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0. Generalized cohomology and homology theories

Definition 0.1: [Eilenberg-Steenrod Homology Theory]. An E-S homology theory
is a collection of functors Hn from pairs of CGWH spaces to Ab satisfying the
following axioms:

1. (Homotopy invariance) If f, g : (X,A)→ (Y,B) such that f ' g, then f∗ = g∗.

2. (Boundary map) For any pair (X,A), there is a natural transformation ∂ :
Hn(X,A)→ Hn−1(A). That is, for any map f : (X,A)→ (Y,B) the following
diagram commutes:

Hn(X,A)
f∗ //

∂

��

Hn(Y,B)

∂

��
Hn−1(A)

f∗ // Hn−1(B)

3. (Long exact sequence) For any pair (X,A), there is a long exact sequence

· · · // Hn+1(X,A)
∂ // Hn(A) // Hn(X) // Hn(X,A)

∂ // · · ·

where the maps are the obvious ones induced by the inclusion and quotient
maps.

4. (Excision V.1) If (X;A,B) is an excisive triad, i.e. X is the union of the
interiors of A and B, then ι : (A,A ∩ B) → (X,B) induces an isomorphism
ι∗Hn(A,A ∩B) ∼= Hn(X,B).

(Excision V.2) If U ⊆ U ( A ⊂ X, with A open, then the inclusion (X \U,A\
U)→ (X,A) induces an isomorphism Hn(X \ U,A \ U) ∼= Hn(X,A).

(Excision V.3) If X = A ∪ B where A and B are closed subsets, and so that
(A,A ∩ B) and (X,B) are good pairs, i.e. NDR, then ι∗ : Hn(A,A ∩ B) ∼=
Hn(X,B).

5. (Dimension) The homology of a point has the form Hn(pt) = 0 for n 6= 0 and
H0(pt) = A, called the coefficient group.
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6. A1. (Additivitiy) If X =
∐
Xi, then the map

∑
ιi : ⊕iHn(Xi) → Hn(X) is

an isomorphism for any n and any indexing set.

7. A2. (Weak equivalence) If f : (X,A) → (Y,B) is a weak equivalence, then
f∗ : Hn(X,A) ∼= Hn(Y,B).

Remark 0.2: Eilenberg-Steenrod definition differs from the above in the following
way

1. the axioms are ordered differently, the category of spaces is different

2. V.2 of excision is used

3. there is no additivity axiom, and no weak equivalence axiom

Theorem 0.3: (Uniqueness of E-S homology theories) If H∗ and K∗ are E-S ho-
mology theories, not necessarily satisfying A1 and A2, then if the coefficient groups
η0 : H0(pt) ∼= K0(pt), then for any finite CW pair (X,A) we have natural transfor-
mations ηn : Hn(X,A) ∼= Kn(X,A) lifting η0. In particular, they are isomorphic to
singular homology with coefficients H0(pt).

If in addition, both H∗ and K∗ satisfy the additivity axiom, the result extends
to CW pairs (not necessarily finite). Furthermore, if both homology theories satisfy
the weak equivalence axiom, the result extends to pairs of CGWH spaces.

A similar statement holds for cohomology theories.

Definition 0.4: (Generalized reduced homology theories) A generalized reduced
homology theory is a collection of functors hn from CGWH∗ to Ab along with
natural transformations en : hn → hn+1 ◦ Σ, which satisfy the following axioms:

A1. (Homotopy invariance) If f ' g : X → Y , then f∗ = g∗.

A2. (Exactness) If ι : A� X is a cofibration, then the following sequence is exact

hn(A)
ι∗ // hn(X)

q∗ // hn(X/A).

A3. (Suspension) The homomorphism en : hn(X) → hn+1(ΣX) is an isomor-
phism.

A4. (Additivity) If X = ∨iXi, then the inclusions ιi : Xi → X induce an isomor-
phism

∑
ιi∗ :

∑
hn(Xi)→ hn(X).

A5. (Weak equivalence) If f : X → Y is a weak equivalence, then f∗ is an isomor-
phism.

Remark 0.5: One can go between generalized reduced theories and generalized
unreduced theories easily by the following formulas:

1. For NDR pairs (X,A), also called good pairs, or A� X a cofibration,

Hn(X,A) = hn(X+/A+) =

{
hn(X/A) ifA 6= ∅
hn(X+) ifA = ∅
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2. If (X,x0) is a pointed space so that {x0} is a NDR, then hn(X) = Hn(X,x0)

Remark 0.6: The following construction is often useful. Let H∗ be a generalized
unreduced homology theory. If one only has a description of H∗(X) for absolute
spaces, one can recover a reduced theory by splitting off the coefficients using the
following splitting: pt → X → pt induces H∗(pt) → H∗(X) → H∗(pt) says that

Hn(X) ∼= Hn(pt) ⊕ H̃n(X) for all n and X, where H̃∗ is defined by this decompo-

sition. The collection of functors H̃∗ then make a reduced homology theory. The
same construction works for cohomology as well.

Remark 0.7: Show how to get long exact sequence from the above axioms. Show
how to get excision, Mayer-Vietoris.

The definitions for generalized reduced and unreduced cohomology theories are
entirely analogous, just with some index shifting, and the additivity axiom changing
to reflect the contravariance.

(I should add them for completeness)

1. Spectra

In what follows, we heavily use the existence of an adjunction Σ a Ω on Top∗
which descends to an adjunction hTop∗, where Σ is the reduced suspension functor
and Ω is the loop space functor. Explicitly, for any pointed spaces X and Y we
have η : [ΣX,Y ] ∼= [X,ΩY ] a natural isomorphism of sets. First one shows η :
Top∗(ΣX,Y ) ∼= Top∗(X,ΩY ) by sending a map f(x, t) : ΣX → Y to ft(x) =
f(x, t). Over a point x in ΣX, there is a loop. This loop gets mapped to a loop
in Y under f , and this describes the map. The inverse map is defined analogously.
One can chase around the diagrams to see that the η as defined is natural, so it is
an adjunction.

Whitehead’s category of spectra

Definition 1.8: (Whitehead Spectrum) A Whitehead spectrum E is a sequence of
based spaces En with maps en : S1 ∧En → En+1. If n ∈ Z is allowed, we write SpZ

for the category, and if we restrict to n ≥ 0 we write SpN. A morphism φ : E → F
of Whitehead spectra is a collection of maps φn : En → Fn so that the following
diagram commutes.

S1 ∧ En
en //

id∧φn
��

En+1

φn+1

��
S1 ∧ Fn

fn // Fn+1

Remark 1.9: In Whitehead’s paper [?], his category of spaces is the full sub-
category of Top∗ with objects that are homotopy equivalent to CW -complexes.
Whitehead also allows positive and negative indices for spectra.

Definition 1.10: (Ω-spectrum) An Ω-spectrum is a Whitehead spectrum E so that
the adjoint of the structure map ẽn : En → ΩEn+1 is a homotopy equivalence. One
could weaken the definition and just require the maps ẽn be weak equivalences.
(Perhaps denote the category of Ω spectra by SpΩ.)
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The Adams/Spanier category of CW-spectra
The category of symmetric simplicial set spectra
These definitions for spectra turn out to be inadequate for many reasons. In

particular, the smash product of two spectra is very difficult to define, and only can
be done in the homotopy category of spectra, i.e. the stable homotopy category.
One way around this is to use symmetric spectra instead.

Definition 1.11: (Symmetric spectrum) A symmetric spectrum X is given by

1. a sequence of pointed (based) simplicial sets X0, X1, . . .

2. a collection of maps xn : S1 ∧Xn → Xn+1,

3. a basepoint preserving left action of the symmetric group Sn on Xn such that
the maps xpn : SpXn → Xn+p are Sp × Sn-equivariant.

We now make the final condition more precise. Since Sp ∼= (S1)∧p, the symmetric
group Sp acts on Sp by permuting cells. We embed ι : Sp × Sn → Sp+n by having
Sp permyte the first p elements and Sn permute the last n elements.

From the structure maps xn, we construct the maps xpn in the obvious manner:
x2
n = xn+1◦id∧xn : S1∧S1∧Xn → S1∧Xn+1 → Xn+2 and so on. The equivariance

condition then asserts the commutativity of the following square for all σ ∈ Sp×Sn:

Sp ∧Xn

xpn //

σ·
��

Xn+p

ι(σ)·
��

Sp ∧Xn

xpn // Xn+p

Example 1.12: For each G ∈ Ab, the Eilenberg-Maclane spaces K(G,n) form
an Ω-spectrum. We take Kn = K(G,n), and write the spectrum as K or K(G).
Since [Sk,ΩK(G,n)] ∼= [Sk+1,K(G,n)] for all n and k, we see that ΩK(G,n) is
a K(G,n − 1). Since up to homotopy equivalence there is only one K(G,n), we

obtain a map k̃n : K(G,n)→ ΩK(G,n+ 1) which is a homotopy equivalence. The
adjoint maps kn : S1 ∧K(G,n)→ K(G,n+ 1) then make K a spectrum.

