteristic 0. The previous sections
have set us up with enough machinery to compare the motivic Adams spectral sequences
at a prime £ # p over the associated base schemes Spec(F), Spec(W), and Spec(K). We
will often write the ring instead of the Zariski spectrum of the ring in our notation. For any

Dedekind domain R, we write Ext(R) for the trigraded ring Ext g« gy (H™*(R), H**(R)).

Proposition 5.1. Let F be an algebraically closed field of positive characteristic p, and
let £ be a prime different from p. The E5 page of the mod ¢ motivic Adams spectral

sequence for 1 over W, the ring of Witt vectors of F, is given by
Proof. Since W is a Hensel local ring with residue field F', proposition 4.9 applies. O

Proposition 5.2. Let F be an algebraically closed field of characteristic p. The homo-
morphism f : W — K induces isomorphisms of graded rings f* : Hux(W) — H,(K) and
i Aa(W) = Aw(K).

Proof. Tt is sufficient to establish isomorphisms for motivic cohomology, as H**(S) =

H_,_.(S). Since H**(W) = H*(F,), we have H*(W) 2= F,[¢] where ¢ € H*(W) =
pe(W). We also have H**(K) = Fy[¢]. To identify the ring map f* : H**(W) — H**(R)
(K)

may be identified with (W) — pe(K), which is an isomorphism. Hence f* : H**(W) —

it suffices to identify the value of f*(¢). The homomorphism f* : H%'(W) — H%!

H**(K) is an isomorphism. The argument given for proposition 3.15 establishes that

G A (W) — Ay (K) is an isomorphism. O
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Corollary 5.3. Let F be an algebraically closed field of characteristic p. The homomor-
phisms W — K and W — F induce isomorphisms of motivic Adams spectral sequences

for 1 from the Ey page onwards. In particular, Ext(F) = Ext(W) = Ext(K).

Lemma 5.4. Let f : K — K be an extension of algebraically closed fields of characteristic

0. For all s > w > 0, base change induces an isomorphism 7y, (k) — 75 (K).

Proof. Let £ be a prime. The maps f* : Hyw(k) — Hyw(K) and f* : Ayu(k) = Aw(K)
are isomorphisms, hence the induced map of cobar complexes C*(k) EAR C*(K) is an
isomorphism. It follows that the map 9tz (1) — Mz (1) is an isomorphism from the Ey
page onwards. The homomorphism Lf* : my, (17;) — . (1fy) is therefore an isomorphism
since it is compatible with the map of spectral sequences. Propositions 4.21 and 4.24
identify 7., (1)) with 7, (1)) for all s > w > 0 over both k and K. By [ALP15], the
groups s, (k) and 7,4, (K) are torsion for s > w > 0 and so they are the sum of their
{-primary parts. This establishes the result for s > w > 0. When s = w > 0, the result

follows by proposition 4.24 and Morel’s identification of the groups m, ,(F). O

Corollary 5.5. Let K be an algebraically closed field of characteristic 0. For any n > 0,

the map Lc : m), — 7, 0(/K) is an isomorphism.

Proof. The statement is true when K = C. The previous proposition extends the result

to an arbitrary algebraically closed field of characteristic 0. O

Theorem 5.6. Let F be an algebraically closed field of characteristic p and let ¢ be
a prime different from p. Then there is an isomorphism s, (F)} = m,,,(C); for all

s>w > 0.

Proof. Consider the homomorphisms F <— W — K. The induced maps on the motivic

Adams spectral sequence are compatible with the maps of homotopy groups
T (15 (F)) 4 max (L (W) — T (15 (K))

By corollary 5.3, the maps Mz(1) < My (1) — My (1) are isomorphisms at the Ey

page, and so there are isomorphisms 7. (15 (F)) = mu(15(W)) 2 mu (15 (K)). For
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s > w > 0, propositions 4.21 and 4.24 give isomorphisms 7 ., (17} (F)) & ms.,(F); and

s (1 (K)) = 75 (K)). The result now follows from lemma 5.4. O

Corollary 5.7. Let F be an algebraically closed field of characteristic p and let ¢ be a

prime different from p. The homomorphism Lc : (75); — mp0(F)} is an isomorphism for

all n > 0.

Proof. The previous theorem yields the following diagram for all n > 0.

¢ Lc

K =]

71'n,O(:l]j{\I(VV)) — Tn,0 (K)?

Le l
(

Tn,0(F))

IR

The map Le : (75);) — mp0(K)) is an isomorphism by corollary 5.5, and so all of the

maps in the above diagram are isomorphisms. ]

Let tc : SHe — SH denote the topological realization functor defined in [MV99,
Dug01]. For a prime ¢ > 2, we consider Fy as a module over the polynomial ring Fy[(]
where ¢ € H%!(F) acts as the identity.

When it is clear from context, we will write 9U(F') for the mod ¢ motivic Adams
spectral sequence for the sphere spectrum over Spec(F') instead of M p(1). For a prime p
and ¢ # p, we establish an isomorphism 9(F,) = M(C). When ¢ = 2, this isomorphism
shows that the differential calculations for 9¥(C) by Isaksen in [Isal4b] also hold for

M(Fy).

Proposition 5.8. Let £ be a prime and suppose p is a prime different from ¢. There
is an isomorphism M (F,) = M(C) from the Ey page onwards, hence the Fs page of the
motivic Adams spectral sequence over F), is given by Eg (8,0) (Fp) = Ext/(s+/w) (©).

When ¢ is odd, Ext(C) takes the form
Ext(C) = Fg[d QF, EXtAiop (Fo,TFy).

Write 20 for the mod ¢ Adams spectral sequence for the sphere spectrum in topology.
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Topological realization induces an isomorphism of spectral sequences
m(@) ®F£[C] F, — 2.

The differentials in 9t(C) are determined by d,.(¢?) = 0 for all » > 2 and all 5, and for

any x € E,(C) the differential d,(z) is zero if and only if d,(tc(x)) is zero in .

Proof. The proof of proposition 5.6 shows that for distinct primes ¢ and p there are
isomorphisms of mod ¢ motivic Adams spectral sequences 9(F,) = 90(C). At the prime
¢ = 2, the differentials in 9M(C) are analyzed in [DI10,Isal4b].

Let ¢ be an odd prime. We calculate Ext(C) using the cobar complex for A,.(C)

and AP, Let C*

top denote the cobar complex for the Hopf algebra (Fg,.AiOp ) defined

in [Rav86, A1.2.11], (see also 4.12). Recall from section 3.4 that AP has a bigrading
by assigning the appropriate weights to the generators 7; and &;. Since A,(C) is the
Hopf algebra A,.(C) = F/[(]® AP there is an isomorphism of cobar complexes C*(C) =
F[¢(]®Cf,,- The universal coefficient theorem then establishes the isomorphism Ext(C) =
Fo[¢] @ Ext yron (Fg, Fe).

