
1. Voevodsky’s connectivity theorem for P1-spectra

Our goal is to prove theorem 4.14 of [Voev98], which we restate in terms of
P1-spectra.

Theorem 1.1. Let (X,x) be a pointed smooth scheme over Spec(k) where k is an
infinite field. Let Y be a pointed space. Then for any n > dim(X), and any integer
m

SH(k)(Σ∞X,Sn ∧Gmm ∧ Σ∞Y) = 0.

We will prove this theorem by following [Mor03] and [Mor05] by Fabien Morel.

Remark 1. To prove this theorem, Morel carefully analyzes how to pass from spaces
in the projective model structure to the A1 stable homotopy category of P1 spectra.
From the projective model structure on spaces, we construct a model of the left
Bousfield localization of spaces at the class of maps {U+ ∧ A1 → U |U im Sm/k}.
To get to P1 spectra, we first invert S1 ∧ − to get a category of S1 spectra, and
then we invert Gm ∧ − to get a category of (Gm, S1) bispectra.

Hs,•(k)→ H•(k)→ SHS
1

(k)→ SH(k)

The machinery that we set up to prove this theorem will also allow us to establish
a t-structure on SH(k), and identify its heart.

Remark 2. A construction of Ayoub [Ayo08] shows that theorem 1.1 statement
is false over general Noetherian base schemes S. The argument below works for
infinite fields, however.

2. Assumptions from previous lectures

We briefly recall some of the basic constructions which appear in [Mor03] and
[Mor05].

2.1. Facts about Nisnevich topology. The proof of Voevodsky’s connectivity
theorem will follow from the following property of Nisnevich sheaf cohomology by
a sequence of reductions.

Proposition 2.1. [Mor04, 2.4.1] Let M be a sheaf of abelian groups on Sm/k, and
let X ∈ Sm/k with Krull dimension d. Then whenever n > d, Hn

Nis(X;M) = 0.

2.2. Unstable model category ∆opShv(Sm/k,Nis).

Definition 2.2. Let k be a field, and let Sm/k denote the category of smooth
schemes of finite type over k. The category of Morel-Voevodsky spaces over k
is the category of simplicial Nisnevich sheaves on Sm/k. We write Spc(k) =
∆opShv(Sm/k,Nis) for this category.

The category Spc(k) may be equipped with several different model category
structures. We will work with the injective local model category structure on Spc(k),
which we now define.
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Definition 2.3. A map X → Y is an injective weak equivalence if and only if for
any U ∈ Sm/k, the map X (U)→ Y(U) is a weak equivalence of simplicial sets.

A map X → Y is an injective cofibration if and only if for any U ∈ Sm/k, the
map X (U)→ Y(U) is a cofibration of simplicial sets, i.e., a monomorphism.

A map X → Y is an injective fibration if and only if it satisfies the left lifting
property with respect to any trivial injective cofibration. That is, for any commu-
tative square below with A → B a trivial cofibration, a lift B → X exists.

A
��

∼
��

// X

��
B //

??

Y

Denote the homotopy category associated to the injective model category struc-
ture on Spc(k) by Hs(k). The “s” stands for simplicial.

Definition 2.4. The category of pointed space Spc•(k) inherits a model category
structure from Spc(k). The functor −+ : Spc(k) → Spc•(k) defined by adding a
disjoint basepoint to a given space is a left Quillen functor. The right adjoint is the
forgetful functor.

Proposition 2.5. Every object of Spc(k) and Spc•(k) is cofibrant in the injective
model category structure.

Definition 2.6. For X ∈ Sm/k, let rX denote the sheaf associated to the presheaf
U 7→ Sm/k(U,X). This defines a functor r : Sm/k → Spc(k).

For K a simplicial set, the constant space cK ∈ Spc(k) is the sheaf associated to
the constant presheaf with value K. The functor c : sSet→ Spc(k) is a left Quillen
functor with right adjoint given by taking sections at Spec k.

Proposition 2.7. Spc(k) is a simplicial model category.

See [Pel08, Chapter 2] for a detailed treatment of the products and internal hom
constructions in Spc(k). We recount those definitions which are essential to our
argument.

Definition 2.8. For spaces X and Y, the product X × Y in Spc(k) is given by
U 7→ X (U)×Y(U). For spaces X and Y, the internal hom Hom(X ,Y) in Spc(k) is
given by the formula

(U,m) ∈ Sm/k ×∆ 7→ Hom∆opShv(X × rU × c∆n, Y ).

Proposition 2.9. The product and internal hom defined above give Spc(k) the
structure of a closed monoidal model category. See [H-Mod, Chapter 4] or [Pel08,
§1.7] for the definition.

