Some research papers

by Charles Weibel

  • Computing the Conley Index: a Cautionary Tale, (K. Mischaikow and C. Weibel), SIAM J.Appl.AG 7 (2023), 809--827.
  • Module structure of the K-theory of polynomial-like rings, (C. Haesemayer and C. Weibel), 17pp. preprint, 2022. To appear in Alg. Gom. 1980--2020 (2024). arXiv:2209.04029
  • Persistent homology with non-contractible preimages (K. Mischaikow and C. Weibel), HHA 24 (2022), 315-326. arXiv:2105.08130
  • Review of ∞-categories, Bull. AMS 60 (2023), 435--443.
  • What happens to your paper, after it is submitted? Notices AMS 68 (2021), 1756--1757.
  • Where to submit your paper, Notices AMS 67 (2020), 187--188.
  • Contractibility of a persistence map preimage (J. Cyranka, K. Mischaikow and C. Weibel), J. Appl. Comp. Top. 4 (2020), 509--523.
  • The K'-theory of monoid sets (C. Haesemayer and C. Weibel), Proc. AMS 149 (2021), 2813--2824.
  • Grothendieck--Witt groups of some singular schemes (M. Schlichting, M. Karoubi and C. Weibel), Proc. London Math. Soc. 122 (2021), 521--536.
  • The Witt group of Real surfaces (M. Karoubi and C. Weibel), AMS Contemp. Math. 749 (2020), 157--193.
  • The Real Graded Brauer group (M. Karoubi and C. Weibel), Quart. J. Math 70 (2019), 1475--1503.
  • K-theory of line bundles and smooth varieties (C. Haesemayer and C. Weibel), Proc. AMS 146 (2018), 4139--4150.
  • The K-theory of toric schemes over regular rings of mixed characteristic
       (G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), pp.455--479 in Singularities, Alg. Geom., Comm. Alg., Rel. Topics, 2018.

    Monoid schemes

  • Localization, monoid sets and K-theory, (Ian Coley and Charles Weibel), J. Algebra (2023), 754--779. arXiv:2109.03193
  • The K'-theory of monoid sets (C. Haesemayer and C. Weibel), Proc. AMS 149 (2021), 2813--2824. arXiv:1909.00297
  • Toric Varieties, Monoid Schemes and cdh descent (G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), J. reine angew. Math. 698 (2015), 1--54. arXiv:1106.1389
  • Picard groups and class groups of monoid schemes, (Jaret Flores and Charles Weibel),   J. Algebra 415 (2014), 247--263. 

    Milnor-Bloch-Kato papers

    See the book The Norm Residue Theorem in Motivic Cohomology, (C. Haesemeyer and C. Weibel), Princeton Univ. Press, 2019.

  • Principal ideals in mod-l Milnor K-theory,    (C. Weibel and Inna Zakharevich), J. Homotopy Rel. Str. 12 (2017), 1033--1049.
  • Operations in étale and motivic cohomology,  (Bert Guillou and Chuck Weibel), Trans. AMS 372 (2019), 1057--1090.
  • The norm residue isomorphism theorem,   J. Topology 2 (2009), 346--372.
  • Norm Varieties and the Chain Lemma (after Markus Rost),
       (C. Haesemeyer and C. Weibel), Abel Symposia 4 (2009), Springer-Verlag, 95--130.
  • Axioms for the Norm Residue Isomorphism,
       pp. 427--435 in K-theory and Noncommutative Geometry, European Math. Soc. Pub. House, 2008.
  • 2007 Trieste Lectures on The Proof of the Bloch-Kato Conjecture,   pp. 277--305 in ICTP Lecture Notes Series 23 (2008).

  • Algebraic K-theory of rings of integers in local and global fields,
    pp.139--184 in Handbook of K-theory, Springer-Verlag, 2005.
  • Two-primary algebraic K-theory of rings of integers in number fields
    (J. Rognes and C. Weibel), J. AMS 13 (1999), 1--54.
  • Etale descent for two-primary algebraic K-theory of totally imaginary number fields
       (J. Rognes and C. Weibel), K-theory 16 (1999), 101--104
  • The 2-torsion in the K-theory of the Integers, CR Acad. Sci. Paris 324 (1997), 615--620.

