Ausgewählte Kapitel aus der Gruppentheorie: Σ -Theorie

Professor Robert Bieri Notes by: Glen M. Wilson

July 13, 2009

Lecture 1

1 Notation and terminology

1.1 Groups and their modules:

Definition 1. Let G be a goup. A G-module A is an additive group with a G-action.

A G-module clearly defines a $\mathbb{Z}G$ -module structure on A, and a $\mathbb{Z}G$ -module structure on A clearly defines a G-module structure on A. The distinction will be blurred in this regard, and one often just says that A is a G-module.

The free G-modules are up to isomorphism $\oplus \mathbb{Z}G$ with basis \mathfrak{X} .

For an arbitrary G-module A, there exists a free G-module F and a surjective map $\epsilon: F \twoheadrightarrow A$, such that $G \cong F/\ker \epsilon$. This will be called a *free presentation of the G-module A*.

1.2 Group actions on metric spaces:

Let (M, d) denote a metric space M with metric d.

Definition 2. A group G acts on the metric space (M,d) if G acts by isometries. That is, there is a map $\rho: G \to \mathrm{Isom}\,(M)$. We will often adopt the notation for $g \in G, m \in M, gm = \rho(g)m = \rho_g(m)$.

Important examples for our consideration are \mathbb{E}^n and \mathbb{H}^2 .

Example 1. We recall that Isom $(\mathbb{E}^n) = \text{Transl}(\mathbb{E}^n) \rtimes O(n)$ where we identify $\text{Transl}(\mathbb{E}^n) = \mathbb{R}^n$ and the action of O(n) on $\text{Transl}(\mathbb{E}^n)$ is induced via matrix multiplication on \mathbb{R}^n . That is, (a, A) * (b, B) = (a + Ab, AB).

However, for what follows we will be interested mainly in group actions $\rho: G \to \operatorname{Transl}(\mathbb{E}^n)$. In this case, we see that $G' \subseteq \ker \rho$, hence we have the induced homomorphism $\bar{\rho}: G_{\mathrm{ab}} = G/G' \to \operatorname{Transl}(\mathbb{E}^n)$. If we consider $\sqrt{G'} := \{g \in G \mid \exists k \in \mathbb{N}, g^k \in G'\}$, we note that $\sqrt{G'} \subseteq \ker \rho$ since $\operatorname{Transl}(\mathbb{E}^n)$ is torsion free. Thus we have the induced homomorphism $\bar{\rho}: G/\sqrt{G'} \to \operatorname{Transl}(\mathbb{E}^n)$. Note that $G/\sqrt{G'}$ is torsion free and Abelian. Thus if we are concerned with finitely generated groups G, it suffices those group actions where $Q = G/\ker \rho \cong \mathbb{Z}^k$.

For $Q = \mathbb{Z}^n$, there is a canonical action of Q on \mathbb{E}^n , namely, left translation on the identification $Q \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^n$, i.e. $g \cdot (g' \otimes r) := (gg') \otimes r$. This action satisfies the following two helpful properties:

- 1. The orbit of the origin $0 \in \mathbb{R}^n$ under this action is the standard lattice \mathbb{Z}^k which inherits the discrete topology.
- 2. Let W be the closed cube of unity in \mathbb{R}^n . Then the orbit of W under the induced action covers \mathbb{R}^n . Such an action is called co-compact.

Not all actions satisfy these two conditions as we now demonstrate.

Example 2. Let $\rho: \mathbb{Z}^n \to \text{Transl}(\mathbb{E}^n)$ be the canonical action. Define $\rho': \mathbb{Z}^n \to \text{Transl}(\mathbb{E} \oplus \mathbb{E}^n)$ by $g(x_1, ..., x_{n+1}) = (x_1, x_2 + g_1, ..., x_{n+1} + g_n)$. This action is not co-compact, but condition one is satisfied in the sense that the orbit of 0 is discrete.

Example 3. Define $\rho: \mathbb{Z}^2 \to \text{Transl}(\mathbb{E})$ via $gr = r + g_1 + \sqrt{2}g_2$. This is easily seen to be an action which is co-compact, and one can verify that the orbit of 0 is indeed dense in \mathbb{R} .

1.3 Boundary of (M, d) and horoballs:

In this paper, we make the convention that (M, d) is always a CAT(0) space. We provide the basic definitions and important properties of CAT(0) spaces, and refer the reader to the book by Bridson & Haefliger for a more precise treatment.

1.3.1 CAT(0) Spaces

Definition 3. Let $\Delta = (\gamma_1, \gamma_2, \gamma_3)$ be a geodesic triangle in (M, d) with corresponding endpoints a_i , where the γ_i are the geodesic edges. Consider a comparison triangle $\Delta' = (\gamma'_1, \gamma'_2, \gamma'_3) \subseteq \mathbb{E}^2$ with corresponding endpoints a'_i such that $d(a_i, a_j) = d(a'_i, a'_j)$ for all $i, j \in \{1, 2, 3\}$. The metric space (M, d) is then said to be of type CAT(0) if $d(\gamma_i(t), \gamma_j(s)) \le d(\gamma'_i(t), \gamma'_j(s))$. for all choices of i, j and all $t \in [0, d(a_i, a_{i+1 \mod 3})]$ and $s \in [0, d(a_j, a_{j+1 \mod 3})]$.