One can construct a simplicial set version of the spectrum K(G) using the Dold-
Kan correspondence. See exercise 8.4.4 in Weibel’s book. Also May’s book on
simplicial objects, section 23.

Example 1.13: The sphere spectrum and the Eilenberg-Maclane spectrum for Z
are symmetric spectra. To any space X there is a suspension spectrum X given by
Xn = ΣnX with xn = id.

1.1. The Brown Representability Theorem

Definition 1.14: To every Ω-spectrum E, there is an associated generalized reduced
cohomology theory E∗ given by the formula En(X) = [X,En] where X is a based
space. This satisfies the additivity axiom, but will not necessarily satisfy the weak
equivalence axiom.

Definition 1.15: If E is just a Whitehead spectrum, one can still define a gener-
alized reduced cohomology theory E∗ by the formula Ẽn(X) = lim−→[Sk ∧ X,En+k]

4



where the direct limit is taken with respect to the evident maps. This cohomology
theory will fail the additivity axiom unless it is an Ω-spectrum. Another notation
for this is H̃n(−;E).

To get unreduced theories, one artificially introduces basepoints into the con-
struction, like in the discussion on generalized homology and cohomology theories
above.

Definition 1.16: To every spectrum E, there is an associated reduced homology
theory as well. It is defined by the formula Ẽn(X) = lim−→[Sk+n, X ∧Ek], again with

the evident maps. One can also write this as lim−→πn+k(X ∧ Ek). Another notation

for this is H̃n(−;E). For a non-reduced version, sneak in a disjoint basepoint:
En(X) = lim−→[Sk+n, X+ ∧ Ek].

E a spectrum Ẽn(X) = lim−→[Sn+i, X ∧ Ei]
En(X) = lim−→[Sn+i, X+ ∧ Ei]
En(X/A) = lim−→[Sn+i, X/A ∧ Ei]
Ẽn(X) = lim−→[Si ∧X,En+i]

En(X) = lim−→[Si ∧X+, En+i]

En(X,A) = lim−→[Si ∧X/A,En+i]

E an Ω-spectrum Ẽn(X) = [X,En]

En(X) = [X+, En]

En(X/A) = [X/A,En]

To see that the direct limit definition degenerates in the case of an Ω-spectrum,
we need to use naturality of the adjunction. We need to show that the map

[X,En]
Σ−→ [ΣX,ΣEn]

εn∗−−→ [ΣX,En+1] is an isomorphism where εn = η−1(en) the
defining map of the adjunction. Observe that for any f ∈ [X,En] and by naturality
of the adjunction η, the following diagram is commutative.

[ΣEn, En+1]
η //

Σf∗

��

[En,ΩEn+1]

f∗

��
[ΣX,En+1]

η // [X,ΩEn+1]

Therefore, the following diagram is commutative

[X,En]
en∗ //

Σ

��

[X,ΩEn+1]

η−1

��
[ΣX,ΣEn]

εn∗ // [ΣX,En+1]

and since η−1◦en−1∗ is an isomorphism, the of interest εn∗◦Σ is an isomorphism. We
therefore see that all the maps in the direct limit are isomorphisms, from which we
get the Ω-spectrum cohomology description. The map obtained by going around the
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diagram clockwise is the natural suspension isomorphism to the associated reduced
cohomology theory. This argument shows that we can define the map the other way
too, as long as we have an Ω-spectrum. As the map going counterclockise is more
natural from the spectrum point of view, we should be using this description.

Example 1.17: In particular, if we take the spectrum K(G), the Eilenberg-Maclane
spectrum for the group G, we get ordinary homology and cohomology with coeffi-
cient group G. The way one proves this is by using the uniqueness of Eilenberg-
Maclane homology and cohomology theories with the dimension axiom. There is a
map T : [X,K(G,n)] → Hn(X;G) which induces the isomorphism as well. Given
f ∈ [X,K(G,n)], there is an induced map f∗ : Hn(K(G,n);G) → Hn(X;G)
and a distinguished class α ∈ Hn(K(G;n);G). The map T is then defined by
T ([f ]) = f∗(α). An explicit construction of α is possible, and can be found in
Hatcher pg. 402.

These observations lead us to the question: Is every cohomology theory repre-
sented by a spectrum in this way? The answer is “yes” and is captured by the
Brown Representability Theorem.

Theorem 1.18: Every reduced, additive cohomology theory on the category of
basepointed CW complexes and basepoint-preserving maps has the form H̃n(X) =
[X,Kn] for some Ω-spectrum K.

If additivity is dropped, the same conclusion holds but only on the category of
finite CW complexes.

Every reduced, additive homology theory is represented by a spectrum K for all
CW complexes. If additivity is dropped, then the statement holds only for finite
CW complexes.

2. More on spectra

2.2. Homology and cohomology for spectra
In the above section on Brown representability, we saw that homology and co-

homology could be phrased in terms of stable homotopy theory. This perspective is
very useful, and coupled with the category of spectra, one can give fairly concrete
map-based descriptions of homology and cohomology constructions. One can take
this a step further, and define homology and cohomology not for just spaces, but
for spectra as well.

To carry out this program, we need a suitable category SH which consists of
spectra with maps being some sort of “stable map” that will agree with our notion
if we are working with the spectra Σ∞X. If this all works out, the definitions for
homotopy groups, homology, and cohomology will be the following.

πn(A) = [ΣnS,A]SH (1)

En(A) = [ΣnS,A ∧ E]SH (2)

En(A) = [A,ΣnE]SH (3)

Spanier-Whitehead category, categories with suspension (Heller), etc.
Model structure on categories of spectra
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Do the above but with symmetric simplicial set spectra

2.3. Homology and cohomology constructions with spectra
Ring spectra
cup product, cap product
E-orientability
Thom isomorphism
Spanier-Whitehead duality
Poincaré-Lefschetz duality

2.4. Symmetric spectra and smash product
In the paper [?], the authors are able to define the smash product of symmetric

spectra and work out many of its properties by realizing it as a tensor product in the
category of S-modules with respect to some symmetric monoidal category. What
follows is a sketch of the construction with some additional comments on what is
meant in the paper.

Definition 2.19: Let Σ be the subcategory of Set with objects n = {1, 2, 3, ..., n}
for n ≥ 0 (for n = 0 we take n = ∅), and morphisms are required to be bijections.
Therefore, whenever n 6= m we have Σ(n,m) = ∅.
Definition 2.20: The category of symmetric sequences in C is the functor category
CΣ. For the category of pointed simplicial sets sSet∗, we write sSetΣ

∗ or SΣ
∗ for the

category of symmetric sequences of simplicial sets.
An element X ∈ sSetΣ

∗ is a sequence of pointed simplicial sets X0, X1, . . . with
an action of the group Σn on Xn. A morphism f : X → Y ∈ sSetΣ

∗ is a sequence of
Σn-equivariant maps fn : Xn → Yn.

Definition 2.21: The tensor product in sSetΣ
∗ of X and Y is the simplicial sym-

metric sequence given by the sequence of pointed simplicial sets

(X ⊗ Y )n = ∨p+q=n(Σn)+ ∧Σp×Σq (Xp ∧ Yq)

where Σn is the simplicial set with one non-degenerate 0-cell for every element of
Σn and all other cells are degenerate.

Digression 2.22: We explain what ∧Σp×Σq is in a slightly more general con-
text. Suppose A,B are two pointed simplicial sets for which A has a right G-
action and B has a left G-action. Then A ∧G B is the quotient of A ∧ B where
we declare for all a, b, g that (ag, b) = (a, gb). More precisely, we have maps
A×G×B //

//
A×B //A ∧B given by m1(a, g, b) = (ag, b) and m2(a, g, b) =

(a, gb). The coequalizer of A×G×B //
//
A ∧B is then A ∧G B. If instead of

the smash product, we were using the cartesian product, the above construction is
called the “balanced product” [?].

Now since Σp × Σq acts on (Σn)+ by right-multiplication, we are able to make
sense of the definition of (X ⊗ Y )n.