Topological realization induces a map from the motivic Adams spectral sequence over
C to the topological Adams spectral sequence as pointed out by Dugger and Isaksen
in [DI10, §3.2]. Voevodksy proved in [VoelO, §3.4] that H**(C) ‘e, Hy,, sends ¢ to 1 and
induces an isomorphism H**(C)®g, ¢ F¢ — Hj,,. Furthermore, the topological realization
A (C) e, Aj,p factors through the isomorphism A™* ®p, o) Fr — Aj,,. We obtain similar
results for the topological realization of H,.(C) and A..(C) by dualizing. The map of

cobar complexes C*(C) — Cf

top Induced by topological realization is determined by ¢ +— 1,

7; = 7; and §; — &;. But we then have a map of spectral sequences M(C) @, Fe — 2

which is an isomorphism at the E5 page. O

We conclude this section with some remarks about the effect of base change between
finite fields on the motivic Adams spectral sequence, and how the results of this section

can be used in the analysis of the motivic Adams spectral sequence over finite fields.

Proposition 5.9. Let g be a prime power which is relatively prime to £. If j is relatively

prime to ¢(¢ — 1), the induced map 9M(F,) — M(F,) is an isomorphism of spectral
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sequences from the E» page onwards.
Proof. This follows from proposition 3.19 and corollary 4.8. O

Proposition 5.10. Let IF; be a finite field and let £ be a prime different from the charac-
teristic of Fy. Write Iﬁ‘q for the union of the field extensions [F ; over F, with j relatively
prime to ¢(¢ — 1). The map M(F,) — SJT(INFq) is an isomorphism of spectral sequences

from the E5 page onwards.
Proof. This follows from proposition 3.20 and corollary 4.8. O

Corollary 5.11. For a finite field F, of characteristic p, the comparison map Lf* :

7T¢J(Fq)[%] — Wi’j(ﬁq)[%] is an isomorphism.
The next proposition enables differentials in 9(F,) to be inferred from the known
differential calculations in M(F,) = M(C). See 3.3 for the definition of u, p, and . We

remark that over any finite field the class u is defined to always be non-trivial.

Proposition 5.12. Let I, be a finite field with algebraic closure ﬁp, and consider a prime

¢ # p. The class u € Ext(F,;) maps to 0 in Ext(F,), whereas any class « € Ext(F,) which

is not divisible by u maps to a non-zero class in Ext(F,).

Proof. The induced map on the cobar complex C(F,) — C(F,) kills u, and induces an

injection C(F,)/uC(F,) — C(F,) by proposition 3.21. The result now follows from the

calculation of Ext(F,) given in sections 6.1 and 7.1 below. O

Proposition 5.13. Let ¢ be a prime different from the characteristic of F,. For n > 0,

the map Le : (75); — mn0(Fg)) injects as a direct summand.

Proof. The map Le : (73); — m,,0(Fp)) is an isomorphism by proposition 5.6 and factors

through Le : (7)), — mn0(Fy),. Hence (7)), — my,0(F,)) must be injective and the

comparison 7y, 0(Fq); — mn,0(Fp); gives a splitting. O
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Chapter 6

The motivic Adams spectral sequence for finite fields F,

with trivial Bockstein action

Throughout this chapter, we assume the Bockstein acts trivially on H**(F,). That is, at
the prime ¢ = 2 we assume ¢ = 1 mod 4. At the prime ¢ > 2, consider a prime power ¢
which is relatively prime to £ and write ¢ for the order of ¢ in FFy. Then the action of the

Bockstein on H**(F,) is trivial if and only if ¢' = 1 mod ¢2.

6.1 The FE,; page of the mod ¢ motivic Adams spectral sequence

We will make frequent use of the structure of H**(IFy;Z/¢) which was determined in
proposition 3.4. For a field F', we write Ext(F) for Ext g p)(H*(F), H**(F')). Let
AP denote the mod ¢ dual Steenrod algebra of topology. We declare the weight of the

elements 7; and §; in AP 6 be 7 — 1, so that AL is bigraded.

Proposition 6.1. The Ey page of the mod 2 motivic Adams spectral sequence for the

sphere spectrum over F, with ¢ =1 mod 4 is the trigraded algebra
By = Ext(F,) = Fofr, ul/(u?) @p,() Ext(F,).

For ¢ > 2 the FE; page of the mod ¢ motivic Adams spectral sequence for F, when

¢' = 1 mod 2 is the trigraded algebra

Ey = Ext(F,) = Fy[¢, ul/(u) @, Ext_yop (Fe, Fy).

Proof. We prove the proposition in the case £ = 2, since the proof for £ > 2 is similar.

>~

Consult [DI10, 3.5] for a similar argument. Recall from proposition 3.8 that A**(F,)
A5+ (F) @y Tl ul /(1) and H*(F,) = H**(F,) @ Fslr, u](u2). Since F[r, u]/(u?) is

flat as a module over Fy[r], a free resolution H**(F,) <— P*® determines a free resolution
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H**(F,) < P* @ Fa[r,u]/(u?).
For a field F, consider the functor Hom g+« (—, H**) of motivically finitely generated

bigraded modules over A**(F'). The canonical map
Hom g.. s (= H*(Fy)) @ Falr, ul/ (u?) — Hom ges e, (— & Falr, ul/(u2), H*™(F,).

is a natural isomorphism, since a generating set for a module M over A**(F,) is also a
generating set for M ® Fa[r, u]/(u?) over A**(F,) by proposition 3.8. We conclude that
Ext(Fp) ® Fa[r,u]/(u?) = Ext(F,). O

Remark 6.2. In proposition 6.1 we must treat the case £ = 2 separately from the case
¢ > 2 for two reasons. First, when ¢ = 2 there is no isomorphism A? ® Fy[r] = A,.(C)
because the relations for 72 in A, (C) differ from those in AL by Voevodsky’s calculation
in [Voe03, 12.6] (compare with proposition 3.8). Second, when ¢ > 2 the generators (
and v of H**(Fy;Z/l) have weight i where ¢ is the smallest positive integer for which
¢' = 1 mod ¢. But over F,, the generator ¢ € H**(Fp;Z/¢) has weight 1. Hence if i > 1,

there is not a bigraded isomorphism between Ext(F,) and Fy[¢, u]/(u?) ®p, (¢ Ext(F).

6.2 Differentials in the mod ¢ motivic Adams spectral sequence

We begin with the motivic Adams spectral sequence for X = H Z[I%] over a finite field

[F, of characteristic p, as defined in 4.2. In proposition 6.4 we identify the differentials

for Mg, (HZ[%]) which converges to W**(HZ[%]?) >~ H,.(Fq;Z),;. We accomplish this

by working backwards from our knowledge of H**(F4;Z); by a calculation due to Soulé

[Sou79, IV.2].