One can generalize the definition of CAT(0) to CAT(k) by simply replacing the comparison space \mathbb{E}^2 with the model surface M_k^2 of constant curvature k. Then a metric space (M,d) is CAT(k) if triangles in M are not fatter than those in M_k^2 .

In particular, the Euclidean and hyperbolic spaces are CAT(0) and we will soon drop the generality and concentrate on the Euclidean case.

1.3.2 Horoballs

Definition 4. A geodesic ray is an isometric embedding of the metric space $[0, \infty), \gamma : [0, \infty) \hookrightarrow M$.

We now define an equivalence relation on the geodesic rays of a metric space which generalizes the notion of parallel rays in \mathbb{E}^n .

Definition 5. Two geodesic rays γ_1, γ_2 are parallel (or $\gamma_1 \sim \gamma_2$) if and only if $d(\gamma_1(t), \gamma_2(t))$ is bounded.

Definition 6. We now define $\partial M := \{ \gamma \mid \gamma \text{ a geodesic ray} \} / \sim$.

One can also define a topology on ∂M , (which I will hopefully explain shortly). With this, we have the following computations of ∂M .

Example 4. Let $M = \mathbb{E}^n$. Then $\partial \mathbb{E}^n = \mathbb{S}^{n-1}$.

Example 5. Let $M = \mathbb{H}^2$. Then $\partial \mathbb{H}^2 = \mathbb{S}^1$, as in the circle model, equivalence classes of parallel lines are determine by the points along the boundary of the disc.

Before we define half spaces in (M,d), we note that for a point $A \in M$, there is a unique geodesic ray in each equivalence class (one can also say in the direction e), written $\gamma_{e,A}$ which satisfies $\gamma_{e,A}(0) = A$. If we consider the case $M = \mathbb{E}^2$, when given $\gamma_{e,A}$ we can consider for a point $t \in \operatorname{im} \gamma_{e,A}$, the open ball B(t;d(t,A)) centered at t with radius d(t,A). The union $\bigcup_{t\in \text{im }\gamma_{e,A}} B(t;d(t,A))$ then gives us a subspace whose closure is the closed half space in \mathbb{E}^2 . This idea is formalized in the following definition.

Definition 7. In a CAT(0) metric space (M, d), we define the open horoball with respect to $\gamma_{e,A} = \gamma$, a geodesic ray with base point A in the direction e to be

$$\mathcal{H}_{e,A} := \bigcup_{t \in \text{im } \gamma} B\left(t; d\left(t, A\right)\right)$$

 $\mathcal{H}_{e,A}:=\bigcup_{t\in\operatorname{im}\gamma}B\left(t;d\left(t,A\right)\right).$ For the closed horoball, we simply take the closure of the open horoball $\overline{\mathcal{H}}_{e,A}.$

Example 6. In $M = \mathbb{H}^2$ seen as the circle model, we can compute $\overline{\mathcal{H}}_{e,A}$ to be the intersection of the Euclidean disc which is tangent to ∂M at e and whose boundary passes through A.

Example 7. In \mathbb{S}^2 , there do not exist any geodesic rays, and hence, we cannot define a boundary or horoballs in this manner.

Properties of CAT(0) Spaces 1.3.3

CAT(0)-1. For all $B \in \partial \mathcal{H}_{e,A}$, we have $\mathcal{H}_{e,A} = \mathcal{H}_{e,B}$.

CAT(0)-2. The set of horoballs based at $e \in \partial M$ is linearly ordered by \subseteq .

CAT(0)-3. For horoballs $\mathcal{H}_{e,A'} \subseteq \mathcal{H}_{e,A}$ and all $B, C \in \partial \mathcal{H}_{e,A}$, we set B' (resp. C') equal to im $\gamma_{e,B} \cap \partial \mathcal{H}_{e,A'}$. We then have d(B,B') = d(C,C').

The Invariant $\Sigma^0(G; A)$ $\mathbf{2}$

Control functions:

We begin with a few examples of control functions, and then give an explicit definition.

Example 8. Consider the map $h: G \to M$ defined by choosing an origin $b \in M$ and setting h(g) = gb. This then satisfies h(gg') = gh(g'), i.e. h is a G-map.

Definition 8. $fM = \{A \in \mathcal{P}(M) \mid \operatorname{card} A < \infty\}$ where $\mathcal{P}(M)$ denotes the power set of M.

Definition 9. We can consider an element $\lambda \in RG$ of the group ring over R to be a function $\lambda : G \to R$ in the following way. When $\lambda = \sum_{g \in G} n_g g$, we set $\lambda(g) = n_g$.

Definition 10. Define the support of an element $\lambda \in RG$ to be supp $(\lambda) := \{g \in G \mid \lambda(g) \neq 0\}.$

Hence with this language, we can consider RG to be all functions $\lambda: G \to RG$ with finite support. One can define the operations in the obvious manner and show that the notions are equivalent.

