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In this paper, we will investigate the notion of cohomology with respect to a presheaf and
how it relates to the cohomology of topological objects su as fiber bundles and fibrations.
e goal being to compute Hq(Ω(Sn); Z), that is, the cohomology groups of the loop space
of an n-sphere.

In order to make the paper readable, we will assume working knowledge with the ba-
sics of: manifolds; fiber bundles; de Rham cohomology (H∗

dR), Če-de Rham cohomology
(H∗

D), Če cohomology (H∗(B,F)) and singular cohomology with coefficients in A (de-
noted by H∗(B;A)). Some results will be cited without proof, but the statements will be
given in the appendix. Our discussion is broken up into three sections: in section , we intro-
duce presheaves and correct a few mistakes in [Bo] concerning these definitions; in section
, we investigate the path fibration of a topological space; and in section , we compute
H∗(Ω(Sn); Z) (see Notation  in section ). roughout this paper, all maps are continuous
unless otherwise noted. As another disclaimer, when we work with fiber bundles or mani-
folds, we will be assuming they are smooth, and the involved maps are smooth. Also in this
situation, contractible will mean diffeomorphic to some Rk , whereas in the general case, we
will take contractible to mean that there exists a deformation retraction of the space to a
point.¹

 Presheaves and Cohomology

Definition . Let (B, T ) be a topological space. We define a category Open(B) by seing
its objects to be OOpen(B) := T and the morphisms to be

MOpen(B) :=
{
iVU : V ⊆ U |V, U ∈ T

}
.

Definition . A presheaf on a space B is a contravariant functor F : Open(B) → C where
C is typically Ab, Gp or ModR.

W: e following definitions differ from those in [Bo, pg. ] whi we will show
to be flawed.

Example . e trivial presheaf with group G on B is given by: F(U) = G for all U , and
F(iVU ) = idG for all morphisms iVU . is trivially is a functor F : Open(B) → Ab, hence is
a presheaf.

Definition . A constant presheaf with group G on a space B is a presheaf F with the prop-
erty that for any contractible open set U ∈ Open(B), F(U) = G and for any contractible
open sets V ⊆ U , F(iVU ) = idG.

¹is definition of a contractible space is not universally accepted. Some authors instead say a space is con-
tractible if the space is homotopic to a point.
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Remark . e trivial presheaf is a constant presheaf, but it is in general not the only one.
ere is a constant presheaf whi sends coproducts to products, i.e. F(U

⨿
V ) = G

∏
G

for U, V contractible.

Definition . A locally constant presheaf with group G on B is a presheafF whi is locally
naturally equivalent to a constant presheaf. at is, for every point x ∈ B, there is a
neighborhood N(x) for whi F|N(x) is a constant presheaf.

Example . For a fiber bundle π : E → B with fiber F , the presheaf Hq : Open(B) →
ModR given byHq(U) := Hq

dR(π−1(U) for allU ∈ Open(B)with themorphismsHq(i) :=
i∗ for all i.

is is a locally constant presheaf because for any contractible open set U , we have
Hq(U) = Hq

dR(π−1(U)) = Hq
dR(F ) by the Poincaré lemma.

If it is not clear from context what we mean by Hq , we will write Hq(π : E → B). In
[Bo], the ambiguous notation Hq(F ) where F is the fiber of π : E → B is used. is does
indeed have its merits, so we will use this notation as well if it is clear what is intended.

Example . Not every locally constant presheaf is constant. If π : M → S1 is the Möbius
band, one will see that the presheaf H0 is not constant. Consider the following good cover
of S1:

U1

U2 U3

and suppose the Möbius band M is osen su that the twist occurs in U1 ∩ U2. en,
one computes H0(Ui) = H0(Ui ∩ Uj) = R for all i and j. However, exactly one of the
maps H0(i121 ) or H0(i122 ) must be the isomorphism whi sends 1 � // − 1 . erefore,
the presheaf H0 cannot be constant.

