Σ Theory

Glen M. Wilson
Adviser: Dr. Clifford

The College of New Jersey
Finitely Presented Groups

Definition: A group is finitely presented if its group structure can be described with finitely many generators and finitely many relations.

A group G is finitely generated if there is some finite number of elements $g_1, g_2, \ldots, g_n \in G$ for which all other elements of G can be expressed as a finite product of these elements.

A group G is finitely presented if it is finitely generated, say by g_1, \ldots, g_n, and $G \cong F(g_1, \ldots, g_n)/\mathcal{R}$ where \mathcal{R} is finitely generated as a normal subgroup of the free group on g_1, \ldots, g_n.

Example: $\mathbb{Z} \times \mathbb{Z} \cong \langle a, b \mid ab = ba \rangle$
Questions:

- How can one determine if a given group is finitely presented?
- Is there something computable that tells us if a group is finitely presented or not?

Σ theory provides an answer to these questions for metabelian groups.
Metabelian Groups

Definition: A metabelian group is a group G for which there exists $A \triangleleft G$ such that A and G/A are Abelian groups. That is, there is a short exact sequence

$$0 \to A \to G \to Q \to 1$$

where A and Q are Abelian.

Example:

- The class of metabelian groups contains more than just Abelian groups

 $$1 \to \mathbb{Z}_3 \to S_3 \to \mathbb{Z}_2 \to 1$$

- The alternating groups A_n for $n \geq 5$ are non-Abelian simple groups; hence they are not metabelian groups.
Q-Modules

Definition: A Q-module is an Abelian group A with an action of a group Q on A, i.e.

- $\cdot : Q \times A \to A$
- $1 \cdot a = a$ for all $a \in A$
- $(qq') \cdot a = q \cdot (q' \cdot a)$

which satisfies:

- $q \cdot (a + a') = q \cdot a + q \cdot a'$ for all $a, a' \in A$.

This is equivalent to there being an “actual” $\mathbb{Z}[Q]$-module structure on A where $\mathbb{Z}[Q]$ is the group ring.
\textbf{\(Q\)-module structure on \(A\)}

\[
\begin{array}{c}
0 \rightarrow A \rightarrow G \rightarrow Q \rightarrow 1
\end{array}
\]

- \(G\) acts on \(A\) by conjugation because \(A\) is a normal subgroup of \(G\).
- Since \(A\) is Abelian, it acts trivially on itself; hence there is a well defined \(G/A \cong Q\) action on \(A\).

We can use this extra structure of \(Q\) on \(A\) to determine when \(G\) is finitely presented.
- Given a \(Q\)-module \(A\), we define the semi-direct product \(A \rtimes Q\) where
 \[(a, q) \rtimes (b, r) = (a + q \cdot b, qr).\]

\[
\begin{array}{c}
0 \rightarrow A \overset{\iota}{\rightarrow} A \rtimes Q \overset{\pi}{\rightarrow} Q \rightarrow 1
\end{array}
\]
OBSERVATIONS

We consider a general extension of Q by A

$$0 \rightarrow A \rightarrow G \rightarrow Q \rightarrow 1.$$

- Q not finitely generated \Rightarrow G not finitely presented
- A not finitely generated Q-module \Rightarrow G not finitely presented
- A and Q finitely generated Abelian groups \Rightarrow G finitely presented

Thus the interesting case is where Q is a finitely generated Abelian group and A is infinitely generated as an Abelian group, but finitely generated as a Q-module.
Example

- \(A = \mathbb{Z}[1/2] \), i.e. the dyadic rationals, and take \(Q = \langle q \rangle \) the infinite cyclic group.
- \(Q \)-module structure on \(A \) given by
 \[
 q \cdot x = \frac{1}{2} x.
 \]
- \(\{1\} \) generates \(\mathbb{Z}[1/2] \) as a \(Q \)-module.
- \(\mathbb{Z}[1/2] \) is not a finitely generated Abelian group.
- We don’t need all powers of \(q \) to finitely generate \(A \) with this action; \(\{q^n \mid n \geq 0\} \) suffices.

Question: Is \(\mathbb{Z}[1/2] \rtimes \mathbb{Z} \) finitely presented?
First Main Result of Σ Theory

If G is metabelian with

$$0 \rightarrow A \rightarrow G \rightarrow Q \rightarrow 1$$

then G is finitely presented if and only if $A \rtimes Q$ is.

Extensions of Q by A
Special Case

In the special case when $Q = \langle q \rangle$, define

$$Q_+ = \{q^n | n \geq 0\}, \ Q_- = \{q^n | n \leq 0\}.$$

Then the Σ-invariant may be defined as

$$\Sigma_A = \{Q_\varepsilon | A \text{ is finitely generated over } Q_\varepsilon\}$$

In this case, the second main result tells us that

- G is finitely presented if and only if $\Sigma_A \neq \emptyset$,
- i.e. A is finitely generated over Q_+ or Q_-.
Example

Let $A = \mathbb{Z}[1/2]$, i.e. the dyadic rationals; let $Q = \langle q \rangle$.

- Q-module structures on A are given by $q \cdot x = \pm 2^n x$ where $n \in \mathbb{Z}$. As long as $n \neq 0$, A will be finitely generated over Q.

- Any Q-module structure on A which makes A finitely generated over Q has $\Sigma_A \neq \emptyset$.

- Thus by the main result, every extension G of \mathbb{Z} by $\mathbb{Z}[1/2]$ which induces one of these module structures is finitely presented.

- In the case $q \cdot x = x$, the split extension extension is $\mathbb{Z}[1/2] \rtimes \mathbb{Z} \cong \mathbb{Z}[1/2] \times \mathbb{Z}$ is not even finitely generated.
Let \(A = \bigoplus_{i \in \mathbb{Z}} \mathbb{Z} a_i \) the free Abelian group on the generators \(\{ a_i \mid i \in \mathbb{Z} \} \), and let \(Q = \langle q \rangle \). A \(Q \)-module structure on \(A \) is given by \(q \cdot a_i = a_{i+1} \) and extended by linearity.

- \(A \) is not finitely generated as an Abelian group.

\[
\begin{array}{cccccc}
\text{a}_{-2} & \text{a}_{-1} & \text{a}_0 & \text{a}_1 & \text{a}_2 \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{q}^{-1} & \text{t} & \text{t} & \text{t} & \text{t} \\
\end{array}
\]

- \(A \) is finitely generated by \(\{ a_0 \} \) as a \(Q \)-module.
- \(A \) is not finitely generated over \(Q_+ = \{ q^n \mid n \geq 0 \} \) or \(Q_- = \{ q^n \mid n \leq 0 \} \).
- Therefore no extension which induces this \(Q \)-module structure on \(A \) is finitely presented. In particular \(\mathbb{Z} = \bigoplus_{i \in \mathbb{Z}} \mathbb{Z} a_i \times \mathbb{Z} \) is not finitely presented.
Interesting Computation

- Let $A = \bigoplus_{i \in \mathbb{Z}} \mathbb{Z}a_i$ the free Abelian group on the generators $\{a_i \mid i \in \mathbb{Z}\}$, and let $Q = \langle q \rangle$.

- Every extension of Q by A is not finitely generated.

- Every Q-module structure on A which finitely generates A over Q needs “both sides” of Q to do it. That is, A is never finitely generated over Q_+ or Q_-.