Example 9. Consider $h: \mathbb{Z}G \to \mathfrak{f}M$ defined by $h(\lambda) = \{gb \mid g \in \text{supp}(\lambda)\}$. This once again is a G-transformation when we define $g\{a_0,...,a_k\} = \{ga_0,...,ga_k\}$ for $\{a_0,...,a_k\} \in \mathfrak{f}M$.

Definition 11. Let F be a finitely generated free G-module with basis \mathfrak{X} . We define $Y:=G\mathfrak{X}=\{gx\,|\,g\in G,x\in\mathfrak{X}\}$. Thus Y is a \mathbb{Z} -basis of F on which G operates freely, hence $F=\mathbb{Z}Y=\oplus_{y\in Y}\mathbb{Z}y$. We also have for any $w\in F$ a unique expression in terms of the basis $w=\sum_{y\in Y}n_yy$.

We now come to our main definition of a control function.

Definition 12. To construct a control function $h: F \to fM$, do the following:

- 1. choose for each $x \in \mathfrak{X}$ an arbitrary $h(x) \in \mathfrak{f}M \setminus \{\emptyset\}$
- 2. for $y = gx \in Y$ define h(y) := gh(x);
- 3. for $w \in F$, define $h(w) = \bigcup_{y \in \text{supp}(w)} h(y)$.

We note that such functions fulfill the following properties:

- i. $h(0) = \emptyset$;
- ii. h(gw) = gh(w) for all $g \in G$ and all $w \in F$;
- iii. h(mw) = h(w) for $m \in \mathbb{Z} \setminus \{0\}$;
- iv. $h(w + w') \subseteq h(w) \cup h(w')$.

Control functions don't work nicely with addition. In some circumstances, we do however have $h(w + w') = h(w) \cup h(w')$. A few examples are:

- 1. supp $(w) \cap \text{supp}(w') = \emptyset$;
- 2. $w(y) \ge 0$ for all $y \in Y$.

Remark 1. Note that a control function h depends on the choice of basis \mathfrak{X} and the assignment $\mathfrak{X} \to \mathfrak{f}M$.

We will find it convenient to define generalized control functions.

Definition 13. A generalized control function is a map $h: F \to \mathfrak{f}M$ which satisfies conditions i.—iv. above.

A control function satisfies $h(w) = \emptyset$ iff w = 0, whereas a generalized control function may not. One reason why the study of generalized control functions will be useful is because for a control function $h: F \to \mathfrak{f}M$ and a homomorphism $\phi: F' \to F$, the composition $h \circ \phi$ is a generalized control function, but will not be a control function in general.

Definition 14. We define an ϵ -neighborhood (Umgebung) of a set $S \subseteq M$ to be $U_{\epsilon}(S) := U(S; \epsilon) := \{a \in M \mid \exists s \in S, d(s, a) < \epsilon\}.$

Proposition 1. Let F be a finitely generated free G-module with respect to the bases \mathfrak{X} . Then for a control function $h: F \to \mathfrak{f}M$ defined with respect to \mathfrak{X} and a generalized control function $h': F \to \mathfrak{f}M$, there exists $\delta > 0$ such that for any $w \in F$, we have $h'(w) \subseteq U_{\delta}(h(w))$.

Proof. Choose $\delta := \max \{d(a,b) \mid a \in \bigcup_{x \in \mathfrak{X}} h(x), b \in \bigcup_{x \in \mathfrak{X}} h'(x)\}$. The maxima are defined as the sets \mathfrak{X} , h(x) and h'(x) are all finite sets. From this choice, it is clear that $h'(x) \subseteq U_{\delta}(h(x))$ for all $x \in \mathfrak{X}$.

Note that for all $g \in G$, we have for $A, B \in \mathfrak{f}M$, $gU_{\delta}(A) = U_{\delta}(gA)$ as G acts by isometries.

Now let $w = \sum_{y \in \text{supp}(w)} n_y y$ with $y \in G\mathfrak{X}$. By definition we have $h(w) = \bigcup_{y \in \text{supp}(w)} h(y)$ and $h'(w) \subseteq \bigcup_{y \in \text{supp}(w)} h'(y)$. As $h'(x) \subseteq U_{\delta}(h(x))$, we have $h'(gx) \subseteq U_{\delta}(h(gx))$ for all $g \in G$. Hence

$$h'(w) \subseteq \bigcup_{y \in \text{supp}(w)} h'(y) \subseteq \bigcup_{y \in \text{supp}(w)} U_{\delta}(h(y)) = U_{\delta}(h(w))$$

as desired.

Corollary 1. Let $h, h' : F \to \mathfrak{f}M$ be control functions defined with respect to \mathfrak{X} and \mathfrak{X}' respectively. There then exists $\delta > 0$ such that for any $w \in F$, we have $h'(w) \subseteq U_{\delta}(h(w))$ and $h(w) \subseteq U_{\delta}(h'(w))$.

Lecture 2

2.2 Limit points in ∂M

Definition 15. Let F be a finitely generated free G-module, and $S \subseteq F$. We say that S has an accumulation point at $e \in \partial M$ if for every horoball \mathcal{H}_e there is $s \in S$ such that $h(s) \subseteq \mathcal{H}_e$.