Lemma 6.3. Let F, be a finite field of characteristic p, and let ¢ be a prime different

from p. The spectrum H Z[%] is cellular, and for H = HZ /¢, the H-nilpotent completion

of H Z[%] is weak equivalent to HZ).
Proof. The spectrum H Z[%] is cellular by the Hopkins-Morel theorem [Hoy15, §8.1]. We

show H Z@ is weak equivalent to the H-nilpotent completion of H Z[%] by showing that
the tower HZ/{ < HZ/(? < HZ/{3 + --. under HZ[%] is an H-nilpotent resolution

under H Z[%] (defined in [Bou79, 5.6]). It will then follow that the homotopy limit of this



42

tower is weak equivalent to the H-nilpotent completion of H Z[%], that is, HZ) ~ H Z[%]ﬁ,

by the discussion in [DI10, §7.7] which shows Bousfield’s result [Bou79, 5.8] holds in the

motivic stable homotopy category.

The spectrum H Z[%] is the homotopy colimit of the diagram HZ £s HZ £ . ... From

the triangle HZ Y 17 - HZ/t” we obtain a triangle HZ[%] “, HZ[%] — HZ/t" after
inverting p, since p # ¢ and HZ/¢¥ 2 H Z/?" is a homotopy equivalence. Consider the

following cofibration sequence of towers.

HZ[E) <~ HZ[Y] <*— HZ[} ] <—

4 e e

HZ[%] QHZ[}D] @HZ[%] -~

pt~——HZ/l «~— HZ]{? «—-:..
It is clear that HZ/¢" is H-nilpotent for all v > 1. For any H-nilpotent spectrum
N we show that the induced map colim, SHr (HZ/¢¥,N) — S?—L]Fq(HZ[%],N) is an

isomorphism following the proof of [Bou79, 5.7]. This isomorphism holds if and only if

colim{SHz, (HZ[L], N) < SHp, (HZ[L], N)} = SHz, (HZ[L], N)[}]

vanishes for all H-nilpotent N. This follows by an inductive proof with the following
filtration of the H-nilpotent spectra given in [Bou79, 3.8]. Take Cj to be the collection
of spectra H A X for X any spectrum, and let C), 11 be the collection of the spectra IV
for which either IV is a retract of an element of C), or there is a triangle X - N — Z
with X and Z in C,,.

If N=HA X, it is clear that SHFq(HZ[%],N) EN S’HFq(HZ[%],N) is the zero map,
which establishes the base case. If the claim holds for NV in filtration C,,, the claim holds

for N in filtration C),41 by a standard argument. The claim now follows. O

Proposition 6.4. The mod 2 motivic Adams spectral sequence for X = H Z[Zl;] over [,

when ¢ = 1 mod 4 has E; page given by
E1 = ]FQ[T, u, ho]/(UQ)

1,(0,0)

where hy € E . Write vy for the 2-adic valuation, and write €(q) for v2(¢—1). For all

r > 1 the differentials d, vanish on u7/ and hf). If < e(q) + v2(j) the differentials d,.77
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vanish, and

de(Q)+V2(j)Tj = UTj_th(q)+V2(j) .

In particular, the differential dy is trivial, so Fy = Fj.
For ¢ > 2, the mod ¢ motivic Adams spectral sequence for H Z[%] over F, with ¢' =
1 mod ¢? has E; page
E1 = Fy[¢,u, ao] /(v?)

1,(0,0)

L
where a9 € E}’ 0,(1,—=%)

Note here that ¢ € Eg’(o’_i) and v € E, . In this case, the
differentials are controlled by €(q) = v4(q¢* — 1). For all r > 1 the differentials d, vanish

on u¢? and ag. If r < €(q) + v4(j) the differentials d.¢? vanish, and

de(q)w(j)gj = ugj—lag(q)wz(])‘

In particular, the differential dj is trivial, so Fo = Fj.

Proof. We build the following H**-Adams resolution of H Z[%] utilizing the triangles con-

structed in 6.3.

HZ[3] & HZ[] £ Hz[L

HZ/¢ HZ/¢

J < (6.5)

The spectrum H Z[%] is cellular, so the motivic Adams spectral sequence for X = H Z[%]

converges to w**(HZ[%]I/}) by proposition 4.17. Lemma 6.3 shows that 7T**<HZ[%]I/_}) =
T (HZ)), so the spectral sequence converges Eg’(s’w) = H 5 " (Fg; Z)).

The groups H**(Fy;Z)) were calculated by Soulé in [Sou79, IV.2].

;

Zy ifs=w=0
H™ Y (Fg; 2); = Z/(¢ —1)) ifs=-1lw>1 (6.6)
0 otherwise.

\

Note that va(¢? — 1) = €(q) + v2(j) for all natural numbers j. The formulas for the

differentials on 77 and (7 are the only choice to give H** (Fg;Z)) as the En term. O

Corollary 6.7. Let F, be a finite field of characteristic p, and let £ # p be a prime. The

unit map 1 — HZ[%] induces a map of spectral sequences (1) — Z)JI(HZ[%]) over F,
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which is surjective on the Fy page. The differentials calculated in proposition 6.4 hold in

the motivic Adams spectral sequence for 1 over I,,.

In addition to the above differential calculations, propositions 5.12 and 5.13 help iden-
tify differentials. Let F, — F, be an algebraic closure of F,, and write ® : M(F,) — M(F,)
for the induced map of spectral sequences. For z € E,.(F,), we must have d,(®(x)) =
®(d,(x)). By proposition 5.8, we often know something about d,(®(z)), and can use this
to determine d,.(z) € ®~1(d,(7)).

6.3 The prime 2

We now analyze the 2-complete stable stems 7 (Fy) = mii(Fy)5 when g and 2 are rela-
tively prime and ¢ = 1 mod 4. The results of the previous sections allow us to identify the
nth classical 2-complete stable stem 75 = (7%)5 as a summand of 7, o(F,). Using this,
we are able to determine the E,, page of the motivic Adams spectral sequence for IF, for
stems s < 20. For the remainder of this section, let H denote the spectrum representing
motivic cohomology with Z/2 coefficients.

Proposition 6.1 shows that the irreducible elements of Ext(F,) are also irreducible
elements of Ext(F,) when ¢ = 1 mod 4. The only additional irreducible element in Ext(F,)
is the class u. Table 6.1 gives the list of irreducible elements of Ext(IF,) up to stem s < 21.
In this table, P is an operation of tridegree 4, (8,4) defined on elements = € Ext(FF,) which
satisfy hgz = 0 given by the Massey product P(z) = (hs, h3, ). This table was obtained

by computer calculation and is consistent with [Isal4b, Table 8].