Proof. The adjunction between X × − and Hom(X ,−) is given by the following
map.

η : Hom(Y, Hom(X ,Z))
∼=−→ Hom(X × Y,Z)
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For g ∈ Hom(Y, Hom(X ,Z)), we define η(g) by

Xn(U)× Yn(U)
η(g)(U,n) // Zn(U)

(a, b)
� // g(U, n)(b)(U, n)(a, idU , id∆n).

For f : X × Y → Z, the map (η−1f)(U, n) : Yn(U) → Hom(X ,Z)n(U) is given
by sending y ∈ Yn(U) to the map

Xm(V )× Sm/k(V,U)×∆n
m

(η−1f)(U,n)(y)(V,m) // Zm(V )

(x, φ, α) � // f(V,m)(x,Y(φ)(y ◦ α))

where we identify y with a map y : ∆n → Y(V ), and α : ∆m → ∆n. �

Definition 2.10. Let X and Y be spaces. For a point x ∈ X , there is an evaluation
map evx : Hom(X ,Y)→ Y, where at (U, n) ∈ (Sm/k ×∆)op we send g : X × rU ×
c∆n → Y to g(U, n)(x, id, id) ∈ Yn(U).

For pointed spaces (X , x) and (Y, y), the pointed internal hom Hom•(X ,Y) is
the fiber of evx over y, i.e., ev−1

x (y).

Definition 2.11. Let (X , x) and (Y, y) be pointed spaces. The wedge of X and Y,
denoted by X ∨ Y, is the pushout of the following diagram.

pt
x //

y

��

X

��
Y // X ∨ Y

The smash product X ∧ Y is the space given by the pushout of the following
diagram, with basepoint X ∨ Y.

X ∨ Y //

��

X × Y

��
pt // X ∧ Y

Proposition 2.12. The category of pointed spaces Spc•(k) is also a closed monoidal
category with product ∧ and internal hom Hom•.

2.3. A1 localization.

Definition 2.13. A space X is called A1 local if for any smooth scheme U , the
canonical map

Hom(rU,X )→ Hom(rU × A1,X )

is a bijection.

Definition 2.14. A map f : X → Y is an A1 weak equivalence if

Hom(Y,Z)→ Hom(X ,Z)

is a bijection for every A1 local space Z.
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The unstable motivic homotopy category is obtained by left Bousfield localization
of the injective model category structure on spaces with respect to the class of maps
W = WA1 = {U × A1 → U |U ∈ Sm/k}. We deonte the category of spaces with
the model structure obtained by left Bousfield localization by LWSpc(k) and its
homotopy category by H(k). See [Hir, Chapter 3] for the general theory of Bousfield
localization. One thing we obtain is a localization functor LA1 : Hs(k) → H(k)
which is a left Quillen functor. In particular, LA1 sends sends A1 weak equivalences
to isomorphisms.

The model category LWSpc(k) is constructed as follows. The underlying cat-
egory of LWSpc(k) is Spc(k), but the weak equivalences are the A1-local weak
equivalences. The cofibrations are the cofibrations in the injective model structure
on Spc(k). The fibrations are what they need to be, i.e., those maps which satisfy
the left lifting property with respect to trivial cofibrations.

In order to effectively work with the H(k), we require a means of constructing
fibrant replacements in LWSpc(k). Morel accomplishes this by constructing another
model category with homotopy category H(k).

Definition 2.15. Let SpcA
1

(k) denote the full subcategory of Spc(k) of A1 local
spaces.

Proposition 2.16. The homotopy category of SpcA
1

(k) is equivalent to H(k).

Definition 2.17. Let X be a space. Define π0(X ) to be the sheaf on Sm/k associ-
ated to U → π0(X (U)). A space X is called 0-connected if and only if π0(X ) is the
trivial sheaf.

Let (X , x) be a pointed space. Define πn(X ) to be the sheafification of the
presheaf on Sm/k given by

U → πn(X (U)).

A pointed space X is called n-connected if it is 0-connected and for all i ≤ n,
the sheaves πi(X ) are trivial.

Proposition 2.18. Let X be a 0-connected simplicial sheaf. Then L∞X is also
0-connected.

For a sheaf of abelian groups M on Sm/k and a natural number n, a Dold-
Kan construction gives a simplifical presheaf K(M,n). It is called the Eilenberg-
MacLane spectrum of type (M,n) and has homotopy sheaves as expected.

πm(K(M,n)) =

{
0 if m 6= n

M if m = n

Proposition 2.19. For X ∈ Sm/k and M a sheaf of Abelian groups,

Hs(k)(rX,K(M,n)) ∼= Hn
Nis(X;M).