What is the action of Σn on (X ⊗ Y )n? It is given by left-multiplication with
the factor (Σn)+.

Proposition 2.23: Let X,Y, Z ∈ sSetΣ
∗ . Then there is a natural isomorphism

sSetΣ
∗ (X ⊗ Y,Z) ∼=

∏
p,q

sSetΣp×Σq (Xp ∧ Yq, Zp+q).
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Proof. It is easy to work out explicitly with the following maps. Given f : X⊗Y →
Z, for any n we have fn : ∨(Σn)+∧Σp×Σq (Xp∧Yq)→ Zp+q which is Σn-equivariant.
This is determined by universal property of wedge by the maps fp,q : (Σn)+∧Σp×Σq

(Xp ∧ Yq)→ Zp+q. Restricting this map to (1)∧Σp×Σq Xp ∧ Yq → Zp+q determines
the map Xp∧Yq → Zp+q which is Σp×Σq-equivariant because the action of Σp×Σq
“moves over” to act on Xp ∧ Yq.

Going the other way, with a family of such maps φp,q, we define fp,q by fp,q(σ, x, y) =
σ · φp,q(x, y). One needs to verify that this is well defined, but it does work. One

then pieces these maps together to get a map f ∈ sSetΣ
∗ (X ⊗ Y,Z). QED

With symmetric sequences, the tensor product is actually a symmetric monoidal
product on the category. We need to define the twish map to be τ : X⊗Y → Y ⊗X
by τp,q(γ, x, y) = (γρq,p, y, x) where ρq,p is the q, p-shuffle, i.e. the permutation
which moves the first q numbers to the end of p+ q, or equivalently, moves the last
p numbers of p+ q to the front. It is essential to have this shuffle in the twist map
for the product to be symmetric.

It is easy enough to verify that the symmetric sphere sequence S given by Sn =
(S1)∧n with the evident action of Σn (permuting factors) is a commutative monoid
in sSetΣ

∗ . With this, we can then define the category of S-modules. This category
is equivalent to the category of symmetric spectra defined above.

To say that S is a commutative monoid in sSetΣ
∗ means that there are maps

u : 1→ S and m : S⊗S→ S. The symmetric sequence 1 is just 10 = S0 and 1n = ∗
for n > 0. The map u is just the inclusion. The map m is given by

m((θ1, ..., θp), (ψ1, ..., ψq)) = (θ1, ..., θp, ψ1, ..., ψq).

It is straightforward to verify the following diagrams commute. The commuta-
tivity of these diagrams is what it means for (S, u,m) to be a commutative monoid
in sSetΣ

∗ .

1⊗ S
u⊗id //
∼=

$$IIIIIIIIII S⊗ S

m

��
S

S⊗ S⊗ S
m⊗id //

id⊗m
��

S⊗ S

m

��
S⊗ S m // S

S⊗ S τ //

m

$$IIIIIIIIII S⊗ S

m

��
S

A left S-module is a symmetric sequence X ∈ sSetΣ
∗ with a pairing σ : S⊗X →

X, i.e. maps σp,q : Sp ∧ Xq → Xp+q that must make the following diagrams
commute.

1⊗X
u⊗id //
∼=

$$JJJJJJJJJJ S⊗X

σ

��
S

S⊗ S⊗X
m⊗id //

id⊗σ
��

S⊗X

σ

��
S⊗X σ // X

It is straightforward to verify that these commutativity conditions recover the re-
quirements for a symmetric spectrum. Indeed a symmetric spectrum X also makes
the underlying symmetric sequence into a left S-module.
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The fact that S is a commutative monoid allows us to construct a tensor product
of S-modules. This will be our smash product of symmetric spectra. Given a left
S-module X, we can also consider it as a right S-module in a natural way via the
twist morphism. That is, define σ = σ ◦ τX ⊗ S→ S⊗X → X. This construction
makes X into an (S,S)-bimodule. With this structure in hand, we can then define
the tensor product of left S-modules.

Given X,Y left S-modules, consider the diagram

X ⊗ S⊗ Y
id⊗σY

//
σX⊗id //

X ⊗ Y .

The coequalizer of this diagram is what we call X ⊗S Y or X ∧ Y . This is at first
only a symmetric sequence. We can, however, equip it with the structure of a left
S-module by using the compatible left S-module structure of X. So

(σX⊗Y )p,q (θ1, ..., θp, (x1, ..., xr, y1, ..., ys)) = ((σX)p,r(θ1, ..., θp, x1, ..., xr), y1, ..., ys) .

It is instructive to verify that Σ∞A ∧ Σ∞B ∼= Σ∞(A ∧B) for A,B ∈ sSet∗.
Ring spectra (monoids in the category of the symm. monoidal cat. of spectra?)

3. Steenrod squares and cohomology operations

Definition 3.24: We briefly consider the set valued cohomology functors Hn(−;A)
with coefficients in an abelian group A. With this convention, a cohomology oper-
ation of type n,A,m,B is a natural transformation θ : Hn(−;A)

·−→ Hm(−;B).

Remark 3.25: The reason why we use the set valued functors is because of
Yoneda’s lemma. We are interested in Hn(−;A) = [−,K(A,n)], which on the
right hand side is a priori only a set. Recall [X,K(A,n)] = hTop∗(X,K(A,n)).
With this in mind, a cohomology operation of type n,A,m,B is a natural transfor-
mation θ : hTop∗(−,K(A,n))

·−→ hTop∗(−,K(B,m)). The Yoneda lemma says the
natural transformations are in 1-1 correspondence with hTop∗(K(A,n),K(B,m)).

Definition 3.26: The Steenrod squares Sqi = SqiX : Hn(X;Z2)→ Hn+i(X;Z2) is
a family of cohomology operations which satisfy the following properties:

1. Sqi(f∗(α)) = f∗(Sqi(α)) for f : X → Y ;

2. Sqi(α+ β) = Sqi(α) + Sqi(β);

3. Sqi(α ∪ β) =
∑
j Sqj(α) ∪ Sqi−j(β);

4. Sqi(σα) = σ(Sqi(α)) where σHn(X;Z2) ∼= Hn+1(X;Z2);

5. Sqi(α) = α ∪ α if i = |α| and Sqi(α) = 0 if i > |α|;

6. Sq0 = id;

7. Sq1 is the Z2 Bockstein homomorphism β coming from the coefficient sequence
0→ Z2 → Z4 → Z2 → 0.
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Remark 3.27: There is a way to rearrange compositions of Sqis by using the Adem
relations.

Sqa Sqb =

[a/2]∑
j=0

(
b− j − 1

a− 2j

)
Sqa+b−j Sqj

if a < 2b
The Adem relations generate all the relations among the Steenrod squares. A

composition of the Steenrod squares SqI = Sqi1 Sqi2 · · · Sqik is called admissible if
no Adem relation can be applied, i.e. ij ≥ 2ij+1 for all j.

The Steenrod squares are elements of Sqi ∈ [K(Z2, n),K(Z2, n + i)] for all n.
Is the Steenrod algebra the algebra coming from stable limit of stable cohomology
operations or something?

The construction of the Steenrod squares seems involved following Hatcher’s
approach. Some computations can be done using spectral sequences, see Davis and
Kirk.

Steenrod squares show up in defining chern classes, and lots of cobordism theory
computations.

4. Cobordism Theory–oriented cohomology theories

Definition 4.28: (Ring spectrum) A ring spectrum is a symmetric spectrum E
with a map of spectra E∧E→ E which satisfies a few axioms. From Stong, we have
maps mp,q : Ep ∧Eq → Ep+q and a map u : S→ E. These maps need to satisfy the
following conditions:

1. The following diagram commutes up to homotopy and sign,

ΣEp ∧ Eq // Ep+1 ∧ Eq

&&LLLLLLLLLL

Σ(Ep ∧ Eq)

λ

OO

µ

��

// ΣEp+q // Ep+q+1

Ep ∧ ΣEq // Ep ∧ Eq+1

88rrrrrrrrrr

i.e. [mp+1,q ◦ (ep ∧ 1) ◦ λ] = [ep+q ◦ Σmp+q] = (−1)p[mp,q+1 ◦ (1 ∧ eq) ◦ µ];

2. The following diagram commutes

Sp ∧ Eq
up∧1 // Ep ∧ Eq

mp,q

��

Ep ∧ Sq1∧Sqoo

��
ΣpEq

ẽ // Ep+q Sq ∧ Ep
(−1)pq ẽoo
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What does it mean for a spectrum to be associative and commutative?