Elt. Filtr. (f,s,w) Elt. Filtr. (f,s,w) Elt.  Filtr. (f,s,w)
u (0,—1,-1) co (3,8,5) eo (4,17, 10)

T (0,0, 1) Phy  (5,9,5) P2hy  (9,17,9)

ho  (1,0,0) Phy  (5,11,6) fo (4,18,10)

hi  (1,1,1) do (4,14,8) P2hy  (9,19,10)

hy  (1,3,2) hy  (1,15,8) ¢l (3,19,11)

hs  (1,7,4) Pcy  (7,16,9) [rg]  (4,20,11)

Table 6.1: Irreducible elements in Ext(F,) with stem s < 21 for ¢ = 1 mod 4

We now begin an analysis of the differentials in the motivic Adams spectral sequence

in the range s < 21 to identify the two-complete stable stems over IF,. To assist the reader
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with the computations presented below, figure 8.1 displays the Fy page and figures 8.2
and 8.3 display the F page of the motivic Adams spectral sequence over [, in the range
s <21 when ¢ =1 mod 8 and ¢ = 5 mod 8.

Morel proved the stem g o(FF,) is isomorphic to the Grothendieck-Witt group GW (Fy)
in [Mor04] and Scharlau calculated GW (F,) = Z&Z/2 in [Sch85, Ch. 2, 3.3]. Recall that
there are isomorphisms 7, = Z and 7§ = Z/2, so there is an isomorphism g o(F,) =
7y ®mi. We show in proposition 6.8 that the pattern 7, (F,) = 7, © 7, continues after
2-completion for small values of n > 0. However, proposition 6.9 shows the pattern fails

when n = 19 and ¢ = 5 mod 8.

Proposition 6.8. When ¢ = 1 mod 4 and 0 < n < 18, there is an isomorphism 7, o(F,) =

) )
Ty @ Ty

Proof. The irreducible elements of Ext(FF,) in this range are given in table 6.1. All
differentials d, for > 2 vanish on hg, h1, hs, co, Ph1,dy, Pco, P?hy for degree reasons.
As 730(F,;) must contain 75 = Z/8 as a summand by proposition 5.13, we conclude
do(72hg) = 72da(ha) = 0. The only possible non-zero value for da(hs) is uh3. If da(he) =
uh3, then do(72hg) = ur?h3 would be non-zero by the product structure of Ext(F,) in
proposition 6.1—a contradiction. Hence da(h2) = 0.

The non-zero Massey product Pho = <h3,hé,h2) has no indeterminacy, because
thg’(s’Q) + Eg’(7’4)h2 = 0. Since 77, = Z/8 is a summand of 711, the differential

d2 Phy must vanish. The non-zero Massey product P2hs = (h3, hé, hs) has no indetermi-

(11,6) (7,4)

nacy, because thS’ + E§7 Phy = 0. Since daPho = 0, the topological result of
Moss [McCO01, 9.42(2)] implies dg P?hg = 0.

The comparison map M(F,) — 9M(F,) shows that d2(hs) and ds(hohs) must be non-
zero, as these differentials are non-zero in E)JT(E,) by proposition 5.12 and [Isal4b, Table
8] over C. The only possible choice for da(hy) is hohg, but ds(hohyg) is either hody or
hodo + uhidp. In order to have 7§, = Z/2 & Z/2 as a summand of 7140, we must have
d3(hohs) = hodp. A similar argument establishes da(eg) = h2dy and da(fo) = hieg. Note
that dy(h3hs) = 0 for degree reasons.

The elements in weight 0 are all of the form 772 or ur?~!z where x is not a multiple of
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7 and of weight j. The differentials of the elements in weight 0 are now readily identified
by using the Leibniz rule from proposition 6.4. Since 7} is a summand of 7, o(IF,) for all

n > 0, we see that there are no hidden extensions for 0 < n < 18. ]
Recall that there are isomorphisms #{y = Z/8 @ Z/2 and 75, = 7Z/8.

Proposition 6.9. When ¢ = 5 mod 8, 7190(F;) = @fy & Z/4 and 790,0(Fq) = 75, & Z/2.

When ¢ = 1 mod 8 and 19 < n < 20, there is an isomorphism 7, o(F,) = 7, & 7 4.

Proof. The differential da[Tg] is trivial as it lands in E26,(19,11) = 0. Since [Tg] has weight

11, the class 71[rg] is in E200),

In the case ¢ = 5 mod 8, we calculate dar!![rg] = ur1®h3[7g] # 0 by proposition 6.4.
This resolves all of the differentials in the 19 and 20 stems, and the calculation of the
19 stem follows. As 75, = Z/8 must be a summand of 729 o(F,) which has order 16, we
conclude 7299 = Z/8 & Z/2 and there is a hidden extension from utlth3hy = UTllhg to
T2hsep.

When ¢ = 1 mod 8, proposition 6.4 shows da7'! = 0, hence da7'![rg] = 0. This

resolves all of the differentials in the stems 19, 20, and 21. We note that there are no

possible hidden extensions in the 19 or 20 stem in this case. The result then follows. [J

Remark 6.10. The element & € 75, = 7Z/24 is detected by ¢ in the 2-primary Adams
spectral sequence. Toda calculated 78 for n < 19 in [Tod62], Mimura and Toda calculated
the 20 stem 75, in [MT63], and May analyzed the Adams spectral sequence for stems
s < 28 in [May65]. Over a finite field F, with ¢ = 5 mod 8, the class L¢(R) € ma0,0(Fy)
is detected by UTHh% which is in Adams filtration 3, and not 4. But over Fq, the class

Lc(R) is detected by 7! [rg] in Adams filtration 4.

6.4 The prime 3

Ravenel gives a description of the 3-primary Adams spectral sequence in [Rav86, §1.2]
which may be used to calculate Ext(FF,) given proposition 6.1. In this section, & denotes
the 3-completion of the group 7 and ¢ denotes the order of ¢ in F5. The finite fields F,

with trivial Bockstein action are those fields with either ¢ = 1 mod 9 or ¢ = 8 mod 9.
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The non-zero irreducible elements of the Fy page in the range s < 20 are given
in table 6.2. Write R(x) for the Massey product (hg, ho,x), and Q(z) for the Massey

product (hg, ag, ).

Elt. Filtr. (f,s,w) Elt. Filtr. (f,s,w)
ap ( 0) h1 (1,11,6)
ho (1,3 2) R(hy) (2,18,10)
R(ag) (2,7.4) @*(R(ag)) (4,15,8)
bo (2,10,6) Q3(R(ap)) (5,19,10)

Table 6.2: Irreducible elements in Ext(F,) at the prime ¢ =3

We now calculate the 3-complete stems 7, o for n < 20. Note that 7} is non-trivial

for the following values of n < 20: 0, 3, 7, 10, 11, 13, 15, 19, and 20.

Proposition 6.11. At the prime ¢ = 3 and for a field I, with a trivial Bockstein action on

H**(F,), i.e., ¢ = £1 mod 9, there are isomorphisms 7, o(Fq) = 7} @7, for 0 < n < 20.