It therefore follows that

H•(k)(rX+,K(M,n)) ∼= Hn
Nis(X;M).



5

Notation 1. For a pointed space X , Let πA1

n (X ) denote the sheaf of homotopy

groups in the motivic category, i.e., πA1

n (X ) = πn(L∞X ). The sheaf πA1

n (X ) is also
the sheafification of the presheaf given by

U ∈ Sm/k 7→ H•(k)(Sn ∧ U+,X ).

2.4. S1 spectra. The functor Σs : Spc•(k)→ Spc•(k) given by ΣsX = S1 ∧X is a
left Quillen functor on Spc•(k), with right adjoint Ωs, where ΩsX = Hom•(S

1,X ).
This follows since S1 is a cofibrant object of Spc•(k). Note, however, that the
derived functor Σs is not an equivalence of homotopy categories. We may invert
this functor, i.e., make a new category where Σs is an equivalence of homotopy
categories, by creating a category of S1 spectra by using the general machinery
developed in [H-Spt]. Here the “s” in Σs and Ωs stands for “simplicial circle”.

Definition 2.20. Let SptS
1

(k) denote the category of S1 spectra of spaces over

k. An object E ∈ SptS
1

(k) is a sequence of pointed spaces Ei ∈ Spc•(k) equipped
with bonding maps σi : S1 ∧ Ei → Ei+1. A map of spectra f : E → F consists of
a sequence of maps of spaces fi : Ei → Fi which are compatible with the bonding
maps.

We first endow this category with the projective model structure (or level-wise
model structure), i.e., a map f : E → F is a weak equivalence if for any n the
map fn : En → Fn is a w.e.; a map f : E → F is a fibration if for all n the map
fn : En → Fn is a fibration. The cofibrations are those maps satisfying the right
lifting property with respect to trivial fibrations.

The projective cofibrations have the following characterization [H-Spt, Proposi-
tion 1.15]. A map f : E → F is a projective cofibration if and only if f0 : E0 → F0

is a cofibration and for any n ≥ 1, the dotted arrow in the diagram below is a
cofibration. Here P.O. denotes the push-out of the diagram.

S1 ∧ En−1

σn−1 //

S1∧fn−1

��

En

fn

��

��
S1 ∧ Fn−1

//

σn−1

//

P.O.
!!

!!
Fn

This model structure does not actually invert Σs. To accomplish this, we must
localize with respect to the stable equivalences.

Definition 2.21. A map f : E → F of S1 spectra is a stable equivalence if for
any n ∈ Z the induced map of homotopy sheaves πn(f) : πn(E) → πn(F ) is an
isomorphism.

The stable model category structure on SptS
1

(k) is given by declaring the weak
equivalences to be the stable weak equivalences, and the cofibrations to be the
same as those for the projective model structure. This is indeed a left Bousfield
localization, but we will not describe it further as such. Consult [H-Spt] for more
details.
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Denote the homotopy category of SptS
1

(k) by SHS
1

s (k).

Definition 2.22. Consider the class of maps W = {Σ∞U+ ∧ A1 → Σ∞U+ |U ∈
Sm/k} in SptS

1

(k). The left Bousfield localization of SptS
1

(k) with respect to W

exists, and we write LWSptS
1

(k) for the resulting model category. Denote the

homotopy category associated to LWSptS
1

(k) by SHS
1

(k).

Remark 3. Let SptS
1,A1

(k) denote the full subcategory of SptS
1

(k) consisting of
A1-local spectra. There is a functor L∞ on the level of homotopy categories, which
sends a spectrum E to an A1-local spectrum L∞E. The construction of L∞ is
similar to the one given for spaces.

For S1 spectra E and F , we calculate the stable A1 homotopy groupSHS
1

(k)(E,F )
by

SHS
1

(k)(E,F ) = SHS
1

(k)(L∞E,L∞F )

= SHS
1

s (k)(E,L∞F )

Here we consider the model for SHS
1

(k) given by Bousfield localization, then trans-
late to the category of A1 local spectra using L∞. The second equality follows from

the adjunction SHS
1

(k)→ SHS
1

s (k).
If we assume E is cofibrant and F is fibrant, we get the formula

SHS
1

(k)(E,F ) = SptS
1

(k)(E,L∞F ).

Definition 2.23. Let E be an S1 spectrum of spaces. Let πn denote the sheaf
obtained by taking the colimit of the directed system πn+r(Er) in Ab(Sm/k,Nis).
That is,

πn(E) = colimr πn+r(Er).

In particular, for a U ∈ Sm/k, we have

πn(E)(U) = colimr πn+r(Er)(U).

