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In this paper, we will investigate the notion of cohomology with respect to a presheaf and
how it relates to the cohomology of topological objects such as fiber bundles and fibrations.
The goal being to compute H?(Q(S™); Z), that is, the cohomology groups of the loop space
of an n-sphere.

In order to make the paper readable, we will assume working knowledge with the ba-
sics of: manifolds; fiber bundles; de Rham cohomology (H;5), Cech-de Rham cohomology
(H3,), Cech cohomology (H* (B, F)) and singular cohomology with coefficients in A (de-
noted by H*(B; A)). Some results will be cited without proof, but the statements will be
given in the appendix. Our discussion is broken up into three sections: in section 1, we intro-
duce presheaves and correct a few mistakes in [Bo] concerning these definitions; in section
2, we investigate the path fibration of a topological space; and in section 3, we compute
H*(Q(S™); Z) (see Notation 1 in section 4). Throughout this paper, all maps are continuous
unless otherwise noted. As another disclaimer, when we work with fiber bundles or mani-
folds, we will be assuming they are smooth, and the involved maps are smooth. Also in this
situation, contractible will mean diffeomorphic to some R¥, whereas in the general case, we
will take contractible to mean that there exists a deformation retraction of the space to a
point.!

1 Presheaves and Cohomology

Definition 1. Let (B, 7 ) be a topological space. We define a category Open(B) by setting
its objects to be O Open(B) := T and the morphisms to be

MOpen(B) :={ip, : VCU|V,UeT}.

Definition 2. A presheaf on a space B is a contravariant functor F : Open(B) — € where
€ is typically Ab, Gp or Mod.

WHRNING: The following definitions differ from those in [Bo, pg. 109] which we will show
to be flawed.

Example 1. The trivial presheaf with group G on B is given by: F(U) = G for all U, and
F(i};) = idg for all morphisms 7};. This trivially is a functor F : Open(B) — Ab, hence is
a presheaf.

Definition 3. A constant presheaf with group G on a space B is a presheaf F with the prop-
erty that for any contractible open set U € Open(B), F(U) = G and for any contractible
opensets V C U, ]—'(zg) =idg.

This definition of a contractible space is not universally accepted. Some authors instead say a space is con-
tractible if the space is homotopic to a point.




Remark 1. The trivial presheaf is a constant presheaf, but it is in general not the only one.
There is a constant presheaf which sends coproducts to products, ie. F(U[[V) = G[] G
for U, V contractible.

Definition 4. A locally constant presheaf with group G on B is a presheaf F which is locally
naturally equivalent to a constant presheaf. That is, for every point x € B, there is a
neighborhood N (z) for which F |y () is a constant presheaf.

Example 2. For a fiber bundle 7 : E — B with fiber F, the presheaf H? : Open(B) —
Mody, givenby H?(U) := Hi, (7' (U)forall U € Open(B) with the morphisms H(i) :=
1* for all 4.

This is a locally constant presheaf because for any contractible open set U, we have
HIU) = Hlz (=1 (U)) = HiL(F) by the Poincaré lemma.

If it is not clear from context what we mean by H?, we will write HY(7 : E — B). In
[Bo], the ambiguous notation H?(F’) where F' is the fiber of 7 : E — B is used. This does
indeed have its merits, so we will use this notation as well if it is clear what is intended.

Example 3. Not every locally constant presheaf is constant. If 7 : M — S! is the Mobius
band, one will see that the presheaf H? is not constant. Consider the following good cover
of Sl :

Uy

71N
o

and suppose the Mébius band M is chosen such that the twist occurs in Uy N Us. Then,
one computes H°(U;) = H°(U; N U;) = R for all i and j. However, exactly one of the
maps HY(i}?) or H°(i1?) must be the isomorphism which sends 1 = — 1. Therefore,
the presheaf " cannot be constant.

Remark 2 (Discrepancy with [Bo]). The above definitions, as already mentioned, differ from
those found in [Bo, pg. 109]. The definitions from [Bo] are contained in the following
excerpt:

The trivial presheaf with group G is the presheaf F which associates to every
connected open set the group G and to every inclusion V' C U the identity
map: F(U) — F(V). We say that a presheaf is a constant presheaf if it is
isomorphic to the trivial presheaf, and that it is a locally constant presheaf if it
is locally isomorphic to the trivial presheaf, i.e., every point has a neighborhood
U so that F|y is a constant presheaf.

First off, the structure imposed on F in the definition of a trivial presheaf is not enough
to make it unique. See remark 1.