Proof. Most of the differentials on irreducible elements in the range s < 20 vanish for de-
gree reasons, except for possibly da(h1), and da(R(h1)). In weight 0, the corresponding dif-
ferentials to analyze are da(C%hy), dao(v¢®/D71hy), do(¢R(h1)), da(v¢ /D71 R(hy)),
d2(¢"*"hoR(h1)), and da(v¢"*/D = ho R(hn))

We use the comparison map 9M(F,) — M(F,) to calculate the differentials da(h1) and
da(R(h1)). Proposition 5.12 shows that the comparison map sends hy to h; in the cobar
complex. Since da(h1) = agbp holds over F,, by [Rav86], we must then have da(h1) = agbo
since there is nothing divisible by « in this position. The same comparison also shows
da(R(h1)) = boR(ag) is non-zero. Since da(hg) = 0 for degree reasons, the Leibniz rule
implies that da(hoR(h1)) = hod2(R(h1)) is non-zero.

The differentials in weight 0 are now readily calculated using the Leibniz rule. In

particular, dy(¢%/%hg) = ¢%/*agby since we have shown dy(¢%/%) = 0 in proposition 6.4. [

6.5 The primes ¢ > 5

We continue to write 7 for the -completion of © when the prime ¢ is clear from context.
We now identify 7, o(F,) for the remaining odd primes. Let ¢ be a prime, F, a finite

field with characteristic different from ¢, and write ¢ for the smallest positive integer
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satisfying ¢ = 1 mod £. The action of the Bockstein on H**(F,;Z/¢) is trivial if and
only if ¢* = 1 mod 2. Since 0 < i < £, every solution of ¢* = 1 mod ¢ lifts uniquely to a

solution of ¢ = 1 mod 2 by Hensel’s lemma. We list these congruences in table 6.3.

Prime ¢ Congruence

2 q¢ =1mod 4

3 qg==+1mod9

5 q = +1,£7 mod 25

7 q==£1,£18,+19 mod 49

11 q==+1,£3,49,+27,+40 mod 121

Table 6.3: Congruences for trivial Bockstein action on H**(F,;Z/¢)

Proposition 6.12. Let F, be a finite field of characteristic p. For any prime ¢ > 3
with ¢ # p for which the action of the Bockstein on H**(F,;Z/{) is trivial, we calculate

fn0(Fq) = 7y @ 75, for 0 <n < 20.

Proof. For any prime ¢ > 2, the first non-zero group 7, o(F,) with n > 0 occurs at
n = 20 — 4, detected by the class u¢*~2[¢;] in the cobar complex. So for any prime
¢ > 11, the group 7y, o(Fy) is trivial when 0 < n < 20. We now turn our attention to the
remaining primes 5, 7, and 11.

Since we are assuming the action of the Bockstein on H**(F,) is trivial, the Ey page
of the mod ¢ motivic Adams spectral sequence is Ep = H..(Fg) ® Ext 4eon (F, Fe) by
proposition 6.1. For the primes 5, 7, and 11, the necessary calculations in the cobar
complex for Ai')p can be carried out in stems s < 20 without much trouble. See figures
8.8, 8.9, and 8.10 for charts of the Fy page of the motivic Adams spectral sequence at the
primes 5, 7, and 11. We find that the irreducible elements in Ext 4zop (Fy,TFy) which appear
in stem s < 20 are ag = [70], ho = [£1], and the Massey product R(ag) = (ho, ho, ao)-

When ¢ = 5, there are three cases based on the order of ¢ in F/', i.e., iis 1, 2, or 4. In
any case, the class ho has weight 4, so ¢*/*hy and v(**~1hg are non-zero classes in weight
0, and as the class R(ag) has weight 8, (3?R(ag) and 7%~ R(ag) are in weight 0. All

differentials in the range 0 < s < 21 are trivial O
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Chapter 7

The motivic Adams spectral sequence for finite fields F,

with non-trivial Bockstein action

Throughout this chapter, we assume the action of the Bockstein on H**(F,) is non-trivial.
That is, at the prime ¢ = 2 we work over a finite field F; with ¢ = 3 mod 4 and for a
prime ¢ > 2, we work over a finite field I, with ¢ relatively prime to ¢ which additionally

satisfies ¢’ # 1 mod ¢ where i is the order of ¢ in F.

7.1 The FE, page of the mod ¢ motivic Adams spectral sequence

We first analyze the Fy page of the mod 2 motivic Adams spectral sequence, which
is isomorphic to Ext(F,) = Ext g«« g, ) (H*(Fg), H™(F)). The action of the Bockstein
on H**(F,;Z/2) is non-trivial if and only if ¢ = 3 mod 4. In this case, the class p €
HY(F,;7/2) is non-trivial (see definition 3.3) and the action of the Bockstein on H**(F,)
is determined by (1) = p. We directly calculate the structure of Ext(IF,) up to stem

s = 21 using computer calculations discussed in chapter 8.

Proposition 7.1. When ¢ = 3 mod 4, the irreducible elements of E»(F,) = Ext(F,) up

to stem s = 21 are the classes listed in table 7.1.

Proof. This was obtained by computer calculation. See chapter 8 for more details about
the program. Note the class 7 does not appear in Exto’(o’fl)(Fq) by the following calcu-

lation with the cobar complex (see definition 4.12).
de([]) = ()] + (1] = [7] + [pro] + 7[1] = p[m0] O

The p-Bockstein spectral sequence assists in the calculation of Ext(F,) when the action

of the Bockstein is non-trivial. We will use proposition 7.1 to identify a non-trivial
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Elt. Filtr. (f,s,w) Elt. Filtr. (f,s,w) Elt. Filtr. (f,s,w)
p (0,—-1,-1) [Tco] (3,8,4) [TPco) (7,16,8)
[p7] (0,—1,-2) Phy (5,9,5) eo (4,17, 10)
[72] (0,0, —2) [TPh1]  (5,9,4) P2%hy (9,17,9)
ho (1,0,0) Phs (5,11,6) [TP?h1]  (9,17,8)
hq (1,1,1) [Thoh3] (3,14,7) fo (4,18,10)
[7hi] (1,1,0) do (4,14,8) P?hy (9,19,10)
ho (1,3,2) [thido] (6,14,7) ¢l (3,19,11)
[Th3] (2,6,3) ha (1,15,8) [Te1] (3,19, 10)
hs (1,7,4) [Thlh4) (8,15,7) [p7g] (4,19,10)
[Th3hs] (4,7,3) Pcy (7,16,9) [72g] (4,20, 10)
co (3,8,5)

Table 7.1: Irreducible elements in Ext(F,) with stem s < 21 for ¢ = 3 mod 4

differential in the p-Bockstein spectral sequence in proposition 7.3. We briefly describe
the construction of the p-Bockstein spectral sequence and refer the reader to [DI15,0013,
Orm11] for more details.