Definition 2.24. An S1 spectrum E is said to be n-connected if for any m ≤ n,
the homotopy sheaves πm(E) are trivial.

Definition 2.25. There is a left Quillen functor Σ∞s : Spc• → SptS
1

(k) given
by (Σ∞Y)n = (S1)∧n ∧ Y where the bonding maps come from associativity of
smash product. The right adjoint to this functor is given by “evaluation at 0”, i.e.,
Ω∞(E) = E0.

Remark 4. The right derived functor RΩ∞ : SHS
1

s (k) → H•(k) is given by the
formula

RΩ∞(E) = colimi ΩisEi.

This comes from the fact that fibrant S1 spectra are exactly the Ω spectra, and the
description of the fibrant replacement functor.

Remark 5. The left Quillen functor Σ∞s : SpcA
1

• (k)→ SptS
1

(k) factors through the
category of A1-local spaces. This follows by [Mor05, Remark 4.1.3]. Furthermore,

since a map f ∈ SptS
1

(k)(Σ∞X , E) is determined by f0 : X → E0 by the adjunction
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Σ∞s a Ω∞s , one can show that Σ∞s X → Σ∞L∞X is an A1-weak equivalence. So
in the case of suspension spectra, we may use Σ∞L∞X as an A1 localization. In

particular, for any n ∈ Z the sheaf πA1

n Σ∞s X is isomorphic to πnΣ∞L∞X .

Remark 6. The stable homotopy category is symmetric monoidal, with smash prod-
uct ∧ and internal hom Hom. Using symmetric spectra, one can give these con-
structions on the category of spectra [HSS]. The S1 stable homotopy category is
a triangulated category. The shift is given by S1 suspension, and distinguished
triangles are those triangles isomorphic to the cone of a map

X
f−→ Y → C(f)→ X[1].

Proposition 2.26. Let U ∈ Sm/k, n ∈ Z, and M ∈ Ab(Sm/k). Then there is a
canonical isomoprhism

Hn
Nis(U ;M)→ SHS

1

(Σ∞U+, HM [n]).

This is [Mor05, Lemma 3.2.3].

2.5. Weak connectedness.

Proposition 2.27. Let k be an infinite field, and consider X be a pointed space.
If for any finitely generated field F over k, π0(X )(F ) = 0, then the sheaf π0(X ) is
trivial.

Proof. The proof follows along the lines of [Mor05, Lemma 6.1.3]. �

Remark 7. The analgous statement for S1-spectra also holds.

2.6. t-structures.

Definition 2.28. Let C be a triangulated category. A t-structure on C is a pair of
full subcategories (C≥0,C≤0) which satisfies

(1) For any X ∈ C≥0 and any Y ∈ C≤0, HomC(X,Y [−1]) = 0.
(2) C≥0[1] ⊆ C≥0 and C≤0[−1] ⊆ C≤0

(3) for any X ∈ C there exists a distinguished triangle

Y → X → Z → Y [1]

for which Y ∈ C≥0, Z ∈ C≤0[−1]..

The heart of a t-structure is the full subcategory given by C≥0 ∩ C≤0.

Definition 2.29. Define SHS
1

s (k)≥0 to be the full subcategory of SHS
1

s (k) con-
sisting of objects E such that πn(E) = 0 whenver n < 0.

Define SHS
1

s (k)≤0 to be the full subcategory of SHS
1

s (k) consisting of objects E
such that πn(E) = 0 whenver n > 0.

Theorem 2.30. The pair (SHS
1

s (k)≥0,SHS
1

s (k)≤0) is a t-structure on SHS
1

s (k).

Remark 8. For a space X , there is a Postnikov tower associated to it

· · ·Pn(X )→ Pn−1(X )→ · · · → P 0(X )→ P−1(X )

constructed in [MV99, p. 57]. The main construction needed is the Moore-Postnikov
tower of a simplicial set [GJ91, VI.3.4]. For a simplicial set K and n ∈ N, define
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K(n) = im(K → cosknK). This is a convenient way to define the Moore construc-
tion.

For a space X , we then define PnX to be the space given by sheafification of
U 7→ X (U)(n).

Now for E an S1 spectrum, let E≤0 be the spectrum with (E≤0)n = Pn(En).
The bonding maps come from the canonical map

S1 ∧ Pn(En)→ Pn+1(S1 ∧ En).

See [Mor05, Lemma 3.2.1] for more on this construction.

2.7. Connectivity results.

Proposition 2.31. [Mor03, Lemma4.2.4] The functor L∞ : SHS
1

s (k)→ SHS
1,A1

(k)
identifies the A1-localized S1 stable homotopy category with the homotopy category
of A1-local S1 spectra.