Definition 4.29: (Oriented cohomology theory) Let E be an Ω-spectrum and a ring

spectrum. We say the cohomology theory Ẽ∗ is oriented if there is a cohomology
class τ ∈ Ẽ2(CP∞) which satisfies ι∗τ = u2 ∈ Ẽ2(S2). This class τ then can be

used to define an orientation class e(ξ) ∈ Ẽ2(B(ξ)) for any C line bundle by pulling
back τ along the classifying map ξ : B(ξ)→ CP∞ = BU(1).

We define an E-orientation of ξ, a rank n real vector bundle to be an element
t ∈ En(Mξ) = [Mξ,En], so that for all x ∈ B(ξ) the pullback of t under the

inclusion ι : Sn ∼= π−1(x) → Mξ is to give the unit, i.e. ι∗(t) = un ∈ Ẽn(Sn). The
class t is called a Thom class for ξ. If we pullback the class t by the zero section
s0 : B(ξ) → M(ξ), we get a class e(ξ) = s∗0(t) ∈ Ẽ2(B(ξ)) called the Euler class of
the bundle. These definitions parallel the usual definitions just with a generalized
cohomology theory.

Example 4.30: MU is a ring spectrum, and indeed MU∗ is an oriented cohomol-
ogy theory. The characteristic classes one obtains are called connor-floyd classes
cfn(ξ) ∈ MU2n(B(ξ)). This is the universal example of an oriented cohomology
theory. That is, for any other oriented cohomology theory E, there is a unique map
MU → E.

5. Formulas in Homology and Cohomology theory

5.5. Tor and Ext
For finitely generated Abelian groups, the computation of Tor reduces to the

following chart:
Tor(A,B) B = Z B = Zm
A = Z 0 0
A = Zn 0 Z(m,n)

where (m,n) = gcd(m,n). We also have

Tor(⊕iAi,⊕jBj) ∼= ⊕i, j Tor(Ai, Bj)

and Tor(A,B) ∼= Tor(B,A).
For finitely generated Abelian groups, the computation of Ext reduces to the

following chart:
Ext(A,B) B = Z B = Zm
A = Z 0 0
A = Zn Zn Z(m,n)

We also have
Ext(⊕iAi, B) ∼=

∏
i

Ext(Ai, B)

Ext(A,⊕Bi) ∼= ⊕i Ext(A,Bi).

Another short way to remember this information is by the formulas

Tor(A,B) ∼= torsion(A)⊗Z torsion(B)
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and
Ext(A,B)torsion(A)⊗Z B

Remark 5.31: To compute Tor and Ext for more general rings, it is useful to think

of them as derived functors.
Here are the steps to compute TorRn (A,B) with A,B ∈ R−Mod:

1. Take a projective, free, or flat resolution of A, written P· → A.

2. Apply −⊗R B to the resolution P· to get P· ⊗B.

3. The resulting sequence P· ⊗ B is a chain complex, so taking homology, we
define TorRn = Hn(P· ⊗B).

Here are the steps to compute ExtnR(A,B) with A,B ∈ R−Mod:

1. Take a projective or free resolution P· → A of A.

2. Apply the contravariant functor hom(−, B) to P·.

3. The resulting object hom(P·, B) is a cochain complex, so taking homology, we
define ExtnR(A,B) = Hn(hom(P·, B)).

Remark 5.32: For computations, it is often useful to use the (co)homological
δ-functor properties of Tor and Ext.

Definition 5.33: A homological δ functor is a sequence of additive functors
hn : A → B where A and B are abelian categories, with a collection of natu-
ral transformations δ. If A � B � C is a short exact sequence in A, we get
δ : hn(C)→ hn−1(A). These are then required to fit into a long exact sequence for
any short exact sequence A� B � C in A:

· · · // hn(A) // hn(B) // hn(C) BECD
GF

δ

@A
// hn−1(A) // hn−1(B) // hn−1(C) // · · ·

A cohomological δ-functor consists of additive functors hn : A → B with natural
transformations δ : hn(C)→ hn+1(A) fitting into a long exact sequence

· · · // hn(A) // hn(B) // hn(C) BECD
GF

δ

@A
// hn+1(A) // hn+1(B) // hn+1(C) // · · ·

Remark 5.34: Left derived functors of covariant functors yield homological delta
functors.

Right derived functors of covariant functors yield cohomological delta functors.
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Example 5.35: Explicitly, for Tor, to any short exact sequence 0 → A → B →
C → 0 in R−Mod and any M ∈ R−Mod there is a long exact sequence

· · · // TorR1 (A,M) // TorR1 (B,M) // TorR1 (C,M) BECD
GF

δ

@A
// A⊗RM // B ⊗RM // C ⊗RM // 0.

With the same setup but for Ext, we get a long exact sequence

0 // homR(C,M) // homR(B,M) // hom(A,M) BECD
GF

δ

@A
// Ext1

R(C,M) // Ext1
R(B,M) // Ext1

R(A,M) // · · ·

Example 5.36: Add in dimension shifting for computations if time permits.

Theorem 5.37: If R = Λ is a PID, then Extn and Torn vanish for n > 1.

5.6. Universal coefficient theorems
We first start off with the topological results, then review the algebraic results

and try to obtain a unifying result.

Theorem 5.38: (Universal coefficient theorem for cohomology: cohomology in
terms of homology) We take: (X,A) a pair of spaces, R a PID, M ∈ R−Mod and
get the exact sequence (which splits)

0→ ExtR(Hq−1(X,A;R),M)→ Hq(X,A;M)→ homR(Hq(X,A;R),M)→ 0

and the absolute version which is exact (and splits)

0→ ExtR(Hq−1(X;R),M)→ Hq(X;M)→ homR(Hq(X;R),M)→ 0.

Note that taking (X, ∗) gives a relative version of the theorem, getting rid of a
superfluous term. One way to look at this theorem is that it is relating actual
cohomology to its interpretation of beingR-valued functions on homology classes. In
general, the interpretation isn’t exact and there is a correction term. To remember
if the index in the Ext term is q ± 1, you should think about the simple example:

0 // Z 2· // Z // 0

H2 = 0 H1 = 0 H0 = Z2 H−1 = 0

and upon dualizing

0 hom(Z,Z)oo hom(Z,Z)
2·oo 0oo

H2 = 0 H1 = Z2 H0 = 0 H−1 = 0
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The Ext term shows up because of the hom. The obvious map from Hn(X;R) →
hom(Hn(X), R) lets you know that the Ext term shows up on the left.

Theorem 5.39: (Universal coefficient theorem for cohomology: cohomology in
terms of cohomology) If R is a PID, M is a f initely generated R-module, C∗ is a
free chain complex of R-modules, then the following sequence is split exact.

Hq(C∗)⊗M � Hq(C∗;M) � TorR(Hq+1(C∗),M)

The topological version is if X is a space, M is a finitely generated R-module, then

Hq(X)⊗M � Hq(X;M) � TorR(Hq+1(X),M)

Theorem 5.40: (Universal coefficient theorem for homology: homology in terms
of homology) We take: (X,A) a pair of spaces, R a PID, M an R −Mod and get
the exact sequence (which splits)

0 // Hq(X,A;R)⊗M // Hq(X,A;M) // TorR(Hq−1(X,A;R),M) // 0

and the absolute version

0 // Hq(X;R)⊗M // Hq(X;M) // TorR(Hq−1(X;R),M) // 0

Theorem 5.41: (universal coefficient theorem for homology: homology in terms of
cohomology) Let R be a PID, let C∗ be a free chain complex of R-modules, suppose
Hq(C∗) is f initely generated for each q, let M be an R-module. Then the following
sequence is exact, natural, and splits.

0 // ExtR(Hq+1(C∗),M) // Hq(C∗;M) // hom(Hq(C∗),M) // 0

For a topological version, let X be a finite CW complex, M an R-module. Then
the following sequence is exact, natural, and splits.