Let C be the cobar complex for F, defined in 4.12 at the prime ¢ = 2. The filtration
of C given by 0 C pC C C determines a spectral sequence, which in this case is just the

long exact sequence associated to the short exact sequence of complexes
0—=pC—C—C/pC—D0.

Since the complexes pC and C/pC are both isomorphic to the cobar complex over C, the

p-Bockstein spectral sequence is the following long exact sequence.
- pBxt!(C) — Bxt? (Fy) — = Exti(C) —2= p Exti*1(C) - - - (7.2)

Proposition 7.3. In the p-Bockstein spectral sequence for F, with ¢ = 3 mod 4, every
irreducible element x of Ext(C) in stem s < 19 other than 7 has diz = 0, whereas
di7 = pho and dy([Tg]) = phaeg. Here, [Tg] is the irreducible element of Ext(C) in stem
20, weight 11, and filtration 4.

Proof. The differential d; vanishes on the classes hg, hi, co, Phi, do, Pco, ey, P?hy for
degree reasons. The remaining differentials follow from the structure of Ext(IF,) given in

proposition 7.1. O

Example 7.4. In the p-Bockstein spectral sequence, we calculate dyThy = phgohy = 0,
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since dihy = 0 and hohy vanishes in Ext(C). There is thus a class [thi] € Extb(10(F,)

which is irreducible.

At the primes £ > 2, we use the analog of the p-Bockstein spectral sequence to identify
the Fs page of the mod ¢ motivic Adams spectral sequence. Recall from definition 3.3 that
when the action of the Bockstein on H**(F;Z/¢) is non-trivial, the class v € HY(F,) is
non-zero and 3(¢) = 7. The 7-Bockstein spectral sequence is the long exact sequence of

cohomology groups associated to the short exact sequence of chain complexes
0—=~C—=C—C/yC —0.

The complexes vC and C/~C are isomorphic to the cobar complex for the Hopf algebroid
(F[¢], Fy[¢] ® AXP). Note that the Hopf algebroid (Fy[¢], Fy[¢] ® ALP) is isomorphic as a
bigraded Hopf algebroid to (H.«(C), A« (C)) if and only if ¢ = 1 mod 2.

Proposition 7.5. The E; page of the y-Bockstein spectral sequence is given by

By 2 Excty, 10 geor (FelC] FelC]) @ 7 Exty g oon (Bl Fe[C)):

The differential d; is determined by d;(¢?[]) = —jv¢7 o).

Proof. Note that Exty, g 4ror (Fe[C], FelC]) = Fo[¢] @ Ext yeop(Fe,Fr). The cobar com-
plex C(F,) is a differential graded algebra with respect to the juxtaposition product
defined in 4.12. Let a be a cobar complex representative for a homogeneous class in
Exty (r1eater (F[¢],Fe[¢]). Then a = ¢’[] * o/ where o is an element in the cobar com-
plex for AP, We calculate dy(C7[ ] * o) = di(¢I] ])e by our assumption that de(a) is
zero. But then the class di(¢/[ |)o/ = —jv¢/ " ro] * o will vanish if and only if £ | j or
[70] * &’ = 0 in Ext 4eop (Fy, Fy). O

Remark 7.6. Note that this argument does not work at the prime ¢ = 2 because one

cannot pass between the cobar complex over C and the topological cobar complex since

the relations on TZ-2 over C involve the class 7.
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7.2 Differentials in the mod ¢/ motivic Adams spectral sequence

We now establish the analog of proposition 6.4 in the case where the Bockstein acts non-
trivially on H**(F,), that is, we use the motivic Adams spectral sequence for X = H Z[%]

over F, to identify the differentials on 77 and ¢/ in My, (1).

Proposition 7.7. When ¢ = 2 and ¢ = 3 mod 4, the E; page of SJY(HZ[%]) is given by

E = IFQ[T7 P ho]/(p2)

where hg € Ell’(o’o). For all » > 1 the differentials d, vanish on ij and h%. For odd

natural numbers j, we calculate d7/ = phg. Write \(q) for va(g? —1). If r < X(q) +v2(n)

the differentials d,7%" vanish, and

dr(q) a2 = pr2n T g TR,

Now let ¢ > 2 and consider a finite field F, with non-trivial Bockstein action on

H**(Fy;Z/¢). Then the E; page of E)JT(HZ[%]) is the graded-commutative Fy-algebra

By = Ff[Cv Y, aO]/(’yZ)

1,(0,0)

where ag € E,"7. The differential d; vanishes on aé, v¢7, and ¢% for all j > 0, but

d1¢7 = y¢77Lag for natural numbers j with £+ j. The Ey page takes the form

/-1

By = Fily, ¢ aol/ (7, aom) ® @D CF[C’, a0/ (aon¢?)
j=1

Let A(q) = wvi(¢® —1). For all r > 2 the differentials d, vanish on ag and {7 for

0 < j < £ — 1. The differentials d,(¢*™) are trivial for r < X\(q) + v¢(n) and

n n—1_A voln
d’/\(q)+w(n)(C€ ) = ~¢t lao(q)+ o (n)

up to multiplication by a unit in Fy.

Proof. This follows the proof of proposition 6.4. The H**-Adams resolution given in (6.5)
gives E{’(S’w) = s wHZ/C. When ¢ = 2, the order of E;(_l’j) is 15(¢? — 1), so we conclude
d1T = pho. As we have v5(¢% — 1) = \(q) + v2(j) for all natural numbers j, the claimed
formulas for the differentials on 72" hold. A similar analysis goes through for £ > 2, since

for all natural numbers n we have vy(¢“™ — 1) = A(q) + vo(n). O
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7.3 The prime 2

We work at the prime ¢ = 2 in this section and consider a finite field F, with ¢ = 3 mod 4.
We write 7. (FF,) for W**(Fq)é\. Multiplication by 2 in 7. (IFy) is detected in the mod 2
motivic Adams spectral sequence by the class hg + ph; in Ext(F;). A chart of the Es
page of the motivic Adams spectral sequence is given in figure 8.4 and a chart of the F
page is given in figure 8.5.

The stem g o(IF,) is isomorphic to the Grothendieck-Witt group GW (F,;) by [Mor04].
The isomorphism GW (F,) = Z @ Z/2 was established by Scharlau in [Sch85, Ch. 2, 3.3].

Recall that 7§ = Z and 75 = Z/2. Hence we conclude mg o(Fy) = 7§ & 5.