Theorem 2.32. Let k be an infinite field. Consider E ∈ SHS
1

(k) and suppose
that whenever n < 0 the sheaf πnE = 0. Then for all n < 0, πnL

∞E = 0.

Theorem 2.33. The pair (SHS
1

≥0(k),SHS
1

≤0(k)) is a t-structure on the category

SHS
1

(k).

Proof. This is just the restriction of the t-structure to the A1-local objects. �

Definition 2.34. Let M be a sheaf of Abelian groups on Sm/k with respect to
the Nisnevich topology. We say M is strictly A1 invariant if for all n ≥ 0 and all
X ∈ Sm/k, the map Hn

Nis(X;M) → Hm
Nis(X × A1;M) is an isomorphism. Let

AbstA1(Sm/k) denote the full subcategory of sheaves of Abelian groups on Sm/k in
the Nisnevich topology consisting of the strictly A1 invariant sheaves.

Definition 2.35. If M ∈ Ab(Sm/k) is a sheaf of Abelian groups, the Eilenberg-
MacLane spectrum associated to M is the S1 spectrum HM given by HMn =
K(M,n). The bonding maps come from the usual identification of ΩsK(M,n) ∼=
K(M,n− 1).

Proposition 2.36. HM is A1 local iff M is strictly A1 invariant.

Proposition 2.37. The heart of the homotopy t structure is equivalent to the
category of strictly A1 invariant sheaves.

3. Inverting Gm ∧ −; P1 spectra

3.1. Gm suspension and loops. We always consider Gm to be pointed at 1 unless
otherwise specified.

Definition 3.1. On the category SptS
1

(k) equipped with the motivic stable model
category structure, there is a functor Σt(−) = Gm ∧− given by Σt(E)n = Gm ∧En
with the evident structure maps. Smashing with Gm is also a functor on the unstable
category of pointed spaces, and we give it the same name Σt.
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Definition 3.2. The functor Σt on Spc•(k) has a right adjoint denoted Ωt. It is
given by the formula ΩtX = Hom•(Gm,X ).

The functor Σt on SptS
1

(k) also has a right adjoint Ωt given by the internal hom
functor, i.e., ΩtE = Hom(Σ∞Gm, E).

Proposition 3.3. The functor Σt is a left Quillen functor on SptS
1

(k) and on

SptS
1,A1

(k). Furthermore, Σt is a triangulated functor on SHS
1

(k).

Lemma 3.4. Let E ∈ SptS
1,A1

(k) be a −1 connected spectrum. Then ΣtE is again
−1 connected.

Proof. The claim is clear when E = Σ∞s X a pointed space, since ΣtE = Σ∞s Gm∧X
is still a suspension spectrum, and so −1 connected.

Now consider a general −1 connected spectrum E. By [Mor05, Lemma 3.3.4], E
is weak equivalent to hocolimEi where E0 = ∗, and for each n, there is a family
Xα ∈ Sm/k and natural numbers nα ≥ 0 for which

∨αΣ∞s Xα,+[nα − 1]→ En−1 → En

is an exact triangle. An induction argument establishes that ΣtE
n is still −1 con-

nected for all n; hence ΣtE = hocolim ΣtE
n is also −1 connected. Should ΣtE fail

to be A1-local, we may simply apply L∞ to get an A1-local representative of ΣtE.
By the connectivity theorem, L∞ΣtE will again be −1 connected. �

3.2. Contraction in Ab(Sm/k,Nis), category of pointed sheaves of sets.

Definition 3.5. Let G be a sheaf of pointed sets on Sm/k. The contraction of G
is the sheaf G−1 given by the formula

U ∈ Sm/k 7→ ker(G(X ×Gm)
ev1−−→ G(X))

Where the map ev1 is the map induced by ev1 : Spec(k)→ Gm, i.e., k[x, x−1]→ k
given by x 7→ 1.

Note that indeed G−1 is a sheaf since it is the kernel of the morphism of sheaves
G(−) → G(− × Gm). The sheaf G(− × Gm) may also be written as Hom(Gm, G)
when we think of G as a space.

Proposition 3.6. If G is the trivial sheaf of abelian groups, then so is its contrac-
tion G−1.

Proposition 3.7. Contraction is an exact functor on the category AbstA1(Sm/k,Nis).
For any sheaf G ∈ Ab(Sm/k,Nis) and any X ∈ Sm/k, G(Gm×X) = G−1(X)⊕

G(X).