0 // ExtR(Hq+1(X),M) // Hq(X;M) // hom(Hq(X),M) // 0

Theorem 5.42: (Algebraic Künneth theorem) Let C∗ and D∗ be chain complexes
over a PID R. Suppose further that Cq is a free R-module. Then the following
sequence is exact and splits (the splitting is not natural).⊕
p+q=n

Hp(C∗)⊗Hq(D∗) // // Hn(C∗ ⊗D∗) // //
⊕

p+q=n
TorR (Hp(C∗), Hq−1(D∗))

Theorem 5.43: (Künneth theorem) Let X and Y be topological spaces, let R be
a PID. Then the following sequence is exact and splits (the splitting is not natural).⊕

p+q=n
Hp(X)⊗Hq(Y ) // // Hn(X × Y ) // //

⊕
p+q=n

TorR (Hp(X), Hq−1(Y ))
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Example 5.44: A simple example to see how the indices should be in the torsion
term, we can consider C∗ = D∗ given by C1 = C0 = Z and ·2 = d1 : C1 → C0 as
the chain map, all other terms and maps being 0. We can compute

H∗(C∗)⊗H∗(D∗) =
0 0
Z2 0

and

C∗ ⊗D∗ = Z

×2

��

Z
×2oo

×(−2)

��
Z Z

×2oo

so that T∗ = Tot⊕(C∗ ⊗D∗),

T∗ = 0 // Z
2⊕(−2)// Z⊕ Z

[2 2] // Z // 0

and we compute H0(T∗) = Z2, H1(T∗) = Z2, Hn(T∗) = 0 for all other n. Since
H0(C∗) = Z2 is the only non-zero homology term, the Tor term which arises when
trying to compute H1(C∗⊗C∗) must have H0(C∗) in both slots. So we see the sum
of the indices in the Tor term alwas is 1 less than the homology we are trying to
compute. Remembering whether it shows up on C∗ or D∗ is only important if one
of C∗ and D∗ is not a free chain complex.

Example 5.45: The UCT for homology in terms of homology can be obtained
from the algebraic Künneth theorem by viewing the coefficient module as a chain
complex concentrated in degree 0.

Theorem 5.46: (Algebraic Künneth theorem for cohomology.) This result is a bit
more complicated, which explains all of the extra conditions in the above topological
sequences. See Weibel pg. 90.

Theorem 5.47: Gysin sequence, Wang sequence are long exact sequences of
(co)homology groups to fibrations Sn → E → B respectively F → E → Sn with
n ≥ 1. They can be obtained by looking at the LSAH SS of the fibration and
splicing together exact sequences. If n = 0, the result holds for fiber bundles, but
the proof is more hands on, if one uses Z2 coefficients.

Theorem 5.48: Freudenthal suspension theorem says the suspension map [Sk, X]→
[Sk+1,ΣX] for X a based, n-connected space is an isomorphism if k < 2n + 1 and
surjective if k = 2n+ 1.

Theorem 5.49: Poincaré duality says for M a compact, oriented manifold of
dimension n, that there is an isomorphism Hk(M) ∼= Hn−k(M) for all k.

Theorem 5.50: Alexander duality is a formula describing the homology of a sphere
minus a nice (compact, locally contractible, nonepty, proper) subspace K, and the

subspace K. So H̃i(S
n \K;Z) ∼= H̃n−i−1(K;Z)

Theorem 5.51: (Lefschetz duality) Suppose M is a compact R-orientable n-
manifold with boundary ∂M . Then there is a class [M ] ∈ Hn(M,∂M ;R) giving
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isomorphisms DM : Hk(M ;R) → Hn−k(M,∂M ;R) and DM : Hk(M,∂M ;R) →
Hn−k(M,∂M ;R).

Definition 5.52: (lim←−
1) Suppose we have an inverse system of abelian groups

· · ·An
αn−−→ An−1 · · ·A1

α1−→ A0

we can then take the inverse limit of this system, which is the subobject of
∏
Ai

given by
lim←−Ai = {a = (. . . , a2, a1, a0) | ∀k, αk(ak) = ak−1} .

Define ∆ :
∏
Ai →

∏
Ai by

∆(. . . , ai, . . . , a1, a0) = (. . . , ai − αi+1(ai+1), . . . , a1 − α2(a2), a0 − α1(a1))

or by ∆(a)k = ak − αk+1(ak+1). It is clear that lim←−Ai = ker ∆. Define lim←−
1Ai =

coker ∆. That is (unhelpful formula)

lim←−
1Ai =

{
[a] | a ∈

∏
Ai, a ∼ bifa− b ∈ im ∆

}
.

Theorem 5.53: lim←−
1 is the first derived functor of inverse limit, all higher derived

functors vanish. So lim←−
1 is a universal cohomological δ functor. So there is a long

exact sequence to a short exact sequence of towers of abelian groups.
We have the Mittag-Leffler condition on an inverse system (tower of abelian

groups) Ai. It says that if for any k there exists a j ≥ k such that the image
Ai → Ak equals the image of Aj → Ak for all i ≥ j. This is satisfied trivially if all
maps are surjective.

The trivial Mittag-Leffler condition is if for each k there exists a j > k such that
Aj → Ak is zero.

Theorem 5.54: If the inverse system Ai satisfies the Mittag-Leffler condition, then
lim←−

1Ai = 0.

Theorem 5.55: Let X = lim−→Xi be a CW complex (this is not necessarily the

skeleton filtration!), and let h∗ and h∗ be generalized homology and cohomology
theories. Then hk(X) = lim−→hk(Xi) and there is an exact sequence

0 // lim←−
1 hn−1(Xi) // hn(lim−→Xi) // lim←−h

n(Xi) // 0

6. Cobordism Theory

Theorem 6.56: (The Thom isomorphism theorem) Let ξ : E → B be an orientable
R-vector bundle with rank n. To this bundle, there is a corresponding bundle
E0 = E \ s0(B), that is, all points in E corresponding to non-zero vectors in
the fiber Rn. The bundle E0 is homotopy equivalent to an Sn−1-bundle over B.
Consider the natural inclusion ι : E0 → E. There is a class u ∈ Hn(E,E0) so
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that the homomorphism Φ : Hk(B) → Hk+n(E,E0) given by φ(ω) = ω ∪ u is an
isomorphism for all k.

The pair (E,E0) ∼= (D(ξ), S(ξ)) that is, the disc bundle relative the sphere
bundle, and from this perspective we see we are computing the cohomology of the
Thom space of the bundle ξ, that is MB = M(ξ) = D(ξ)/S(ξ). and H̃∗(M(ξ)) ∼=
H∗(E,E0). Note: the Thom space is NOT an Sn-bundle since the entire sphere
bundle is crushed to a point! Not the sphere in each fiber, separately.

From the de Rham point of view, one can get away with talking about com-
pactly supported cohomology in the vertical direction, and the isomorphism is then
Hk+n
cv (E) ∼= Hk(B). One direction of the isomorphism is given by integration along

the fiber, the other by wedging with the Thom class.
To this pair (E0, E) there is a long exact cohomology sequence

· · · // Hk(E,E0) // Hk(E) // Hk(E0) BECD
GF

δ

@A
// Hk+1(E,E0) // Hk+1(E) // Hk+1(E0) // · · · .

equivalent to

· · · // Hk(E,E0) // Hk(B) // Hk(E0) BECD
GF

δ

@A
// Hk+1(E,E0) // Hk+1(B) // Hk+1(E0) // · · · .

A proof of the Thom isomorphism theorem can be obtained using a relative
spectral sequence argument.

Definition 6.57: (Cobordism category) A cobordism category is a triple (C , ∂, i)
where

1. C is a category with finite sums and an initial object ∅;

2. ∂ : C → C is a sum-preserving (called additive in the literature) functor such
that ∂2 = ∅;

3. i : ∂ → id is a natural transformation

4. there is a small, (full subcategory) C0 such that every object of C is isomorphic
to an object in C0.

Definition 6.58: If C is a cobordism category, we say M,N ∈ C are cobordant if
there exists U, V ∈ C such that M ⊕ ∂U ∼= N ⊕ ∂V .

Remark 6.59: In cobordism categories of manifolds with structure, the above
cobordism relation is equivalent to the usual one. To a cobordism category C there
is a cobordism semi-groups Ω(C ) of cobordism classes of objects with the sum from
the category.

Definition 6.60:
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1. ((B, f)-structures on vector bundles) Let fr : Br → BOr be a sequence of
fibrations. Let ξ : B(ξ)→ BOr be a rank r vector bundle. A (B, f) structure
on ξ is a lifting of ξ to Br, i.e. ξ̃ : B(ξ)→ Br. The structures are defined up
to vertical homotopy.

2. ((B, f, g)-structures on manifolds) (B, f) are as above. Now gr : Br → Br+1

so that

Br
gr //

fr

��

Br+1

fr+1

��
BOr

ι // BOr+1

commutes. A (B, f) structure on a manifold M is then a (B, f) structure on
the stable normal bundle on M . That is, for k >> 0, embeddings M → Rk are
regularly isotopic, so the normal bundles are independent of the embedding.
We then choose (B, f) structures on the normal bundles in the stable range
so that the lifts are compatible with the commutative squares above.