Secondly, for a fiber bundle 7w : E — B with fiber F, the presheaf H!(7 : E — B) is
not locally constant according to this definition. Consider an S'-bundle over B which has
dimension 2. For any U contractible about a point z, i.e. (in this context) U =2 D2, we have
H!(U) = R. Contained in D?, there is an open annulus which we dennote by A. As A has
the cohomology of S!, we have H'(A) = H}(A x S') = R x R. Thus we cannot have
H (i) : R — R x R the identity map. Therefore, following the definitions from [Bo], the
presheaves HY(7w : E — B) are notlocally constant.

This error propagates further in the section, however. It is claimed that the presheaf H¢
with respect to the trivial bundle M x F provides an example of a locally constant presheaf
which is not constant in general. There are two ways one could attempt to remedy the
situation: one can either use the definition for locally constant by [Bo] and not consider H¢
as locally constant, or change the definition to the one which has been given in definitions 3
and 4. Then this example makes sense only if M is contractible, and then H?(M) = H(F)
by the Poincaré lemma. Furthermore, it can be easily seen that indeed ¢ must be a constant
presheaf.

A nice property about fiber bundles that we would like to have more generally, is that
there is a spectral sequence which converges to the cohomology of the fiber bundle, and we
have in many cases a good understanding of the F5 term, e.g. Leray’s Theorem. These two
facts help us compute the cohomology of many spaces, and thus compute Cech cohomology
of spaces with respect to the locally constant presheaf H?. We hope to generalize these prop-
erties to arbitrary locally constant presheaves, but how far can one take it? What properties
and results still hold?

One important property about a constant presheaf F, and thus of H? of a fiber bundle
with simply connected base and fiber with finite dimensional cohomology, is that

Hp(Baf) %F®Z Hp(BaZ) (1)

or when working with manifolds over R, H?(B, F) = F Qg H?(B,R) = F ®r HY,(B).

Our first abstraction is to consider the construction of C? (4, H?)? for a general surjective
map 7 : FF — B. In general, H? is not a loacally constant presheaf for a general surjection,
and so, we do not get the isomorphism in equation 1 as evinced by the next example.

Example 4. Consider the projection 7 : S' — [~1,1] which vertically projects the unit
circle onto the horizontal axis. If we consider the good cover

U={[-1,-1/4),(-1/2,1/2),(1/4,1]}
of I := [—1,1]. The presheaf H° on I is not locally constant. This is easily seen by com-
puting H%(7~(B(0;¢))) 2 R? and H°(7~1(B(1;¢€))) = R for € sufficiently small. Since
these computations hold for all sufficiently small ¢, no neighborhoods N (0) or N (1) can be
chosen such that H°| v (0)(Up) = H°|n1)(Ur) for Uy € N(0) and Uy C N(1) contractible.
By the Poincaré lemma, H?(U) = 0 for all ¢ # 0, and for dimensional reasons Fy =
Es = Hj;5(S"). Pictorially, we have

Ey =

*see the appendix for more on the Cech complex



Thus we cannot rely on our knowledge of H% (1) to tell us if HP (4, H") vanishes or not
as we can for constant presheaves.

2 The Path Fibration

One way to get some of these properties is to consider the concept of a fibration or a fibering.
This construction will give us some of our sought out properties. The main property we get
is the following:

form: E — B, 3 aspace F' 5V contractible U C B, H1(U) = HI(F), (2)

or, in other words, H? are locally constant presheaves with respective groups H?(F') for
some fixed space. With this extra structure, we can consider the spectral sequence with
EP? = HP(B, H?) which then converges to H},(FE). The more general nature of 7 : £ —
B lets us consider more spaces, but the property 2 permits some techniques to simplify
matters. In this section, we are considering general spaces, continuous maps, and integer
singular cohomology. We denote the functor which associates a space with its singular
integer cochain abelian group as .S™.

Definition 5. Let B be a space with basepoint . The path space of B is the set P(B) =
{7:[0,1] — B|~(0) = x} given the compact-open topology. It is equipped with the canon-
ical projection 7 : P(B) — B given by () = v(1). We denote Q(B) := 7 1(x)
Definition 6. A fibration or fibering of B is a map 7 : E' — B which satisfies the following
homotopy covering property:

Given any map f : ¥ — F and any homotopy fi Y xI — Bof
J = mo fsuchthatsgo f:t= f(where so(y) = (y,0)), there exists 3)

a homotopy f; of f which covers f,. That is, there is a commutative
diagram

Y x 1

It is clear that covering spaces are fibrations over their base space. We can also see that
the path space P(B) is a fibration over the base space B.