3.3. Homotopy sheaves of Hom(Gm, E).

Proposition 3.8. If G is a sheaf of Abelian groups, then G−1 = Hom•(Gm, G).
Hence contraction is right adjoint to − ∧ Gm. The claim is also true for pointed
sheaves of sets.

Proof. For this category, Hom•(Gm, G) and G−1 both have sections at X given by
ker(ev1 : G(X ×Gm)→ G(X)). See definition 2.10. �
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Remark 9. If G is a sheaf of Abelian groups, we may consider G as a space by
declaring Gn = G for all n and giving identity maps for the structure maps. In
particular, G is a pointed space at 0.

We can then realize the contraction as a Gm loop spaceG−1(X) = Hom•(Gm, G)(X).

Remark 10. We now describe the construction of the canonical map πn(Hom(Gm, E))→
πn(E)−1 for an S1 spectrum E.

First observe that for any U ∈ Sm/k and any n ∈ Z there is a map

Spts(k)(Sn ∧ Σ∞s U+ ∧ Σ∞Gm, E)× Spc(k)(U,Gm)→ π0(E)(U)

given by sending (f, α) to the composition

Σ∞s U+

id∧Σ∞s α// Sn ∧ Σ∞s U+ ∧ Σ∞s Gm // E.

Hence there is a map of sheaves

πn(Hom(Gm, E))×Gm → πn(E).

This map descends to the smash product, so we have

πn(Hom(Gm, E)) ∧Gm → πn(E).

But by the adjunction −∧Gm a Hom•(Gm,−) on Spc•(k) we have a morphism

πn(Hom(Gm, E))→ Hom•(Gm, πn(E)) = πn(E)−1.

Remark 11. If E = HM is an Eilenberg-MacLane spectrum associated to a strictly
A1 invariant sheaf of abelian groups M , we show

πn(Hom(Gm, HM))→ Hom•(Gm, πn(HM)) = πn(HM)−1.

is an isomorphism by showing Hom(Gm, HM) is an Eilenberg-MacLane spectrum.

Proposition 3.9. For M ∈ AbstA1(Sm/k), the spectrum Hom(Gm, HM) is weak
equivalent to H(M−1).

Proof. We evaluate πnHom(Gm, HM) at fields F which are finitely generated over
k. We consider the special case F = k, but the argument works in general.

Since P1 = S1 ∧Gm in H•(k), we have Σ∞P1[−1] = Σ∞Gm. Therefore

π−nHom(Gm, HM)(Spec k) = SHS
1

(k)(Σ∞S0[−n],Hom(Gm, HM))

= SHS
1

s (k)(Σ∞Gm, HM [n])

= SHS
1

s (k)(Σ∞P1[−1], HM [n])

= SHS
1

s (k)(Σ∞P1, HM [n+ 1])

= H̃n+1
Nis (P1;M).

As the cohomological dimension of P1 is less than or equal to 1, we then have
H̃n+1
Nis (P1;M) = 0 for all n 6= 0. Here H̃n

Nis(X;M) denotes the kernel of

SHS
1

s (k)(Σ∞X+, HM [n])→ SHS
1

s (k)(Σ∞S0, HM [n])

induced by S0 → X+, where this is obtained by choosing a point in X(k). It follows
that

H̃n(X;M)⊕Hn(Spec(k);M) ∼= Hn(X;M).
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Since M is strictly A1 invariant, it follows that M(Spec k) ∼= M(P1). Hence

H̃n+1
Nis (P1;M) can be non-zero only for n = 0.

For n 6= 0, since SHS
1

(k)(Σ∞Gm, HM [n]) vanishes at fields, a base change
argument shows that indeed the sheaf πnHom(Gm, HM) is weakly trivial when
n 6= 0. So then it follows that the sheaf is indeed trivial by 2.27.

We now calculate at Spec(k) for n = 0

π0Hom(Gm, HM)(Spec(k)) = SHS
1

s (k)(Σ∞Gm, HM)

= H̃0(Gm;M)

= ker(SHS
1

s (k)(Σ∞Gm,+, HM)→ SHS
1

s (k)(Σ∞S0, HM))

= M−1(Spec k)

We now know that the associated homotopy sheaves πnHom(Gm, HM) and
πnH(M−1) agree for all n. So they are weak equivalent by [Mor05, Lemma 3.2.5].

�

Proposition 3.10. For any spectrum E ∈ SHS
1

(k), the homotopy sheaves of
Hom(Gm, E) are calculated by πn(Hom(Gm, E)) ∼= πn(E)−1

Proof. Consider the Postnikov tower for E.

E = hocolimE≤n

��
...

��
Hπn+1E // E≤n+1

��
HπnE // E≤n

��
...