This definition is actually independent from the control function h, which we formulate in the following proposition.

Proposition 2. If $h, h' : F \to \mathfrak{f}M$ are two control functions, then $h(s) \subseteq \mathcal{H}_e$ implies $h'(s) \subseteq \mathcal{H}_e$.

Proof.
$$\Box$$

Definition 16. Let A be a finitely generated G-module, and $\epsilon: F \twoheadrightarrow A$ a G-homomorphism. For $a \in A$ define

$$L_A^{\epsilon}(a) := \{ e \in \partial M \mid e \text{ is acc. point of } \epsilon^{-1}(a) \subseteq F \}.$$

This definition is independent of the choice of ϵ . To prove this, we require a couple of simple observations, namely:

i.
$$L_A^{\epsilon}(a) \cap L_A^{\epsilon}(b) \subseteq L_A^{\epsilon}(a+b);$$

ii.
$$L_A^{\epsilon}(ga) = gL_A^{\epsilon}(a)$$
.

Proposition 3. If $f: A \to A'$ is a G-homomorphism, with A and A' finitely generated G-modules, and there exist finite presentations $\epsilon: F \twoheadrightarrow A$ and $\epsilon': F' \twoheadrightarrow A'$, then $L_A^{\epsilon}(a) \subseteq L_{A'}^{\epsilon'}(f(a))$.

Corollary 2. $L_A^{\epsilon}(a)$ is independent of the choice of ϵ .

Because of this result, we write $L_A(a) := L_A^{\epsilon}(a)$.

Definition 17. $\Sigma^{0}(\rho;A) = \bigcap_{a \in A} L_{A}(a)$.

Recall that for this definition, G is a group and A is a finitely generated G-module given by the action ρ of G on A.

2.3 Explicit Interpretation of $e \in \Sigma^0(\rho, A)$

2.3.1 Interpretation via a condition on finite generation

As our definition of Σ^0 is independent of the choice of h, we pick a simple one that will be easy to work with. With $x \in \mathfrak{X}$, define $h(x) = \{b\}$ where $b \in M$ is a chosen origin, or base point. Thus we compute quite easily $h(y) = h(gx) = \{gb\}$ for all $y \in Y$. Thus $h(\lambda x) = \operatorname{supp}(\lambda) \cdot b$, and furthermore $h(\sum \lambda_i x_i) = \bigcup_i \operatorname{supp}(\lambda_i) b$ for all $\sum \lambda_i x_i \in F$.

We now investigate exactly what it means in this case for $e \in L_A(a)$. The condition $e \in L_A(a)$ means that for every horoball \mathcal{H}_e there exists $w \in \epsilon^{-1}(a)$ such that $h(w) \subseteq \mathcal{H}_e$. To make this more concise, define

$$G_{\mathcal{H}_e} = \{ g \in G \,|\, gb \in \mathcal{H}_e \} \,.$$

Thus $h(w) \subseteq \mathcal{H}_e$ means that $w \in \mathbb{Z}G_{\mathcal{H}_e}\mathfrak{X}$. We thus can conclude:

Proposition 4. $e \in L_A(a)$ if and only if $a \in \mathbb{Z}G_{\mathcal{H}_e}\epsilon(\mathfrak{X})$ for all horoballs \mathcal{H}_e .

Remark 2.

Theorem 1. $\Sigma^0(\rho, \mathbb{Z}) = \partial M$ if and only if ρ is co-compact.

Proof. No proof given.
$$\Box$$

Theorem 2. Suppose the orbit Gb is discrete in M, with $G_e^+ \neq \emptyset$ for all $e \in \partial M$ and set $K := \ker \rho$. Then $\Sigma^0(\rho, A) = \partial M$ if and only if A is a finitely generated as a K-module.

Lecture 3

2.3.2 Dynamic Interpretation

Roughly said, in this section we will come up an equivalence with $e \in \Sigma^0(\rho; A)$ and the existence of a function $f: F \to F$ which satisfies for $y \in Y$

- i. $\epsilon(\phi(y)) = \epsilon(y)$ and
- ii. h(f(y)) is closer to e than h(y).

To make this precise, we need to utilize the properties of CAT(0) spaces mentioned above.

Definition 18. Let $b \in M$ be a chosen origin, and $e \in \partial M$. The Busemann function with respect to b and e is $\beta_{e,b}: M \to \mathbb{R}$ which is defined for $A \in M$ by computing d(b,A') where $A' = \gamma_e \cap \partial \mathcal{H}_{e,A}$ and $b \in \operatorname{im} \gamma_e$. Then by convention, if $\mathcal{H}_{e,A} \subseteq \mathcal{H}_{e,b}$ we set $\beta_e(A) = d(b,A')$ and if $\mathcal{H}_{e,b} \subseteq \mathcal{H}_{e,A}$ we set $\beta_e(A) = -d(b,A')$.