Remark  (Discrepancy with [Bo]). e above definitions, as already mentioned, differ from
those found in [Bo, pg. ]. e definitions from [Bo] are contained in the following
excerpt:

e trivial presheaf with group G is the presheaf F whi associates to every
connected open set the group G and to every inclusion V ⊂ U the identity
map: F(U) → F(V ). We say that a presheaf is a constant presheaf if it is
isomorphic to the trivial presheaf, and that it is a locally constant presheaf if it
is locally isomorphic to the trivial presheaf, i.e., every point has a neighborhood
U so that F|U is a constant presheaf.

First off, the structure imposed on F in the definition of a trivial presheaf is not enough
to make it unique. See remark .
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Secondly, for a fiber bundle π : E → B with fiber F , the presheaf Hq(π : E → B) is
not locally constant according to this definition. Consider an S1-bundle over B whi has
dimension . For any U contractible about a point x, i.e. (in this context) U ∼= D2, we have
H1(U) ∼= R. Contained in D2, there is an open annulus whi we dennote by A. As A has
the cohomology of S1, we have H1(A) = H1

dR(A × S1) ∼= R × R. us we cannot have
H1(iAU ) : R → R × R the identity map. erefore, following the definitions from [Bo], the
presheaves Hq(π : E → B) are not locally constant.

is error propagates further in the section, however. It is claimed that the presheaf Hq

with respect to the trivial bundle M ×F provides an example of a locally constant presheaf
whi is not constant in general. ere are two ways one could aempt to remedy the
situation: one can either use the definition for locally constant by [Bo] and not consider Hq

as locally constant, or ange the definition to the one whi has been given in definitions 
and . en this example makes sense only if M is contractible, and thenHq(M) = Hq(F )
by the Poincaré lemma. Furthermore, it can be easily seen that indeedHq must be a constant
presheaf.

A nice property about fiber bundles that we would like to have more generally, is that
there is a spectral sequence whi converges to the cohomology of the fiber bundle, and we
have in many cases a good understanding of the E2 term, e.g. Leray’s eorem. ese two
facts help us compute the cohomology of many spaces, and thus compute Če cohomology
of spaces with respect to the locally constant presheafHq . We hope to generalize these prop-
erties to arbitrary locally constant presheaves, but how far can one take it? What properties
and results still hold?

One important property about a constant presheaf F , and thus of Hq of a fiber bundle
with simply connected base and fiber with finite dimensional cohomology, is that

Hp(B,F) ∼= F ⊗Z Hp(B, Z) ()

or when working with manifolds over R, Hp(B,F) ∼= F ⊗R Hp(B, R) ∼= F ⊗R Hp
dR(B).

Our first abstraction is to consider the construction ofCp(U,Hq)² for a general surjective
map π : E → B. In general, Hq is not a loacally constant presheaf for a general surjection,
and so, we do not get the isomorphism in equation  as evinced by the next example.

Example . Consider the projection π : S1 → [−1, 1] whi vertically projects the unit
circle onto the horizontal axis. If we consider the good cover

U = {[−1,−1/4) , (−1/2, 1/2) , (1/4, 1]}

of I := [−1, 1]. e presheaf H0 on I is not locally constant. is is easily seen by com-
puting H0(π−1(B(0; ϵ))) ∼= R2 and H0(π−1(B(1; ϵ))) ∼= R for ϵ sufficiently small. Since
these computations hold for all sufficiently small ϵ, no neighborhoods N(0) or N(1) can be
osen su thatH0|N(0)(U0) ∼= H0|N(1)(U1) forU0 ⊆ N(0) andU1 ⊆ N(1) contractible.

By the Poincaré lemma, Hq(U) = 0 for all q ̸= 0, and for dimensional reasons E2 =
E∞ = H∗

dR(S1). Pictorially, we have

E2 = R R

²see the appendix for more on the Če complex
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us we cannot rely on our knowledge of Hp
dR(I) to tell us if Hp(U,H0) vanishes or not

as we can for constant presheaves.

 e Path Fibration

One way to get some of these properties is to consider the concept of a fibration or a fibering.
is construction will give us some of our sought out properties. e main property we get
is the following:

for π : E → B, ∃ a space F ∋ ∀ contractible U ⊆ B, Hq(U) ∼= Hq(F ), ()

or, in other words, Hq are locally constant presheaves with respective groups Hq(F ) for
some fixed space. With this extra structure, we can consider the spectral sequence with
Ep,q

2 = Hp(B,Hq) whi then converges to H∗
D(E). e more general nature of π : E →

B lets us consider more spaces, but the property  permits some teniques to simplify
maers. In this section, we are considering general spaces, continuous maps, and integer
singular cohomology. We denote the functor whi associates a space with its singular
integer coain abelian group as S∗.