Since Hom(Gm,−) is a triangulated functor, we get triangles

H(πn+1E)−1 → Hom(Gm, E≤n+1)→ Hom(Gm, E≤n)

If there is some i for which E = E≥i, an easy induction argument establishes
that (πnE)−1

∼= πnHom(Gm, E). To pass to the general case, use E = holimE≥i.
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Hence the following tower is indeed the Postnikov tower for Hom(Gm, E).

Hom(Gm, E)

��
...

��
H(πn+1E)−1

// Hom(Gm, E≤n+1)

��
H(πnE)−1

// Hom(Gm, E≤n)

��
...

�

3.4. Inverting Gm ∧ −; (Gm, S1) bi-spectra. The functor Σt on SptS
1

(k) is a
left Quillen functor. We may therefore apply the general machinery of [H-Spt] to
create a model category in which Σt is invertible. The construction of Hovey may
be described as (Gm, S1) bispectra.

Definition 3.11. A (Gm, S1) bi-spectrum of spaces over k consists of a bigraded
family of spaces Ei,j , i, j ≥ 0, equipped with structure maps σi,j : S1∧Ei,j → Ei,j+1

and µi,j : Gm ∧ Ei,j → Ei+1,j for which the following diagram commutes .

S1 ∧Gm ∧ Ei,j
S1∧τi,j //

��

S1 ∧ Ei+1,j

σi+1,j

��

Gm ∧ S1 ∧ Ei,j

Gm∧σi,j
��

Gm ∧ Ei,j+1

µi,j+1 // Ei+1,j+1

Let Spt(Gm,S1)(k) denote the category of bispectra.

Remark 12. Note that a (Gm, S1) bispectrum is just a Gm-spectrum of S1 spectra.
So we may therefore equip it with the projective stable model structure we get
from this perspective. We may therefore think of a (Gm, S1) bi-spectrum Ei,j as a
sequence of S1 spectra Ei,∗.

Definition 3.12. Let E be a (Gm, S1) bispectrum. Define the bigraded stable
homotopy presheaf π̃n+mα by the formula

U ∈ Sm/k 7→ colimrH•(k)(Sn+r ∧Gr+mm ∧ U+, Er,r).

Morel’s notation is π̃n(E)m = π̃n−mα. We may also write π̃n,m(E) = π̃n−m+mα(E).
We denote the associated Nisnevich sheaf by πn+mα(E).
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Proposition 3.13. If E is a (Gm, S1) bispectrum, the presheaf of homotopy groups
may also be calculated as

π̃n+mαE(U) = colims,rH•(k)(Gs+mm ∧ Sn+r ∧ U+, Er,s).

[DLØRV, p 217]

Definition 3.14. A morphism f : E → F of (Gm, S1) bispectra is an A1 stable
weak equivalence if the following induced map is an isomorphism for all U ∈ Sm/k.

f∗ : π̃n+mα(E)(U)→ π̃n+mα(F )(U)

Definition 3.15. A morphism f : E → F of (Gm, S1) bispectra is an A1 stable
cofibration if f0 : E0,∗ → F0,∗ is a cofibration of S1 spectra and the map P.O. →
Fn+1 is a cofibration in the following diagram.

Gm ∧ En,∗ //

��

En+1,∗

fn+1

��

��
Gm ∧ Fn,∗ //

..

P.O.
$$

$$
Fn+1,∗

Proposition 3.16. The category Spt(Gm,S1),A1

(k) of (Gm, S1) bispectra with A1

stable weak equivalences and A1 stable cofibrations is a model category. Denote

the associated homotopy category of Spt(Gm,S1),A1

(k) by SH(k).

Proposition 3.17. The fibrant bi-spectra are the Ωt-spectra. [H-Spt, Theorem
3.4]

Proposition 3.18. There is a left Quillen functor Σ∞t : SptA
1

s (k)→ SptA
1

s,t(k) given

by (Σ∞t E)i,j = Gim ∧ Ej with bonding maps

S1 ∧Gim ∧ Ej // Gim ∧ S1 ∧ Ej // Gm ∧ Ej+1

and

Gm ∧Gim ∧ Ej → Gi+1
m Ej .

The right adjoint to Σ∞t is denoted by Ω∞t and is given by Ω∞t (E) = E0,∗.
The right derived functor RΩ∞t (E) is given by the formula

RΩ∞t (E) = colimi ΩitEi,∗.

3.5. Connectivity of (Gm, S1) bispectra.

Definition 3.19. A (Gm, S1) bispectrum E is said to be n-connected if for all
k ≤ n and all m ∈ Z, the homotopy sheaves πk+mαE vanish.