Example 5. We show that 7 : P(B) — B is a fibration. We thus begin with a diagram




and seek to lift f, to ahomotopy f; : Y xI — E. By definition, f(y) is a path in B which has
terminal point f,(y) = 7(f(y)). For to € I define fi,(y) = f(y) * f:(y)|0,1o) Where the
* denotes the path product of first traversing f(y), and then traversing f,(y)|o.¢,). This is

evidently a proper lifting as fo(y) = f(y) and 7(fi, () = 7(f(y) * ()] [0.t0)) = fro (¥)-
Hence 7 : P(B) — B is a fibration.

Proposition 1. a.) For any contractible subset U C B, we have 7~ 1(U) homotopic to
7 1(p) forp e U.

b.) If p,q € B are in the same path component, then 7~ !(p) is homotopy equivalent to
71(q). If B is path connected, then 7—1(p) ~ 7~ 1(x) = QB.

Proof. a.) Since U is contractible, there is a homotopy F; : U x I — U such that F} = idy
and Fy(z) = pforallz € U and p € U. We thus have a path Fy(z) : I — U with
initial point x and terminal point p.

We claim that the maps ¢ : 71 (p) — 71 (U) and ¢ : 7= 1(U) — 7~ 1(p) where

f(2z 0<x<1/2
¢(f :1— B) :f'Ft(f(l)){ Fhi(l(f)(l)) 1/2§x§/1

are homotopically inverse to one another. The non-trivial homotopy is showing t¢ =~
id;-1(¢7). The desired homotopy is given by

f(A=t/2)7"2)  0<z<1-1/2
Gt(f):{ Fgm_%_H ’ 1—tx/2§x§1

T

This homotopy continuously stretches the path f along the path F;(f(1)) until it reaches
@(f). It is a routine matter of working with the compact-open topology that the map
G is continuous, and therefore, a homotopy.

b.) By assumption, there is a path  with initial point p and terminal point ¢; also y~!

has initial point ¢ and terminal point p. We define ¢, : 7' (p) — 7 !(q) and ¢, :
7 1(q) — 7 (p) by: ¢p(f) := f - (the product path), and ¢y (f) := f -7~'. The
homotopy equivalences ¢ 0¢;, =~ id-1(,) and ¢, 0 ¢, > id;-1(,) are given by a similar
construction as was seen in part a.) of the proof of this proposition.

O

Proposition 2. a.) Any two fibers of a fibering over an arcwise-connected space have the
same homotopy type.

i. Apath~ :[0,1] — B with v(0) = a and 7(1) = b induces a (not unique) map
I'y : F, — Fp. We also denote this induced map by Z (7).
ii. If v ~ p are homotopic paths, then they induce homotopic maps I'; ~ M.

b.) For every contractible open set U, the inverse image 7~ U has the homotopy type of
the fiber I, where a € U.

Proof. a) i. From the pathy, wedefinel : F, x I — BbyT';(y) = y(t)orT = yoms.
We thus have the diagram:



FLCe——>F
J/\F/ﬂl
v
S0 s T
s \
v
- T

F, x1I

B

As the above diagram is commutative, imI'y C F}, and we identify the map I'; :
F, x{1} - F, — EwithT'y : F, — F,.

ii. Let H : v = p. As we have

Fac—>E Fac—>E
\r/4 \M/1
v v
So Ve T S0 7/ T
s by
/ v
y F\ ~ M\
F,x 1 B FoxI—M op

we see that My = I'g. Thus we may construct G : F, x I — E by
I

which is evidently continuous by the continuity of I', M and the fact that the defi-
nitions agree on the subspaces where they intersect, i.e. t = 1/3,2/3. Asy ~ p,
we have a homotopy H : I x I — B such that Hy = 7, H; = p. The maps G and

H then induce the following diagram by the covering homotopy property of E.




we thus see that R covers the homotopy H, so that My = R1(y,1) : F, x {1} x
{1} — F5, Ty = Ry(y, 1) and thus R;(y, 1) is a homotopy of the maps M; ~ T';.

We now prove the result. By the assumption that B is arcwise connected, given any two
points a, b € B, there is a path y connecting them. We take v(0) = a and (1) = b. The
paths v and ! induce maps of the fibers Z(v) : F, — Fyand Z(y~!) : F, — F,. By
the previous result, we have Z(y 1) o Z(y) ~ Z(y~ ! -v) ~ Z(a) = idF, and similarly,
Z(y) o Z(y~ 1) ~ id, which establishes the claim.

b.) By assumption that U C B is contractible, there is a deformation retraction of U to a
point p which we denote by I' : U x I — U. With this deformation retraction, we create
the following diagram with the help of the homotopy covering property:

U U

- awxid r

U x I UxI

Since imfl - ﬂ_l(p) = F},, we can factor fl as
= ¢ v
IN=to¢:7'U—F,—717.
Thus T gives us a homotopy between id,—17; and ¢ o ¢.