Proposition 6.61: The cobordism semi-group for the cobordism category of man-
ifolds with (B, f)-structures is denoted by MB∗. The semi-group is actually an
abelian group in this case.

Give the standard examples: unoriented manifolds, oriented manifolds, framed
cobordism,

Example 6.62: (MO∗ ) We have the computationMO∗(pt) ∼= Z2[x2, x4, x5, x6, x8, . . .]
with generators xi for i 6= 2n−1. The generators correspond to real projective spaces
in even dimensions. The odd dimensional generators are given by Dold manifolds.
For n,m ≥ 0 consider the space Sn×CPm and the involution ι(x, z) = (−x, z) where
−x is the point antipodal to x and z is obtained by conjugating each homogeneous
coordinate for z. Dold then defines P (n,m) = Sn × CPm/(x, z) ∼ ι(x, z). He then
shows that these manifolds can be taken as generators of MO∗.

Stiefel-Whitney numbers are the means to distinguish cobordant manifolds.
Stiefel-Whitney classes can be computed using their axioms in many cases. The
definition of the Stiefel-Whitney classes is a bit more complicated.

Computation of MO∗(X) can be done using cofibration sequence and the LSAH
SS.

Example 6.63: ( MSO∗ ) The description is not so simple. MSO∗ ⊗ Q ∼=
Q[x4, x8, ...], generators given by CP 2n. MSO∗ only has torsion of order 2, and
only in dimensions not a multiple of 4. The groups are always finitely generated.
Some explicit values MSO0

∼= Z, MSO1 = MSO2 = MSO3 = 0, MSO4
∼= Z4,

MSO5
∼= Z2, MSO6 = MSO7 = 0.

The Dold manifolds from MO∗ are in fact orientable in odd dimensions, so they
determine non-trivial order two classes in MSO∗. Using the above calculations and
the product structure, one can determine that MSOn 6= 0 for all n ≥ 8.

Classifying numbers are pontrjagin numbers and stiefel-whitney numbers. In
particular, if M4k is an oriented manifold, it bounds iff all pontrjagin numbers are
zero.
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Wall proved Mn oriented manifold bounds iff all pontrjagin numbers and all
stiefel-whitney numbers vanish.

Pontrjagin classes are constructed by...

Example 6.64: ( MU∗ ) Stably almost complex manifolds, i.e. (BU, f) structures.
MU∗ ∼= Z[x2, x4, x6, · · · ] with generators in all even dimensions given by (some
complex algebraic variety [they are the Milnor hypersurfaces Hn,m]). The (B, f)
structure is B2r = B2r+1 = BUr with evident maps. Integer cohomology classes are
used to distinguish elements, although it isn’t clear exactly what they are. Related
to chern classes somehow.

Description of stably almost complex structures is discussed briefly in Davis and
Kirk. Add on trivial bundle to tangent bundle and equivalence classes of almost
complex structures on those.

Description as Lazard ring with universal Formal Group Law.
Milnor computes MU∗ formally, i.e. not using the geometric definition. One

can compute H∗(MU) and H∗(MU) explicitly, see Adams’s blue book p. 51. One
has a Hurewicz map MU∗ = π∗(MU) → H∗(MU) that Milnor uses to do the
computation.

Definition 6.65: Stiefel-Whitney classes and Stiefel-Whitney numbers
Use axiomatic for stiefel whitney classes. Get them by pulling back well-chosen

generators of cohomology of BO(n). General definition uses thom iso and steenrod
squares. wi(ξ) = φ−1 ◦ Sqi(φ(1)) where φ is the Thom isomorphism.

Definition 6.66: Euler class of an oriented vector bundle is the pull-back of the
Thom class to the base by the zero section. The euler class is natural wrt oriented
vector bundle maps.

The euler class with mod 2 coefficients gives the stiefel-whitney class.
Also there is a sum formula: e(ξ ⊕ ξ′) = e(ξ) ∪ e(ξ′).

Definition 6.67: Chern classes. Top chern class is euler class, look at E0 and make
2(n− 1) dim’l vector bundle over that, pull back the euler class for that to get next
lower chern class. repeat... Using a hermitian metric on the bundle.

Chern classes are natural wrt complex vector bundle maps.
Chern classes are stable vector bundle invariants.
Product theorem for total chern classes holds.

Definition 6.68: Pontrjagin classes and complexification of oriented vector bun-
dles. Take an oriented bundle, complexify it by tensoring with C, get a complex
vector bundle. Look at the chern classes. The ones in dimension 4n + 2 will be of
order two (or zero, or something), the others are called pontrjagin classes. See this
because the complexified bundle is isomorphic to its conjugate bundle.

Pontrjagin classes are natural and stable oriented vector bundle invariants.
There is almost a product formula, up to elements of order two.

Theorem 6.69: (Thom-Pontrjagin Theorem) The cobordism theory for (B, f)
manifolds is related to stable homotopy theory by the equation

MBn(pt) ∼= lim−→πn+i(MBi).
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Theorem 6.70: M̃B∗ defines a reduced generalized homology theory. At very
least, try to see that M̃O∗ does.

Theorem 6.71: LSAH SS for generalized homology theories and computations.

7. Complex Cobordism

Complex cobordism is the cobordism theory of manifolds with a stable almost
complex structure. In what follows, we develop the theory and present a sketch of
the computation of MU∗.

Definition 7.72: (Normal bundle) Let Xn be a compact, smooth, n-dimensional
manifold. If ι : X →M is an embedding of smooth manifolds, we define the normal
bundle of X via the embedding ι to be the bundle ν(ι) = ι∗(TM)/TX. If we
equip M with a Riemannian metric, ν(ι) can be identified with the subbundle of
TM given by ν(ι)x = {v ∈ TxM | ∀w ∈ ι∗(TX), < v, w >= 0}, i.e. the orthogonal
complement of ι∗(TX).

Every manifold X can be embedded into some Rn+r for r >> 0. Furthermore,
if ι1, ι2 : X → Rn+r are two embeddings with r sufficiently large, ι1 and ι2 are
regularly homotopic, i.e. a homotopy H : X × I → Rn+r such that Ht : X → Rn+r

is an embedding for all t ∈ I, and Ht∗ : TX → TRn+r is continuous. This result is
proven in [?][Theorem 8.4]. In the paper, Hirsch develops an obstruction to when
two maps f, g are regularly homotopic Ω′(f, g). As we can embed ι1, ι2 : X →
R2n+1, the obstruction for these two embeddings to be regularly homotopic lies in
πn(Vn(R2n+1) = 0. Hence the result.

The above result is important, because it guarantees that we can talk about a
well-defined stable normal bundle of X. Namely, take any embedding ι : X → Rn+r,
and consider the normal bundle ν(ι). For any two different embeddings ι1 or ι2, a
regular homotopy connecting them induces an isomorphism of the normal bundles.
Furthermore, the bundle is stably defined. That is, if you have an embedding
ιr : X → Rn+r and ιr+1 : X → Rn+r+1, the embedding ιr+1 is regularly homotopic
to the embedding jn+r ◦ ιr : X → Rn+r ⊂ Rn+r+1. It is clear that ν(jn+r ◦ ιr) ∼=
ν(ιr)⊕ ε1.1

Using the language of classifying spaces clarifies some of the above points. Let
Gr(Rn+r) denote the Grassmannian of r-planes in Rn+r. From the map jn+r :
Rn+r → Rn+r+1, we get an induced map jn+r : Gr(Rn+r → Gr(Rn+r+1) given by
the image of a subspace under jn+r. A classifying space for r-bundles is BOr :=
Gr = lim−→n

Gr(Rn+r). This is the classifying space for principal Or(R)-bundles and

r-dimensional real vector bundles.
The infinite Stiefel manifold of r-frames is defined in a similar way. Let Vr(Rn+r) =

{(v1, . . . , vr) | ∧i vi 6= 0}, i.e. it consists of ordered sets of r linearly independent vec-
tors in Rn+r, also called an r-frame. It is topologized as the subset of (Rn+r)r. There
is also an orthogonal Stiefel manifold V Or (Rn+r) consisting of all orthonormal r-
frames in Rn+r. There is a natural map p : V Or (Rn+r)→ Gr(Rn+r) and likewise nat-
ural maps jn+r : V Or (Rn+r) → V Or (Rn+r+1). We define V Or (R) = lim−→n

V Or (Rn+r).

The direct limits for the infinite Grassmannian and Stiefel manifolds are compatible

1Let εk denote the trivial bundle of rank k. Define jn+r(
∑n+r

i=1 xiei) =
∑n+r

i=1 xiei + 0en+r+1
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with the projection maps p, and so we have a map p : V Or (R)→ BOr. This map is
a fibration with homotopy fiber the Lie group Or.