Definition 19. We extend the Busemann functions to be defined on $\mathfrak{f}M$ by setting for $L \in \mathfrak{f}M$

$$\beta_e(L) := \max \{\beta_e(m) \mid m \in L\}.$$

Definition 20. Let F be a finitely generated free $\mathbb{Z}G$ -module and $f: F \to F$ a \mathbb{Z} -endomorphism. We say that f pushes F towards e if there exists $\delta > 0$ such that

$$\beta_e (h(f(w))) \ge \beta_e (h(w)) + \delta$$

for all $w \in F$. Alternatively, we say that f pushes F in the direction e.

Theorem 3.

$$\Sigma^{0}(\rho; A) = \{e \mid \exists f : F \rightarrow F \ni \epsilon \circ f = f \text{ and } f \text{ pushes in direction } e\}$$

2.3.3 Pushing with G-homomorphisms

Observation 1. The action $\rho: G \to \text{Isom}(M)$ induces an action on the geodesic rays, and furthermore, an action on ∂M .

Proposition 5. Supposing that $e \in \Sigma^0(\rho; A)$, the \mathbb{Z} -epimorphisms pushing F towards e are G-homomorphisms if and only if Ge = e.

Proof.
$$\Box$$

Example 10. In the case where $M = \mathbb{E}^n$ and G acts by translations, we have Ge = e.

Definition 21. Let $b \in M$ be a chosen origin, $a \in M$ and let $e \in \partial M$. We then define $\chi_e^a : G \to \mathbb{R}$ by $\chi_e^a(g) := \beta_{e,a}(gb) - \beta_{e,a}(b)$.

Proposition 6. The map χ_e^a is a group homomorphism into the additive group \mathbb{R} and independent of the choice a. We thus write $\chi_e := \chi_e^a$.

Proof.

$$\chi_{e}^{a}(g_{1}g_{2}) = \beta_{e,a}(g_{1}g_{2}b) - \beta_{e,a}(b)
= \beta_{e,a}(g_{1}g_{2}b) + (-\beta_{e,a}(g_{2}b) + \beta_{e,a}(g_{2}b)) - \beta_{e,a}(b)
= (\beta_{e,a}(g_{1}g_{2}b) - \beta_{e,a}(g_{2}b)) + (\beta_{e,a}(g_{2}b) - \beta_{e,a}(b))
= \chi_{e}^{a}(g_{1}) + \chi_{e}^{a}(g_{2})$$

From CAT(0)-3, we obtain for $c \in M$ the equation $\beta_{e,a}\left(A\right) = \beta_{e,c}\left(A\right) - \beta_{e,c}\left(a\right)$. We now compute

$$\chi_{e}^{a}(g) = \beta_{e,a}(gb) - \beta_{e,a}(b)
= \beta_{e,c}(gb) - \beta_{e,c}(a) - (\beta_{e,c}(b) - \beta_{e,c}(a))
= \beta_{e,c}(gb) - \beta_{e,c}(b)
= \chi_{e}^{c}(g).$$

It is helpful to note that we can define an action of G on \mathbb{R} which makes χ_e G-equivariant. We define for $r \in \mathbb{R}$ the action $g \cdot r = \chi_e(g) + r$.

Definition 22. We define a useful monoid

$$G_e := \{ g \in G \mid \chi_e(g) \ge 0 \}$$

and the associated semi-group

$$G_e^+ := \{ g \in G \mid \chi_e(g) > 0 \}.$$

The geometric interpretation of G_e^+ is that all of its elements push in the direction of e, i.e. gb is closer to e than b. We likewise see that G_e is the set of all elements which satisfy gb is not further away from e than b.

If we assume Ge = e for all $e \in \partial M$, we obtain yet another description of $\Sigma^0(\rho; A)$. Suppose $A = \sum_{i=1}^k \mathbb{Z} Ga_i$ and set $\overline{a} = (a_1, a_2, ..., a_k)$. Then

Proposition 7.

$$\Sigma^{0}\left(\rho;A\right) = \left\{e \mid \exists \Lambda \in \mathcal{M}_{n}\left(\mathbb{Z}G_{e}^{+}\right) \ni \Lambda \overline{a} = \overline{a}\right\}$$

2.4 The Euclidean Case

We now drop the generality and focus on the case where G is finitely generated and acts via left translation on $G/G' \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{E}^n$. That is, the action is given by $\tau: G \to \operatorname{Transl}(G/G' \otimes \mathbb{R})$ where $\tau(g)(h \otimes r) = g \otimes 1 + h \otimes r$. In this case, we make the convention that

$$\Sigma^0(G;A) := \Sigma^0(\tau;A)$$

as is only depends on the choice of G and the G-module A now.

With this added restriction, we gain intuition and a few nice properties which we list here:

1. Via the vector space isomorphism $M = G/G' \otimes \mathbb{R} \cong \mathbb{R}^n$, we get an induced inner product $\langle -, - \rangle$ on $G/G' \otimes \mathbb{R}$.