We now show that ¢ o+ ~ idp,. By the covering homotopy property, we have the
following diagram:

L id

Fy ¢ a~ U a~ U
_ =%
-~
- - -~
— —
— // //

S0 S0 /T// /i/ g

- - _ - T

=7, - 7 xid r

Fyxl ————— 71U x [ UxI U

Observe that we may take T = T o s as the covering homotopy of the map T. As I'is a
deformation retraction, we have im T C F},, and thus we may factor this map as

Ty =10®;: Fx [ ——F, > 117 .

With this, we verify that &5 = idr, and ®; = ¢ o +. Thus ® establishes that idp, ~ ¢ o,
with which we conclude that 71U ~ F, O



Remark 3. T am curious to know if the same proposition holds true if the other definition of
contractibility is used.

Proposition 3. If 7 : E — B is a fibering where B is simply connected and FE is path
connected, then the fiber is path connected.

Proof. As the E5° term trivially survives to Fo,, we have ES? = E%0 = HO(E) = Z.
By equation 1, we have £y’ = HO(B, H(F)) = HO°(F) from which the proposition
follows. O

3 The Cohomology of 2(S™)

We begin our computation by illustrating the technique with the special case with n = 2.
We thus have the following situation

0S? — pPs?

SQ

that is, S? is the base space of the path fibration PS?, and the associated fiber is 2S2. As S2
is simply connected, we conclude by the results 4 and 5 that the locally constant presheaves
Hi(m : PS> — S?) on S? are indeed constant. We write H?(2S?) = HY(QS?) as it is
the constant presheaf with group H9(2S?). We therefore have EY*? = HP(S?, HI(QS?)).
Utilizing equation 1, we then have the zeroth column given by ES? = HO(S?, H1(QS?)) =
HY(QS?). By proposition 3, we can also compute that the bottom row is given by EL 0=
HP(S?, H°(OS?)) = HP(S?,Z). As

Z =0,2
p 2 _ p 9
HP(§%,2) = { 0 otherwise

we conclude that all colums other than Eg ! and E22 ! are zero by equation 1. From the
description of the domain and codomain of the differentials d;, we see that d; = 0 for all
i > 3. We thus have the following diagram of Fs:

p

B

VA VA

q

We prove by induction that H%(Q2S?) = Z for all q. It has already been explained that the
base case with ¢ = 0 is satisfied. For our induction step, suppose H9({2S?) = Eg 1 = 7. By
equation 1, we conclude that E;’q = Z. Consider the map dg"”l : Eg’qul — Eg’q. Since



PS? is contractible, B3 = E., = Hi, (PS2) only has one nonzero term E30,0 = 7, from
which we conclude the differential dy ¢ : ES?"! — E2'? must yield trivial cohomology.
That is, ker dg"”l =0, and im dg"”l = R, or ds is an isomorphism. Therefore, Eg’q'H =
H9T(QS?) and the proof is complete.

An entirely analogous proof works for the general case of Q2S™ for n > 2 to give

A qg=k(n—1)fork € Ny
0 otherwise

o(osn) = {

4 Appendix

Notation 1. The notation H*(B; ) represents singular cohomology of the topological space
B with coefficients in G where G is most often a group or vector space. We will later see
H*(B,F) which arises from a different concept!

Definition 7. We now delve into computing cohomology of a space with respect to a presheaf
F. To do so, one first defines the Cech complex of an open cover & = {G,, } of a space B with
respect to F. This is given by CP(®, F) := Ha0<_”<ap F(Gay-a,) with differential 4.
The differential § is given by first defining 0; : [[Uag-..a, — Uag---cii--a, DY ai|Ua0...ap :
Uag-apy € Uag- iy, Then define § := 3, (—1)'0;. One then defines H?(B,F) :=
lim H? (&, F).

Lemma 1. If M is a manifold, then H};,(M x R) = H};,(M). We obtain as a corollary
H*(M x R¥) = H*(M).

Proposition 4. Let 4l be an open cover of a connected topological space B and N (1) is the
nerve of the cover. If 71 (N (L)) = 0, then every locally constant presheaf on il is constant.

Proposition 5. If the space B has a good cover 4, then 71 (B) = w1 (N (H)).
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