Proposition 7.8. When ¢ = 3 mod 4 and 0 < n < 18, there is an isomorphism 7, o(Fy) =

=S =S
Ty, Ty

Proof. The discussion preceding this proposition establishes the claim when n = 0. We
now analyze the differentials and the group extension problem for 0 < n < 18. The
differentials d, for r > 2 vanish on the following generators for degree reasons: [p7], p,
ho, h1, hs, [Th3], [rco], [TPhi], do, [TPco), [TP%h]. Since 7§ = Z/2 is a summand of
71,0(Fy), we must have d,[Thi] = 0 for all » > 2. Since 73 = Z/8 is a summand of
73,0(Fq), we must have da(h2) = 0. An argument similar to that given for proposition 6.8,
we conclude da(hs) = hoh%, da(eg) = hidy, and da(fo) = hiep by comparison to 9(F,).
Also, we determine d,[rc;] = 0 for 7 > 2 by comparing with 9(F,), as the class [rcq]
must be a permanent cycle.

The one exceptional case is d3(hohs). Here we must have ds(hohs) = hody + ph1dp in
order for 7{, =7Z/2 @& Z/2 to be a summand of 714 0(F,).

i1y where x is not a

The elements in weight 0 are all of the form [72]'x or [p7][7?]
multiple of 72 and weight 2i, or of the form p[r%])'z if x is not a multiple of 72 and of
weight 2¢ + 1. The differentials of the elements in weight 0 are now determined by using
the Leibniz rule. Since A(q) = va(¢® — 1) > 3, we have da(72) = 0. This is sufficient to

ensure that for elements x in stem s < 19 there are no non-trivial differentials of the form

dr[r?fx = pr?~'hix when [7%]'z has weight 0. This resolves all differentials in weight 0
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for stems s < 19 and there are no hidden 2-extensions in this range. Hence for 0 < n < 18

there is an isomorphism 7, o(F,) = 7, © 7, 1. O

Remark 7.9. Tt is unclear whether do[72g] = [p7g] or da[7?g] = 0. This is all that obstructs

the identification of the stems 719 o(F,) and 20,0(Fy).

7.4 The prime 3

Throughout this section, F, is a finite field with characteristic different from 3. Let
i be the smallest positive integer for which ¢ = 1 mod 3. The assumption that the
Bockstein acts non-trivially on H**(F,;Z/3) is equivalent to ¢° # 1 mod 9 which amounts

to ¢ = £2,43,+4 mod 9. We write 7 for the 3-completion of a group .

Proposition 7.10. Let F; be a finite field of characteristic different from 3 for which
¢ # 1mod 9. For any natural number n with 0 < n < 20, there is an isomorphism

7ATmO(Fq) = 7%% D 7%3“'

Proof. We use proposition 7.5 and a calculation of Ext Ator (Fs,F3) (see [Rav86, p. 11] or
chapter 8) to identify the Fy page of the motivic Adams spectral sequence. Every class
T € EXtﬁ;;U(Fg, F3) with apz = 0 contributes classes y¢¥ "1z and (¥ in weight 0. If agx
is non-zero, only the classes (% are non-zero in the F5 page. In the range n < 21, only
the classes by, h1, and bg are not killed by multiplication by ag. Note that the weights of
bo, h1, and b% are 6, 6, and 12 respectively. Since all of these weights are divisible by 3,
we conclude that ¢%%bg, ¢%/hy, ¢'2/"03, v¢O/0 by, v¢6/D=1by, and v¢12/D=112 are all
non-zero classes in weight 0. This analysis identifies the Fy page of the motivic Adams
spectral sequence given in figure 8.7.

We deduce the differentials da(h1) = aobp and da(R(h1)) = boR(ap) from the compar-
ison map M(F,) — M(F,) and the calculations in topology in [Rav86]. The Leibniz rule
shows da(¢%/hy) = dy(¢5/))hy + (/%agby. In the case where v4(¢® — 1) = 2, proposition
7.7 shows dy(¢5/%) is non-zero, and when v4(¢® — 1) > 2 the differential dy(¢%/*) vanishes.

In either case, the group structure is as claimed in the 10 and 11 stem.
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Since ¢ and ¢? do not survive the y-Bockstein spectral sequence, we must be careful cal-
culating do(¢C'%*R(hy)). If i = 1, the class in weight 0 coming from R(hy) is [¢*]*[CR(h1)]
and if i = 2, the class in weight 0 coming from R(hq) is [¢3]?[¢?R(h1)]. When i = 1, the
comparison map M(F,) — M(F,) sends [¢3]P[CR(h1)] to (!°R(hy). Since da(R(h1)) =
boR(ap) is non-zero in M(F,) by [Rav86], it follows that do(¢1°R(h1)) = ¢(1%byR(ap) in
IM(F,). As the differential do([¢?]?[¢R(h1)]) must have image (1%yR(a) under the com-
parison map M(F,) — M(F,), d2([¢®]3[CR(h1)]) is non-zero. Similarly, when i = 2,
[C3)2[¢2R(h1)] maps to ¢(1°R(h1) in Ext(F,) and so da([¢®]?[¢?R(h1)]) is non-zero.

The remaining differential do([¢%]*?hoR(h1)) is found to be non-zero by using the
Leibniz rule. This resolves all differentials up to stem 21. The computed product structure

shows there are no possible hidden 3-extensions in this range, hence the result. O

7.5 The primes ¢ > 5

We continue to write 7 for the -completion of © when the prime ¢ is clear from context.
We now identify 7, o(F,) for the remaining odd primes. Let £ be a prime, F, a finite field
with characteristic different from ¢, and write ¢ for the smallest positive integer satisfying
¢" = 1 mod ¢. The action of the Bockstein on H**(F,;Z/{) is non-trivial if and only if
¢" # 1 mod £2. At the primes up to 11, the appropriate congruences are those which do

not appear in table 6.3.

Proposition 7.11. Let F; be a finite field of characteristic p. For any prime ¢ > 5 with
¢ # p for which the action of the Bockstein on H**(Fy;Z/¢) is non-trivial, we calculate

fn0(Fq) = @y @ 75, for 0 < n < 20.

Proof. For any prime ¢ > 2, the first non-zero group 7, o(F,) with n > 0 occurs at
n = 2¢ —4, detected by the class v¢*~2[¢;] in the cobar complex. So for any prime £ > 11,
the group ,0(FFy) is trivial when 0 < n < 20.

At the primes 5, 7, and 11, simple cobar complex calculations can be used to identify
the structure of Ext(F,;) in the range s < 21. The reader may consult chapter 8 for a

discussion about a computer program to perform these calculations. Charts of the F»
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page of the motivic Adams spectral sequence for the primes 5, 7, and 11 are given in
figures, 8.8, 8.9, and 8.10.

At the prime ¢ = 5, there are three cases to consider depending on the order of ¢
in FZ, i.e., ¢ has order 1, 2, or 4. In Ext ytor (F5,F5), the irreducible elements in the
range s < 21 are ag = [70], ho = [&1], and R(ag) = (ho, ho, ao). The products aghp and
apR(ap) are trivial, so that there are non-trivial classes coming from (?hg and ¢/ R(ap).