A regular homotopy between embeddings ι1, ι2 : X → Rn+r gives a homotopy
H : X × I → BOr, so that H0 = ν(ι1) and H1 = ν(ι2). Therefore, the normal
bundles are indeed isomorphic as their structure maps are homotopic.2

Definition 7.73: (Classifying space for Ur) Let Ur be the unitary group of trans-
formations of Cr, i.e. those linear transformations A : Cr → Cr such that AA∗ = I
where (−)∗ is the conjugate dual. It is straightforward to verify that Ur ⊆ O2r

under the the canonical identification of Cr with R2r.
We therefore have an action of Ur on V O2r (R) by restricting the action of O2r.

We define BUr = V O2r (R)/Ur. As we may also identify BOr with V Or (R)/Or, we get
a morphism fr : BUr → BO2r, which is actually a fibration. The homotopy fiber of
this fibration is O2r/Ur. It furthermore follows that BUr is indeed the classifying
space for unitary vector bundles by [M-1967][Theorem 7.4].

Definition 7.74: An almost complex structure on an r real dimensional vector
bundle ξ : X → BOr is a stable lift of ξ to BU[r/2]. The lift must be strict, i.e. not
just a lift up to homotopy! To lift ξ stably means that there exists some r′ >> r
such that after composing ξ with the structure maps jr for BOr, we get a map
ξ : X → BOr′ and this map has a lift ξ̃ : X → BU[r′/2].

BU[r/2]

f[r/2]

��

// BU[(r+1)/2]

f[(r+1)/2]

��

// · · · // BU[r′/2]

f[r′/2]

��
X

ξ //

ξ̃

22ddddddddddddddddddddd BOr
jr // BOr+1

jr+1 //// · · · // BOr′

Two almost complex structures ξ̃1 and ξ̃2, i.e. stable lifts of ξ, are equivalent if
there exists a fiberwise homotopy H : X × I → BUr′ for some r′ >> 0 between ξ̃1
and ξ̃2, so that for all t, fr′ ◦Ht = ξ.

This definition is equivalent to the more intuitive definition of a continuous
section of the bundle J ∈ Γ(Hom(ξ, ξ)) such that for any x ∈ X, J2

x = − id : Ex →
Ex.3

Definition 7.75: If X is a compact smooth manifold, a stably almost complex
structure on X is an almost complex structure on the stable normal bundle of X.

Remark 7.76: Consider X = pt. There are two distinct stably almost complex
structures on X. WLOG embed ι : X → Rr. Then ν(ι) = εr, and ν(ι) : X → BOr
is given by ν(ι) : X → Gr(Rr). As the fiber of BU1 → BO2 is O(2)/U(1) ∼= S0,
there are two possible lifts of ν(ι). As O(2r)/U(r) always consists of two connected
components and the inclusion O(2)/U(1) → O(2r)/U(r) never maps into just one
component, there are stably two distinct lifts as well.

An easy way to think of the lift of ν(ι) : X → BU1 is by giving a 2-frame in
R2 and looking at the class it determines in BU1. There are two possible choices:
(e1, e2) or (e1,−e2).

The two possible stably almost complex structures on X are inverses to one
another in MU∗. This can be seen by lifting X × I → X → BOr. The stably a.c.

2Can you give the construction?
3E is the total space of the bundle ξ.
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structure on X ×{0} is the given one, while the stably a.c. structure on X ×{1} is
the other structure. This is because the inward pointing normal at 0 and at 1 have
different sign.

If we embed X → R2, then X× I → R3, the inward pointing normal at X×{0}
is e3 while the inward pointing normal at X × {1} is −e3. If the stably almost
complex structure on X was given by (e1, e2), then the stably a.c. structure on
X ×{0} is given by (e1, e2, e3) which is equivalent to the given one. But the stably
almost complex structure on X × {1} is given by (e1, e2,−e3) which is easily seen
to be inequivalent to (e1, e2, e3).

With this, it is easy to reason that MU0
∼= Z. Similarly, one can also show with

bare hands that MU1
∼= 0.

The complete computation of MU∗ presented by Stong, originally computed
by Milnor and Quillen, we need to make use of some heavy machinery. The main
insight is to recast the problem from geometric generators and relations into stable
homotopy theory. The Pontrjagin-Thom construction does just that. To solve
the stable homotopy theory problem, we make heavy use of the Steenrod algebra
structure and

8. Model categories

9. Presheaf cohomology

Definition 9.77: Let X ∈ Top, a presheaf F on X is a functor F : Open(X)op →
Ab. A presheaf is called a sheaf if it satisfies the gluing axiom: if x ∈ F(U),
y ∈ F(V ) such that x|U∩V = y|U∩V , then there exists a unique element z ∈ F(U∪V )
which restricts to x and y on U and V respectively.

Example 9.78: Let π : Y → X be a map. For any q ≥ 0 there is a cohomology
presheaf H q on X given by π which is defined as follows. For U ∈ Open(X), define
H q(U) = Hq(π−1(U)), and for ι : U → V , define H q(ι) = j∗ : π−1(V )→ π−1(U),
where j : π−1(U)→ π−1(V ) is the inclusion.

Definition 9.79: Let X ∈ Top, let F be a presheaf on X, and let U be an open

cover of X. The Čech complex of X wrt to U and F is given by

· · · //
∏
α0<···<αp F(Uα1···αp) δ //

∏
α0<···<αp+1

F(Uα1···αp+1) // · · ·

with differential δ. The differential δ is given by first defining ∂i :
∐
Uα0···αp →

Uα0···α̂i···αp by ∂i|Uα0···αp
: Uα0···αp ⊆ Uα0···α̂i···αp . Then define δ :=

∑
i(−1)i∂i. A

useful formula for δ is

(δω)α0···αp+1 =

p+1∑
i=0

(−1)iωα0···α̂i···αp+1 .

The cohomology of this chain complex is denoted by H∗(U;F). One then defines
Hp(X;F) := lim−→Hp(U;F).

Theorem 9.80: (Leray’s construction) Let π : Y → X be a map of smooth
manifolds, let U be an open cover of X, let H q be the cohomology presheaf given
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by the map π. There is a spectral sequence E with Ep,q2 = Hp(U; H q) which
converges to H∗(X).

Question: Can we loosen the restrictions on the manifolds and maps in Leray’s
construction? Is there such a spectral sequence if we just have a CW complex and
cellular maps?

Remark 9.81: Note that the cohomology with coefficients in a presheaf is very
similar to Čech cohomology. Čech cohomology is obtained by computing the sin-
gular cohomology of the nerve of a cover U. For presheaf cohomology, the setup is
exactly the same, except we apply the presheaf to the open sets and inclusion maps
to get a different chain complex. Is there a way to make this description better? Is
there some kind of thing definable on a singular set which behaves like the presheaf
does in this specific case?

10. Homology with local coefficients

Homology with local coefficients arises in the LSAH SS if the base space of a
fibration isn’t simply connected.

Definition 10.82: Let X be a nice enough space so it has a universal cover X̃
(locally path connected, semi-locally simply connected), let G = π1(X), and let A
be a ZG = Z[G]-module. Then we define the singular chain complex for X with

coefficients in A by S∗(X;A) = S∗(X̃) ⊗ZG A. The homology of this complex is
called the homology of X with local coefficients in A and is denoted by H∗(X;A).

Definition 10.83: In a similar fashion, we also get cohomology with local coef-
ficients in A by defining S∗(X;A) = homZG(S∗(X̃), A). Cohomology with local
coefficients in A is then the cohomology of this cochain complex.

Remark 10.84: If the action of G = π1(X) on A is trivial, i.e. ρ : G→ Aut(A) is
the trivial homomorphism, then homology with local coefficients in A is just regular
homology with coefficients in the abelian group A.

If A = ZG, then Hk(X;ZG) ∼= Hk(X̃;Z).

Remark 10.85: If X is a CW structure, one can use the induced cell structure on
X̃ and the cellular chain complexes to define (co)homology with local coefficients.

Example 10.86: Let F → E → B be a fibration. There is then an action of π1(B)
on the homology or cohomology of the fiber. Let [α] ∈ π1(B), then [α] lifts to a
map F → F by using the homotopy lifting property in the following way.