Proposition 3.20. Let E ∈ SptS
1,A1

(k). If E is −1 connected, then so too is the
(Gm, S1) bi-spectrum Σ∞t E.



14

Proof. We calculate

πn+mα(Σ∞t E) = πn(RΩ∞t Ωmt Σ∞t E)

= πn(colimi Ωm+i
t ΣitE)

= colimi πn(ΣitE)−(m+i)

= 0.

This follows since ΣtE is −1 connected whenever E is −1 connected, and the effect
of Ωm+i

t on homotopy sheaves is contraction. �

3.6. t-structure on SH(k).

Definition 3.21. Let SH(k)≥0 denote the full subcategory of SH(k) given by
bispectra E satisfying πn+mαE = 0 whenever n < 0.

Let SH(k)≤0 denote the full subcategory of SH(k) given by bispectra E satisfying
πn+mαE = 0 whenever n > 0.

Definition 3.22. For a (Gm, S1) bispectrum E, let E≤0 denote the spectrum with
(E≤0)n = (En)≤0. The bonding maps are given by

Gm ∧ P j(Ei,j) ∼= P j(Gm ∧ Ei,j)→ P j(Ei+1,j).

The equivalence Gm ∧P j(X ) ∼= P j(Gm ∧X ) follows by checking on stalks, and the
fact that any stalk of Gm is just a disjoint union of points.

Theorem 3.23. The pair (SH(k)≥0,SH(k)≤0) defines a t-structure on SH(k).

Proof. Property (2) of a t-structure is clear.
We now establish property (1) of a t-structure. Let E ∈ SH(k)≥0 and F ∈

SH(k)≤0. We must show SH(k)(E,F [−1]) = 0. When E is in the image of Σ∞t ,
the result follows by using the adjuction Σ∞t a RΩ∞t and using the t-structure on S1

spectra. In particular, for U ∈ Sm/k we have SH(k)(Sn ∧Gmm ∧Σ∞U+, F [−1]) = 0
for n ≥ 0 and m ∈ Z.

For a general E ∈ SH(k)≥0, we may write E = hocolimEi where the Ei are
built up as in [Mor05, 3.3.4], but we allow smashing with Gm. Precisely, we take
E0 = pt, and each Ei is obtained from Ei−1 as the cone of a map∨

α

Snα ∧Gmαm ∧ Σ∞Xα,+ → Ei−1

for some family of Xα ∈ Sm/k and indices nα ≥ 0, mα ∈ Z.
A standard 5-lemma argument using the long exact sequence obtained by apply-

ing SH(k)(−, F [−1]) to the triangle

∨Snα ∧Gmαm ∧ Σ∞Xα,+ → Ei−1 → Ei

shows that for all i ∈ N, SH(k)(Ei, F [−1]) = 0. Furthermore, these long exact
sequences show that for all i ≥ 1, SH(k)(Ei, F [−2]) → SH(k)(Ei−1, F [−2]) is
surjective. Hence lim←−

1 SH(k)(Ei, F [−2]) = 0, and so

SH(k)(E,F [−1]) = SH(k)(colimEi, F [−1])

= lim←−SH(k)(Ei, F [−1])

= 0.
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We now establish property (3) of a t-structure. The functor (−)≤0 has already
been defined. For k ∈ Z, let (−)≤k is a functor on Spts(k) and we may extend it
to a functor on SH(k) in the same way as for the case k = 0. Define E≥0 to be the
homotopy fiber of the canonical map E → E≤−1. The long exact sequence of ho-
motopy groups shows that (−)≥0 has the correct homotopy groups. The uniqueness
of the triangle follows by properties of triangulated categories. �

3.7. The heart of the t-structure on SH(k).

Definition 3.24. A homotopy module over k is a pair (M∗, µ∗) consisting of a Z
graded strictly A1 invariant sheaf M∗ and an isomorphism µn : Mn

∼= (Mn+1)−1.

Lemma 3.25. If E is a bi-spectrum, then

RΩ∞t E → Hom(Gm, RΩ∞t (E ∧Gm))

is an isomorphism.

Lemma 3.26. Let E ∈ SH(k). For a fixed n ∈ Z, the collection πn(E)m forms a
homotopy module.

Lemma 3.27. If (M∗, µ∗) is a homotopy module over k, then there is a (Gm, S1)
bispectrum HM∗ with (HM∗)n,n = K(Mn, n) with evident structure maps.

Theorem 3.28. The heart of the t-structure (SH(k),SH(k)≥0,SH(k)≤0) is de-

noted πA1

∗ (k) and is equivalent to the category of homotopy modules. The equiva-
lence is given explicitly by the functors π0(−)∗ and H(−).
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