Definition . Let B be a space with basepoint ∗. e path space of B is the set P (B) =
{γ : [0, 1] → B | γ(0) = ∗} given the compact-open topology. It is equippedwith the canon-
ical projection π : P (B) → B given by π(γ) = γ(1). We denote Ω(B) := π−1(∗)

Definition . A fibration or fibering of B is a map π : E → B whi satisfies the following
homotopy covering property:

Given any map f : Y → E and any homotopy f t : Y × I → B of
f := π ◦ f su that s0 ◦ f : t = f (where s0(y) = (y, 0)), there exists
a homotopy ft of f whi covers f t. at is, there is a commutative
diagram

()

Y
f //

s0

��

f CC
CC

CC
CC

!!CC
CC

CC
CC

E

π

��
Y × I

ft //

ft

=={
{

{
{

{
{

{
{

{
B

It is clear that covering spaces are fibrations over their base space. We can also see that
the path space P (B) is a fibration over the base space B.

Example . We show that π : P (B) → B is a fibration. We thus begin with a diagram

Y
f //

s0

��

f

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
E

π

��
Y × I

ft // B
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and seek to li f t to a homotopy ft : Y ×I → E. By definition, f(y) is a path inB whihas
terminal point f0(y) = π(f(y)). For t0 ∈ I define ft0(y) = f(y) ∗ f t(y)|[0,t0] where the
∗ denotes the path product of first traversing f(y), and then traversing f t(y)|[0,t0]. is is
evidently a proper liing as f0(y) = f(y) and π(ft0(y)) = π(f(y)∗f t(y)|[0,t0]) = ft0(y).
Hence π : P (B) → B is a fibration.

Proposition . a.) For any contractible subset U ⊆ B, we have π−1(U) homotopic to
π−1(p) for p ∈ U .

b.) If p, q ∈ B are in the same path component, then π−1(p) is homotopy equivalent to
π−1(q). If B is path connected, then π−1(p) ≃ π−1(∗) = ΩB.

Proof. a.) Since U is contractible, there is a homotopy Ft : U × I → U su that F1 = idU

and F0(x) = p for all x ∈ U and p ∈ U . We thus have a path Ft(x) : I → U with
initial point x and terminal point p.

We claim that the maps ι : π−1(p) → π−1(U) and ϕ : π−1(U) → π−1(p) where

ϕ(f : I → B) := f · Ft(f(1)) =
{

f(2x) 0 ≤ x ≤ 1/2
F2x−1(f(1)) 1/2 ≤ x ≤ 1

are homotopically inverse to one another. e non-trivial homotopy is showing ιϕ ≃
idπ−1(U). e desired homotopy is given by

Gt(f) =
{

f((1 − t/2)−1 · x) 0 ≤ x ≤ 1 − t/2
F 2x

t − 2
t +1 1 − t/2 ≤ x ≤ 1

is homotopy continuously stretes the path f along the path Ft(f(1)) until it reaes
ϕ(f). It is a routine maer of working with the compact-open topology that the map
Gt is continuous, and therefore, a homotopy.

b.) By assumption, there is a path γ with initial point p and terminal point q; also γ−1

has initial point q and terminal point p. We define ϕp : π−1(p) → π−1(q) and ϕq :
π−1(q) → π−1(p) by: ϕp(f) := f · γ (the product path), and ϕq(f) := f · γ−1. e
homotopy equivalences ϕq ◦ϕp ≃ idπ−1(p) and ϕp◦ϕq ≃ idπ−1(q) are given by a similar
construction as was seen in part a.) of the proof of this proposition.