8

- 2. We also have the association $\partial M = \mathbb{S}^{n-1}$, and thus every direction e is given by the unit vector $u_e \in \mathbb{S}^{n-1}$.
- 3. We take the base point b to be b = 0.
- 4. Furthermore, $Gu_e = u_e$ for all $u_e \in \partial M$, and the additive character χ_e takes the form $\chi_e(g) = \langle u_e, g \cdot b \rangle$.
- 5. The description of Σ^0 in Proposition 7 is valid in this case. If the group G is Abelian, we can then formulate a more convenient description of Σ^0 by the use of determinants.

Proposition 8. If the group G is Abelian, then

$$\Sigma^{0}(G; A) = \left\{ e \mid \exists \mu \in \mathbb{Z}G_{e}^{+} \, \forall a \in A \ni \mu a = a \right\}$$
$$= \left\{ e \mid \exists \mu \in \mathbb{Z}G_{e}^{+} \ni 1 - \mu \in \operatorname{Ann}_{\mathbb{Z}G}(A) \right\}$$

Proof. (adjoint matrix trick and the description of Σ^0 in Prop. 7)

Lecture 4

In addition to the above listed consequences of restricting our attention to Euclidean metric spaces, we also have a few helpful descriptions of Σ^0 to work with, which we list here:

- 1. $\Sigma^0(G; A) = \{e \mid A \text{ is fin. gen. over } \mathbb{Z}G_e\}$
- 2. $\Sigma^0(G;A) = \{e \mid \exists G\text{-Hom } \phi : F \to F \ni \epsilon \phi = \phi \text{ and pushes } F \text{ in direction } e\}$
- 3. $\Sigma^{0}(G; A) = \{e \mid \exists \Lambda \in \mathcal{M}_{n}(\mathbb{Z}G_{e}^{+}) \ni \Lambda \overline{a} = \overline{a} \ni \{a_{i}\} \text{ generate } A\}$

Theorem 4. $\Sigma^0(G;A) = \partial M$ if and only if A is finitely generated as a module over the kernel $K = \ker \tau$ of the operation $\tau: G \to \operatorname{Transl}(M)$.

For G a finitely generated Abelian group, we have

$$\Sigma^{0}(G; A) = \left\{ e \in \partial M \mid \exists \lambda \in \mathbb{Z}G_{e}^{+} \ni 1 - \lambda \in \operatorname{Ann}_{\mathbb{Z}G} A \right\}.$$

Thus for finitely generated Abelian groups G, this description shows Σ^0 only depends on the group G and the annihilator of A, hence we conclude Σ^0 $(G; A) = \Sigma^0$ $(G; \mathbb{Z}G/\operatorname{Ann}_{\mathbb{Z}G}(A))$.

We now make a few computational observations about $\Sigma^0(G; A)$.

- 1. $\Sigma^0(G; \mathbb{Z}G/IJ) = \Sigma^0(G; \mathbb{Z}G/I) \cap \Sigma^0(G; \mathbb{Z}G/J)$.
- 2. $\Sigma^{0}\left(G; \mathbb{Z}G/IJ\right) = \Sigma^{0}\left(G; \mathbb{Z}G/\left(I\cap J\right)\right)$.
- 3. $\Sigma^0(G; \mathbb{Z}G/I) = \Sigma^0(G; \mathbb{Z}G/\sqrt{I})$
- 4. Thus from observations 1–3 we conclude that when $\mathbb{Z}G$ is Noetherian, computing Σ^0 $(G; \mathbb{Z}G/I)$ for any ideal I is reduced to computing Σ^0 $(G; \mathbb{Z}G/\mathfrak{p}_i)$ where the \mathfrak{p}_i are prime ideals in $\mathbb{Z}G$ such that $\sqrt{I} = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_I$.

Lecture 5

Example 11 (1-Relator Modules).

Definition 23. A one relator $\mathbb{Z}G$ -module is a module of the form $\mathbb{Z}G/I$ where $I = \lambda \mathbb{Z}G = (\lambda)$ for $\lambda \in \mathbb{Z}G$.

Observation 2. Given a specified direction $e \in \partial M$, we then recall $\chi_e : G \to \mathbb{R}$ defined by $\chi_e(g) = \langle u_e, h(g) \rangle$ (where $u_e \in S^{n-1}$ is the corresponding unit vector to the direction e) is a homomorphism. With this homomorphism, there is an \mathbb{R} -grading of $\mathbb{Z}G$ given by $\mathbb{Z}G = \bigoplus_{r \in \mathbb{R}} \mathbb{Z}(G_r \setminus G_r^+)$. That is, for $\lambda \in \mathbb{Z}G$, we can write $\lambda = \sum_{r \in \mathbb{R}} \lambda_r$ where $\chi_e(\lambda_r) = r$. In particular, supp $(\lambda_r) = \{g \in \text{supp}(\lambda) \mid \chi_e(g) = r\}$.

From the \mathbb{R} -grading on $\mathbb{Z}G$, we can define a valuation $v_e: \mathbb{Z}G \to \mathbb{R}_{\infty}$ as follows: set $v_e(\lambda) := \min\{r \mid \lambda_r \neq 0\}$ for $\lambda \neq 0$ and $v_e(0) = \infty$. We also define $\lambda_e := \lambda_{v_e(\lambda)}$, which we also call the initial term of λ . We observe that v_e satisfies the following properties which almost makes it into a valuation in the normal sense:

- 1. $v_e(\lambda + \mu) \ge \min\{v_e(\lambda), v_e(\mu)\};$
- 2. $v_e(g\mu) = \chi_e(g) + v_e(\mu)$;
- 3. $v_e(0) = \infty$;
- 4. $v_e(-\lambda) = v_e(\lambda)$.