F × {0} ι //

ι0

��

E

��
F × [0, 1]

p //

H

::u
u

u
u

u
u

u
u

u
u

u
[0, 1]

α // B

The map H1 : F → F is then obtained by H1(x) = H(x, 1). It is a result that

this map is homotopic to any other lift H̃ of the map F × [0, 1] → B. We then
get an action π1(B)→ [F, F ]. With this action, we see that applying a generalized
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homology theory E∗ or generalized cohomology theory E∗ that π1(B) acts on E∗(F )
resp. E∗(F ). That is, there is a group homomorphism π1(B) → Aut(E∗(F )) resp.
π1(B)→ Aut(E∗(F )). Thus E∗(F ) resp. E∗(F ) is a Zπ1(B)-module and so we can
talk about (co)homology with local coefficients in the (co)homology of the fiber F .
This construction is used in the LSAH SS.

11. Spectral sequences

LSAH SS
Grothendieck SS: need to figure out ex. with Leray SS and how it relates to the

Leray SS for smooth manifolds and smooth maps. Need to compute right derived
functors for the direct image functor of sheaves in this case. Somehow this turns out
to be H q. Need to know what the global section functor is, etc. Should certainly
know the statement of the base change spectral sequence for Tor.

Exact couples: Know what they are, how SS arises. ...
SS of a filtered cochain complex : Need to review. See weibel and Bott & Tu
Computing with SS: Path fibration, some homotopy groups of spheres, general-

ized homology groups, etc.
Hyperhomology: the hyperderived functors are pretty easy Li and Ri. Just need

to know cartan-eilenberg resolutions of a chain complex, apply functor, take Tot⊕

and compute homology. Functor needs to be right resp left exact, category needs
enough projectives resp. injectives . Hyperderived functors are important as they
show up in Grothendieck SS which is “an organizing principle of hom. alg.”

12. Homological Algebra

12.7. Abelian categories and their descriptions

Theorem 12.87: Freyd-Mitchell embedding theorem

Example 12.88: Mapping cone, mapping cylinder

12.8. Derived Functors

Example 12.89: In R−Mod:
Given positive chain complexes C and D with C projective and D acyclic (i.e.

Hi(C) = 0 for i ≥ 0) for any f : H0(C)→ H0(D) there exists φ : C → D inducing f .
All such φ are homotopic.

F is ... apply F to a ... then ...
Covariant Functor Left derived Ln projective resolution take Hn(−)

Right derived Rn injective resolution take Hn(−)
Contravariant Functor Left derived Ln injective resolution take Hn(−)

Right derived Rn projective resolution take Hn(−)

TorΛ
n(A,B) := Ln(−⊗B)(A) = Ln(A⊗−)(B);

ExtnΛ(A,B) := Rn(Hom(−, B))(A) = Rn(Hom(A,−))(B).
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We can always view a contravariant functor F : C → D as a covariant functor
F op : Cop → D. Hence when defining the left and right derived fuctors of a con-
travariant functor, we simply take the already defined left and right derived functors
of F op. The same goes with the definitions of left and right exact functors.

−⊗B covariant right exact
A⊗− covariant right exact

Hom(A,−) covariant left exact
Hom(−, B) contravariant left exact

For Λ-modules A and B, we have

E(A,B) ∼= ExtΛ(A,B)

where an extension E of A by B is B → E → A, and the equivalence is natural.

13. Category Theory

13.9. Adjoint functors

Definition 13.90: Let L : C → D and R : D → C be functors. We say that L is
left adjoint to R (or equivalently R is right adjoint to L) if there exists a natural
equivalence η : D(L−,−)

∼−→ C(−, R−) between the functors D(F−,−),C(−, G−) :
Cop ×D→ Set. In this case, we write η : F a G.

Definition 13.91: The unit of the adjunction is η(idLX) : X → RLX, obtained
from η : D(LX,LX)→ CX,RLX.

The counit of the adjunction is η−1(idRY ) : LRY → Y obtained from η :
D(LRY, Y )→ C(RY,RY ).

Proposition 13.92: If ε : id → GF and δ : FG → id are natural transformations
and if the equation δF ◦ Fε = id and Gδ ◦ εG = id hold, then η : F a G, defined
by η(φ) = Gφ ◦ εX , is a natural equivalence which shows F is left adjoint to G.
Furthermore, ε and δ are the unit and counit of the adjunction η respectively.

Conversely, if η : F a G is a natural equivalence, then εX := η(idFX) and
δY := η−1(idGY ) define natural transformations which satisfy the above equations.

Proposition 13.93: If η : F a G and η′ : F a G′, then there exists a natural
equivalence between G and G′. We remark that for all Y ∈ D, we have GY ∼= G′Y .
Alternatively, G determines F up to natural equivalence.

Proposition 13.94: Let F : C → D, F ′ : D → E be functors, and suppose there
exist G and G′ such that η : F a G and η′ : F ′ a G′. Then η−,G′− ◦ η′F−,− : F ′F a
GG′.

Proposition 13.95: Consider F : C → D ∈ Cat. If L a F and a given UCC
(i, P i

−) exists in both C and D, then the UCC commutes in D. That is, if P i
C a Ri

C

and P i
D a Ri

D, then Ri
D ◦ iF ∼= F ◦ Ri

C. A similar result holds for all manner of
permutations of left and right adjoints.

Proof. For the general result, the following diagram is helpful.
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C
F //

P i
C

��

D

P i
D

��

R

{{

L

dd

iC
iF //

Ri
C

CC

Li
C

ZZ

iD

iL

zz

iR

dd

Li
D

DD

Ri
D

[[_

_

� �

_

_

��

By proposition (composition of adjoints is adjoint), we have iL ◦P i
D a Ri

D ◦ iF and
P i
C ◦ L a F ◦ Ri

C. We see that P i
C ◦ L = iL ◦ P i

D by the naturality of P i
− : idCat →

i, and therefore, by proposition (adjoints unique), there is a natural equivalence
Ri

D ◦ iF ∼= F ◦ Ri
C. The proof of the remaining parts follow analogously.

L a F UUCs commute in C, i.e.
Li
C ◦ iL ∼= L ◦ Li

D

L a F UCCs commute in D, i.e.
Ri

D ◦ iF ∼= F ◦ Ri
C

F a R UUCs commute in D, i.e.
Li
D ◦ iF ∼= F ◦ Li

C

F a R UCCs commute in C, i.e.
Ri

C ◦ iR ∼= R ◦ Ri
D

Let X : I → D and Y : I → C be diagrams. We then have the following table.

L a F colimits commute in C,
L(colim(X)) ∼= colim(LX)

L a F limits commute in D,
F lim(Y) ∼= lim(FY)

F a R colimits commute in D,
F (colim(Y)) ∼= colim(FY)

F a R limits commute in C,
R(lim(X)) ∼= lim(RX)

QED

Definition 13.96: Let F : C → D be a functor and consider Y ∈ D. A solution
set for Y is a set {Xi ∈ C | i ∈ I} and {fi : Y → FXi} | i ∈ I} where I is a set (yes,
a set!) if: for any X ∈ C and any φ : Y → FX there exists an i and φ : Xi → X
such that the following diagram commutes

FXi

Fφ

��

Y
fioo

φ
~~~~~~~~~~~

FX .

Remark 13.97: It is easy to see that if L a F then {LY } with {εY : Y → FLY }
is a solution set for Y by using the naturality of the adjunction. Thus for a left
adjoint to F to exist, the functor F must satisfy the solution set condition.

Definition 13.98: Let F : C→ D be a functor and consider Y ∈ D. A cosolution
set4 for Y is a set {Xi ∈ C | i ∈ I} and {fi : FXi → Y } where I is a set if: for any

4This terminology is not necessarily standard.
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X ∈ C and any φ : FX → Y there exists an i and φ : X → Xi such that the
following diagram commutes

FXi
fi // Y

FX

Fφ

OO

φ

=={{{{{{{{
.

Remark 13.99: It is clear tht if F a R then {FRY } with {δY : FRY → Y } is a
cosolution set for Y . Thus for a right adjoint to F to exist, the functor F must
satisfy the cosolution set condition.

The following theorem due to Freyd provides a partial converse to the above
remarks. The conditions are slightly idealized, however, and it will not be of much
use to us. We state the theorem without proof; see [ML-1971, § V.6] or [M-1967, §
V.3] for a proof.

Theorem 13.100: (Freyd’s Adjoint Functor Theorem) Suppose C is a complete
category (that is, all limits for I a small category exist) which has C(X,Y ) a set
for all objects X,Y . Then a functor F : C → D has a left adjoint if and only if F
preserves all (small) limits and there is a solution set for all Y ∈ D.

Theorem 13.101: (Special adjoint functor theorem)

13.10. Monoidal categories
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