Proposition . a.) Any two fibers of a fibering over an arcwise-connected space have the
same homotopy type.

i. A path γ : [0, 1] → B with γ(0) = a and γ(1) = b induces a (not unique) map
Γ1 : Fa → Fb. We also denote this induced map by I(γ).

ii. If γ ≃ µ are homotopic paths, then they induce homotopic maps Γ1 ≃ M1.

b.) For every contractible open set U , the inverse image π−1U has the homotopy type of
the fiber Fa, where a ∈ U .

Proof. a.) i. From the path γ, we define Γ : Fa × I → B by Γt(y) = γ(t) or Γ = γ ◦π2.
We thus have the diagram:
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Fa
� � //

s0

��

DD
DD

DD

!!DD
DD

DD
D

E

π

��
Fa × I

Γ //

Γ

==z
z

z
z

z
z

z
B

As the above diagram is commutative, imΓ1 ⊆ Fb, and we identify the map Γ1 :
Fa × {1} → Fb ↩→ E with Γ1 : Fa → Fb.

ii. Let H : γ
∼−→ µ. As we have

Fa
� � //

s0

��

DD
DD

DD

!!DD
DD

DD
D

E

π

��
Fa × I

Γ //

Γ

==z
z

z
z

z
z

z
B

Fa
� � //

s0

��

DD
DD

DD

!!DD
DD

DD
D

E

π

��
Fa × I

M //

M

==z
z

z
z

z
z

z
B

we see that M0 = Γ0. us we may construct G : Fa × I → E by

I

Fa
Γ1 M1πFa

whi is evidently continuous by the continuity of Γ, M and the fact that the defi-
nitions agree on the subspaces where they intersect, i.e. t = 1/3, 2/3. As γ ≃ µ,
we have a homotopy H : I × I → B su that H0 = γ, H1 = µ. e maps G and
H then induce the following diagram by the covering homotopy property of E.

Fa

Fb

⊆ E

γ

µ
b

a
b
b

s0

∼= H◦πI×I

G

π

R





we thus see that R covers the homotopy H , so that M1 = R1(y, 1) : Fa × {1} ×
{1} → Fb, Γ1 = R0(y, 1) and thus Rt(y, 1) is a homotopy of the maps M1 ≃ Γ1.

We now prove the result. By the assumption that B is arcwise connected, given any two
points a, b ∈ B, there is a path γ connecting them. We take γ(0) = a and γ(1) = b. e
paths γ and γ−1 induce maps of the fibers I(γ) : Fa → Fb and I(γ−1) : Fb → Fa. By
the previous result, we have I(γ−1) ◦ I(γ) ≃ I(γ−1 · γ) ≃ I(a) = idFa and similarly,
I(γ) ◦ I(γ−1) ≃ idFb

whi establishes the claim.

b.) By assumption that U ⊆ B is contractible, there is a deformation retraction of U to a
point p whiwe denote by Γ : U×I → U . With this deformation retraction, we create
the following diagram with the help of the homotopy covering property:

π−1U� _

s0

��

id // π−1U

π

����
π−1U × I

π×id //

Γ

55kkkkkkkkkkkkk
U × I

Γ // U.

Since imΓ1 ⊆ π−1(p) = Fp, we can factor Γ1 as

Γ1 = ι ◦ ϕ : π−1U
ϕ // Fp

� � ι // π−1U .

us Γ gives us a homotopy between idπ−1U and ι ◦ ϕ.

We now show that ϕ ◦ ι ≃ idFp . By the covering homotopy property, we have the
following diagram:

Fp

s0

��

� � ι // π−1U
id //

s0

��

π−1U

π

����
Fp × I

T

ggggggggg

33gggggggggggggggggg

��
ι //

T

88π−1U × I

Γ

55lllllllllllllllll
π×id // U × I

Γ // U

Observe that we may take T = Γ ◦ ι as the covering homotopy of the map T. As Γ is a
deformation retraction, we have imT ⊆ Fp, and thus we may factor this map as

Tt = ι ◦ Φt : Fp × I
Φ // Fp

� � ι // π−1U .