Lemma 1. If $\mathbb{Z}G$ does not have any non-trivial zero divisors, then $v_e(\lambda\mu) = v_e(\lambda) + v_e(\mu)$ and $(\lambda\mu)_e = \lambda_e\mu_e$.

Proof. Write $\lambda = \lambda_e + \lambda^+$ and $\mu = \mu_e + \mu^+$. Then $\lambda \mu = \lambda_e \mu_e + \lambda^+ \mu_e + \lambda_e \mu^+ + \lambda^+ \mu^+$. By assumption, $\lambda_e \mu_e \neq 0$ and $v_e (\lambda \mu - \lambda_e \mu_e) > v_e (\lambda) + v_e (\mu)$, whence the result follows.

We now restrict our attention to the case where G is a finitely generated Abelian group. In this case, we can utilize the description from Propositon 8 to the following description of $\Sigma^0(G; \mathbb{Z}G/(\lambda))$:

$$\Sigma^{0}\left(G; \mathbb{Z}G/\left(\lambda\right)\right) = \left\{e \mid \exists \zeta \in \mathbb{Z}G_{e}^{+} \ni 1 - \zeta \in \operatorname{Ann}_{\mathbb{Z}G}\left(A\right)\right\}$$
$$= \left\{e \mid \exists \mu \in I \land \exists \zeta \in \mathbb{Z}G_{e}^{+} \ni \mu = 1 - \zeta\right\}$$
$$= \left\{e \mid \exists \mu \in I \ni \mu_{e} = 1\right\}.$$

For especially nice group rings $\mathbb{Z}G$, we can make the result even more precise.

Theorem 5. If $\mathbb{Z}G$ contains only trivial zero divisors and trivial units (those of the form $\pm g$ for $g \in G$), then

$$\Sigma^{0}(G; \mathbb{Z}G/(\lambda)) = \{e \mid \lambda_{e} \in \pm G\}.$$

Proof. As $(\lambda) = \{\mu\lambda \mid \mu \in \mathbb{Z}G\}$, we need to determine when $(\mu\lambda)_e = 1$ by the above description of $\Sigma^0(G, \mathbb{Z}G/(\lambda))$. By Lemma ? we have $(\mu\lambda)_e = \mu_e\lambda_e$. We have $\mu_e\lambda_e = 1$ if and only if λ_e is a unit in $\mathbb{Z}G$, and by assumption, the only units are the elements of $\pm G$, whence the theorem holds.

Remark 3. If G contains a nontrivial element of finite order, then $\mathbb{Z}G$ contains non-trivial zero divisors. If |g|=n, then $(g-1)\left(1+g+g^2+\cdots+g^{n-1}\right)=0$. The finitely generated free Abelian groups $Q=\mathbb{Z}^n$ have group rings $\mathbb{Z}Q$ which do not contain non-trivial zero divisors and non-trivial units.

To give a very explicit example, we compute $\Sigma^0\left(\mathbb{Z}^2;\mathbb{Z}\mathbb{Z}^2/(\lambda)\right)$ where $\mathbb{Z}^2=\langle x,y\mid [x,y]\rangle$ and $\lambda=2\cdot 1+x+y+x^2y^2$. The set Σ^0 in this case is illustrated in Figure 1. We make the association $x\to(1,0)$ and $y\to(0,1)$ for the following computations. The actual computation of $\Sigma^0\left(\mathbb{Z}^2;\mathbb{Z}\mathbb{Z}^2/(\lambda)\right)$ lies in computing $\chi_{(a,b)}\left((0,0)\right),\,\chi_{(a,b)}\left((1,0)\right),\,\chi_{(a,b)}\left((0,1)\right)$ and $\chi_{(a,b)}\left((2,2)\right)$ for all directions $e=(a,b)\in\mathbb{S}^1$, and determining the which obtain the minimum value. It is easy to verify the following chart:

e = (a, b)	λ_e	in $\pm G$?
a, b > 0	$2 \cdot 1$	no
$a = 0 \land b > 0$	$2 \cdot 1 + x$	no
$b = 0 \land a > 0$	$2 \cdot 1 + y$	no
$b < 0 \land -b/2 < a$	y	yes
$b < 0 \land -b/2 = a$	$y + x^2y^2$	no
$a < 0 \land -a/2 < b$	x	yes
$a < 0 \land -a/2 = b$	$x + x^2y^2$	no
$-b/2 > a \land -a/2 > b$	x^2y^2	yes

from which Figure 1 follows by Theorem 5.

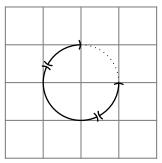


Figure 1: The solid black line represents the points in $\Sigma^0\left(\mathbb{Z}^2; \mathbb{Z}\mathbb{Z}^2/(\lambda)\right)$ while the dotted line represents $\partial \mathbb{R}^2$ which we are identifying with \mathbb{S}^1 .