. : . 1,(7,0) .
For example, when 7 = 1 a cobar representative for the non-zero class in F, (10) 4

CHé] + ¢ A + [moéa)),

. . 2,(15,0) .
and a representative for the non-zero class in E; (15.0) g

¢*(2[&F1m0] — [&1lm1)) + ¢ ([ralm] + 3lroéalm] — [&1lmomi] + [T1&al7o] — [moéilmo))-

In the range 0 < s < 21, all differentials vanish for degree reasons when ¢ = 5. We
conclude that 7, (F,) = 7, @ 7, for 0 < n < 20. The non-trivial groups may be read
off from figure 8.8.

The E5 page of the motivic Adams spectral sequence at the prime ¢ = 7 in the range
s < 20 may be calculated in the same fashion as the prime 5. In Ext jtop (Fr7,F7) for s < 21,
the only irreducible elements are ¢, ap = [70] and hg = [£1]. An analysis of the y-Bockstein
spectral sequence yields the structure of the Es page in the same manner as at the prime
¢ = 5. We conclude that when ¢ = 7 there is an isomorphism 7, o(F,) = 7, & 7, for
0 < n < 20. The non-trivial groups may be read off from figure 8.9.

The E5 page of the motivic Adams spectral sequence at the prime ¢ = 11 is entirely
analogous to the situation at the prime 7 in the range s < 20. It follows that 7, o(F,) =

7y, @ 7, for 0 <n < 20. The non-trivial groups may be read off from figure 8.10. [
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Chapter 8

Computer assisted Ext calculations

8.1 Minimal resolution

The computer calculations used in this dissertation at the prime 2 were performed with
the program written by Fu and Wilson [FW15] at https://github.com/glenwilson/
MassProg. The program is written in python, and calculates Ext(F) for the fields C, R,
and F, by producing a minimal resolution of H**(F') by A**(F')-modules in a range. The
program then applies the functor Hom g« gy (—, H**(F')) to the minimal resolution and
calculates cohomology in each degree.

To calculate a free resolution of H**(F') by A**(F')-modules, we first need the program
to efficiently perform calculations in A**(F). The mod 2 motivic Steenrod algebra is
a free left H**-module with the Steenrod square operations Sq’ corresponding to the
admissible sequences I as a basis. Given any class € A™(F), the program applies the
relations given in proposition 3.6 to arrive at a canonical form for x in terms of the basis
{Sql | I is admissible}. This can be very time consuming, so the program uses a database
to store the canonical forms of certain elements x € A**(F).

With the algebra of A**(F") available to the program, it then proceeds to calculate a
minimal resolution of H**(F') by A**(F')-modules. This is where a great deal of compu-
tational effort is spent. To clarify what a minimal resolution is in practice, let < denote
the order on Z x Z given by (my,n1) < (me,n2) if and only if m; + n; < mg + ng, or
mi + n1 = mo + no and ny < ny. The reader is encouraged to compare this definition
with the definition by McCleary in [McC01, 9.3] and consult Bruner’s primer [Bru09] for

detailed calculations of a minimal resolution for the Adams spectral sequence of topology.

Definition 8.1. A resolution of H**(F) by A**(F)-modules H**(F') < P* is a minimal
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resolution if the following conditions are satisfied.

1. Each module P® has an ordered basis h;(j) such that if j < k then degh;(j) =
deg h; (k).

2. For any k, im(h;(k)) ¢ im((h;(j)|J < k)).

3. The element degh;(j) is minimal with respect to degree in the order < over all

elements in P\ im((h;(j) | j < k)).

The computer program calculates the first n maps and modules in a minimal resolu-
tion up to bidegree (2n,n). With this, it then calculates the dual of the resolution by
applying the functor Hom g« () (—, H**(F')) to the resolution P*. With the cochain com-
plex Hom ge () (P®, H**(F')) in hand, the program calculates cohomology in each degree,
that is, ExtH(+Hw)(F,).

As the program calculates an explicit resolution of H**(F'), the products of elements

in Ext(F') can be obtained from the composition product (see [McCO01, 9.5]).

8.2 Cobar complex

The computer calculations used in this dissertation at the primes £ > 2 were performed
with the program available at https://github.com/glenwilson/CobarComplex. The
program calculates Ext(Fy) and Ext jon (F¢, Fy) with a straightforward implementation of
the cobar complex. This is inefficient, but it suffices to identify the structure needed in

the low degrees considered in this dissertation.

8.3 Charts

The weight 0 part of the Ey page of the mod 2 motivic Adams spectral sequence over F,
is depicted in figures 8.1 and 8.4 according to the case ¢ = 1 mod 4 or ¢ = 3 mod 4. The
weight 0 part of the E, page of the mod 2 motivic Adams spectral sequence over [, can
be found in figures 8.2, 8.3, and 8.5.

In each chart, a circular or square dot in grading (s, f) represents a generator of the

[F5 vector space in the graded piece of the spectral sequence. The square dots are used to
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indicate that the given element is divisible by u, p, or p7, depending on the case. Circular
dots denote elements which are not divisible by u, p, or pr. In figure 8.5, there is an oval
dot which corresponds to the class with representative 78phidy = 7%hodp, as the class
phidg + hodp is killed.

The labels in the chart correspond to those elements coming from irreducible elements
of Ext(F,). However, most of these elements must be multiplied by the appropriate power
of 7 or [72] to land in the weight 0 part of the spectral sequence. We leave this off in the
notation, as the weights of these elements are listed in tables 6.1 and 7.1.

We indicate that the product of a given class by hg with a solid, vertical line. The
arrow in the 0-stem indicates that hé is non-zero for all natural numbers j. In the case
q = 3 mod 4 multiplication by ph; plays an important role, so non-zero products by ph;
are indicated by dashed vertical lines. In particular, when ¢ = 3 mod 4, multiplication
by 2 in 7. (F,) is detected by multiplication by hg + phi. The lines of slope 1 indicate
multiplication by 7hy or [7h;] depending on the case.

Dotted lines are used in two separate instances in these charts. The first use is in figure
8.3, where dotted lines indicate hidden extensions by hg and 7hy. The other instance is
in figure 8.5 to indicate an unknown dy differential.

The chart for Ext(F,) at the prime ¢ = 3 with trivial Bockstein is given in figure 8.6
and with nontrivial Bockstein in figure 8.7. In figure 8.7, we indicate the names of the
classes which appear in weight 0 after multiplying by an appropriate power of [¢?]. A
label which appears above a dot corresponds to the case where ¢ = 1 mod 3 and labels
which appear below a dot correspond to the case ¢ = 2 mod 3, but dots with just a single
label are valid in either case. The vertical lines indicate multiplication by ag which detects
multiplication by 3.

The charts for Ext(F,) at the primes 5, 7, and 11 are given in figures 8.8, 8.9, and
8.10. We do not indicate the names of the irreducible elements in the figure, but rather

give the weights in which the classes appear. The regions which are skipped are trivial.
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