With this, we verify that Φ0 = idFp and Φ1 = ϕ ◦ ι. us Φ establishes that idFp ≃ ϕ ◦ ι,
with whi we conclude that π−1U ≃ Fp
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Remark . I am curious to know if the same proposition holds true if the other definition of
contractibility is used.

Proposition . If π : E → B is a fibering where B is simply connected and E is path
connected, then the fiber is path connected.

Proof. As the E0,0
2 term trivially survives to E∞, we have E0,0

2 = E0,0
∞ = H0(E) = Z.

By equation , we have E0,0
2 = H0(B, H0(F )) = H0(F ) from whi the proposition

follows.

 e Cohomology of Ω(Sn)

We begin our computation by illustrating the tenique with the special case with n = 2.
We thus have the following situation

ΩS2 // PS2

π

��
S2

that is, S2 is the base space of the path fibration PS2, and the associated fiber is ΩS2. As S2

is simply connected, we conclude by the results  and  that the locally constant presheaves
Hq(π : PS2 → S2) on S2 are indeed constant. We write Hq(ΩS2) = Hq(ΩS2) as it is
the constant presheaf with group Hq(ΩS2). We therefore have Ep,q

2 = Hp(S2,Hq(ΩS2)).
Utilizing equation , we then have the zeroth column given by E0,q

2 = H0(S2,Hq(ΩS2)) =
Hq(ΩS2). By proposition , we can also compute that the boom row is given by Ep,0

2 =
Hp(S2, H0(ΩS2)) = Hp(S2, Z). As

Hp(S2, Z) =
{

Z p = 0, 2
0 otherwise

we conclude that all colums other than E0,q
2 and E2,q

2 are zero by equation . From the
description of the domain and codomain of the differentials di, we see that di = 0 for all
i ≥ 3. We thus have the following diagram of E2:

Z

p

q

Z

d2

Weprove by induction thatHq(ΩS2) = Z for all q. It has already been explained that the
base case with q = 0 is satisfied. For our induction step, suppose Hq(ΩS2) = E0,q

2 = Z. By
equation , we conclude that E2,q

2 = Z. Consider the map d0,q+1
2 : E0,q+1

2 → E2,q
2 . Since





PS2 is contractible, E3 = E∞ = H∗
D(PS2) only has one nonzero term E0,0

3 = Z, from
whi we conclude the differential d0,q+1

2 : E0,q+1
2 → E2,q

2 must yield trivial cohomology.
at is, ker d0,q+1

2 = 0, and im d0,q+1
2 = R, or d2 is an isomorphism. erefore, E0,q+1

2 =
Hq+1(ΩS2) and the proof is complete.

An entirely analogous proof works for the general case of ΩSn for n ≥ 2 to give

Hq(ΩSn) =
{

Z q = k(n − 1) for k ∈ N0

0 otherwise

 Appendix

Notation . e notation H∗(B; G) represents singular cohomology of the topological space
B with coefficients in G where G is most oen a group or vector space. We will later see
H∗(B,F) whi arises from a different concept!

Definition . We now delve into computing cohomology of a space with respect to a presheaf
F . To do so, one first defines the Če complex of an open coverG = {Gα} of a spaceB with
respect to F . is is given by Cp(G,F) :=

∏
α0<···<αp

F(Gα1···αp) with differential δ.
e differential δ is given by first defining ∂i :

⨿
Uα0···αp → Uα0···α̂i···αp by ∂i|Uα0···αp

:
Uα0···αp

⊆ Uα0···α̂i···αp
. en define δ :=

∑
i(−1)i∂i. One then defines Hp(B,F) :=

lim−→Hp(G,F).

Lemma . If M is a manifold, then H∗
dR(M × R) ∼= H∗

dR(M). We obtain as a corollary
H∗(M × Rk) = H∗(M).

Proposition . Let U be an open cover of a connected topological space B and N(U) is the
nerve of the cover. If π1(N(U)) = 0, then every locally constant presheaf on U is constant.

Proposition . If the space B has a good cover U, then π1(B) ∼= π1(N(U)).

R
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