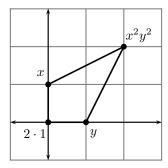


Figure 2: This polyhedron, namely, the convex hull of supp (λ) , enables an easy way to compute $\Sigma^0(\mathbb{Z}^2; \mathbb{Z}\mathbb{Z}^2/(\lambda))$.

Example 12. We now look at the case when G is Abelian and $A = \mathbb{Z}G/\mathfrak{p}$ where \mathfrak{p} is a prime ideal, or equivalently, $\mathbb{Z}G/\mathfrak{p}$ is an integral domain. Let $L = \kappa(A)$ be the field of fractions of A.

Now given $e \in \partial M$, we have the additive character $\chi_e(-) = \langle u_e, -\cdot b \rangle$ where u_e is the unit vector representing the direction e and b is the origin. We can extend an additive character to a valuation $v_e : \mathbb{Z}G \to \mathbb{R}_{\infty}$. We generalize the construction in the following proposition.

Proposition 9. For $v \in \text{Hom}(Q, \mathbb{R})$ an additive character, we extend v to a valuation $v_* : \mathbb{Z}Q \to \mathbb{R}_{\infty}$ by defining:

i.
$$v_*(\lambda) = \min \{v(q) : q \in \operatorname{supp}(\lambda)\};$$

ii.
$$v_*(0) = \infty$$
.

Proof. We need to show that for $\lambda, \mu \in \mathbb{Z}Q$ the equations

i.
$$v_*(\lambda \mu) = v_*(\lambda) + v_*(\mu)$$
 and

ii.
$$v_*(\lambda + \mu) \ge \inf \{v_*(\lambda), v_*(\mu)\}$$

are satisfied.

We write $\lambda = \sum_{q \in \text{supp}(\lambda)} \lambda_q x_q$, likewise for μ and we compute

$$\lambda \mu = \sum_{\substack{q \in \text{supp}(\lambda) \\ r \in \text{supp}(\mu)}} (\lambda_q \mu_r) x_{q+r}.$$

We now see

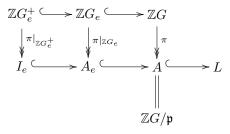
$$v_*(\lambda \mu) = \min \{ v(q+r) : q \in \operatorname{supp}(\lambda), r \in \operatorname{supp}(\mu) \}$$

$$v_*(\lambda) + v_*(\mu) = \min \left\{ v(q) : q \in \operatorname{supp}(\lambda) \right\} + \min \left\{ v(r) : r \in \operatorname{supp}(\mu) \right\}$$

and it is clear that v(qr) = v(q) + v(r) will be minimal when v(q) and v(r) are minimalwhence the first equation holds.

From the easily verified inclusion $\operatorname{supp}(\lambda + \mu) \subseteq \operatorname{supp}(\lambda) \cup \operatorname{supp}(\mu)$, the second equation follows.

With this construction, we can define $A_e := \operatorname{im} \pi|_{\mathbb{Z}G_e}$ and $I_e := \operatorname{im} \pi|_{\mathbb{Z}G_e^+}$. We thus obtain the following diagram:



Proposition 10. $e \in \Sigma^0(G; A)^c$ if and only if $I_e \neq A_e$, or equivalently, $e \in \Sigma^0(G; A)$ if and only if $I_e = A_e$.

12

Proof. We utilize the description of $\Sigma^0(G; A)$ from Proposition 8, namely $\Sigma^0(G; A) = \{e \mid \exists \mu \in \mathbb{Z} G_e^+ \ni 1 - \mu \in \operatorname{Ann}_{\mathbb{Z} G}(A)\}.$

Suppose $I_e = A_e$. Then $\overline{1} \in I_e$ —that is, there exists $\lambda \in \mathbb{Z}G_e^+$ such that $\overline{1} = \overline{\lambda}$. Thus there exists $\gamma \in \mathfrak{p}$ such that $1 = \lambda + \gamma$, and we have $1 - \lambda = \gamma \in \mathfrak{p} = \mathrm{Ann}(A)$. Hence $e \in \Sigma^0(G; A)$.

Now suppose $e \in \Sigma^0(G; A)$. Then there exists $\lambda \in \mathbb{Z}G_e^+$ such that $1 - \lambda \in \operatorname{Ann}(A) = \mathfrak{p}$, hence $1 - \lambda = \gamma$ for some $\gamma \in \mathfrak{p}$. Now let $\overline{\mu} \in A_v$ such that $v_e(\mu) = 0$. Then $\mu = \mu(\lambda + \gamma) = \mu\lambda + \mu\gamma$. We compute $v_e(\mu\lambda) = v_e(\mu) + v_e(\lambda) = v_e(\lambda) > 0$. Thus $\overline{\mu} = \overline{\mu\lambda} + \mu\gamma = \overline{\mu\lambda} \in I_e$. Clearly for those $\overline{\mu} \in A_e$ such that $v_e(\mu) > 0$ we have $\mu \in I_e$, whence $I_e = A_e$.