    Papers using cdh techniques

  • K-theory of toric varieties in positive characteristic
       (G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), J. Topology 7 (2014), 247--263 arXiv:1207.2891
  • K-theory of cones of smooth varieties
       (G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), J. Alg. Geom. 22 (2012), 13--34.
  • Bass' NK groups and cdh-fibrant Hochschild homology
       (G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), Inventiones Math. 181 (2010), 421--448.
  • A negative answer to a question of Bass
       (G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), Proc. AMS 139 (2011), 1187--1200.
       This is the second half of the 2008 preprint
  • The K-theory of toric varieties
       (G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), Trans. AMS 361 (2009), 3325--3341.
  • Infinitesimal cohomology and the Chern character to negative cyclic homology
       (G. Cortiñas, C. Haesemayer and C. Weibel), Math. Annalen 344 (2009), 891--922.
  • K-regularity, cdh-fibrant Hochschild homology and a conjecture of Vorst
       (G. Cortiñas, C. Haesemayer and C. Weibel), J. AMS 21 (2008), 547--561.
  • Cyclic homology, cdh-cohomology and negative K-theory
       (G. Cortiñas, C. Haesemayer, M. Schlichting and C. Weibel), Annals of Math. 167 (2008), 549--563.
  • The negative K-theory of normal surfaces, Duke Math J 108 (2001), 1--35.

    Real vector bundles and Hermitian K-theory

  • On the covering type of a space (M. Karoubi and C. Weibel), L'Enseignement Math. 62 (2016), 457--474.
  • Twisted K-theory, Real A-bundles and Grothendieck-Witt groups
       (M. Karoubi and C. Weibel), J. Pure Appl. Alg. 221 (2017), 1629--1640.
  • The Witt group of real algebraic varieties
       (M. Karoubi, M. Schlichting and C. Weibel), J. Topology 9 (2016), 1257--1302.

    K-theory of rings and varieties (pre-cdh techniques)

  • NK0 and NK1 of the groups C4 and D4 (C. Weibel), Commentarii Math. Helvetici 84 (2009), 339--349.
         (addendum to Lower algebraic K-theory of reflection groups, by J. Lafont and I. Ortiz),  
  • Bott Periodicity for group rings, J. of K-theory 7 (2011), 495--498.
         (an appendix to Periodicity of Hermitian K-groups, by Berrick, Karoubi and Ostvær)
  • Higher wild kernels and divisibility in the K-theory of number fields   J. Pure Appl. Alg. 206 (2006), 222--244.
  • Algebraic and Real K-theory of Real Varieties   (M. Karoubi and C. Weibel), Topology 42 (2003), 715--742
  • The higher K-theory of real curves   (by Claudio Pedrini and Charles Weibel), K-theory 27 (2002), 1--31.      Note the correction on page 2, line 4: the exponent should read ν+1
  • Invariants of Real Curves (by Claudio Pedrini and Charles Weibel)
       Rend. Sem Mat. Univ. Politec Torino 49 (1991), no. 2, 139--173.  (dvi)
  • The Higher K-Theory of Complex Varieties (by Claudio Pedrini and Charles Weibel), K-theory 21 (2000), 367--385.
  • The Higher K-Theory of a Complex Surface (by Claudio Pedrini and Charles Weibel)
       Compositio Mat. 129 (2001), 239--271.
  • Roitman's theorem for singular complex projective surfaces (by L. Barbieri-Viale, C. Pedrini, and C. Weibel), Duke Math J. 84 (1996), 155--190.
  • Divisibility in the Chow group of zero-cycles on a singular surface
    (by Claudio Pedrini and Charles Weibel), Astérisque 226 (1994), 371--409.
  • Etale Chern classes at the prime 2, pp.249--286 in Algebraic K-theory and Algebraic Topology,
       NATO ASI Series C, no. 407, Kluwer Press, 1993.
  • Localization for the K-theory of noncommutative rings (by Charles Weibel and Dongyuan Yao),
    AMS Contemp. Math. 126 (1992), 219--230. (pdf)
  • Pic is a contracted functor, Inventiones Math. 103 (1991), 351--377.
  • Homotopy algebraic K-theory, AMS Contemp. Math. 83 (1989), 461--488. (pdf)
  • A Brown-Gersten spectral sequence for the K-theory of varieties with isolated singularities
    Advances in Math. 73 (1989), 192--203.
  • Bloch's Formula for varieties with isolated singularities (by C. Pedrini and C. Weibel)
       Comm. in Algebra 14 (1986), 1895--1907. (pdf, rotated)
  • Subgroups of the elementary and Steinberg groups of congruence level I2 (S. Geller and C. Weibel), J. Pure Appl. Alg. 35 (1985), 123--132.
  • A survey of products in algebraic K-theory, pp.494--517 in Algebraic K-theory and algebraic topology, Springer Lecture Notes in Math, no.854, Springer, 1981.
  • A Spectral Sequence for the K-theory of affine glued schemes (B. Dayton and C. Weibel), pp.24--92 in Algebraic K-theory and algebraic topology, Springer Lecture Notes in Math, no.854, Springer, 1981.  This is a 2MB TIF file!
  • KV-theory of Categories, Trans. AMS 267 (1981), 621--635.
  • K2, K3 and nilpotent ideals, J. Pure Appl. Alg. 18 (1980), 333--345. (pdf)   Please note that Lemma 1.2(b) is false.
  • K-theory and Analytic Isomorphisms, Inventiones Math. 61 (1980), 177--197.

    Cyclic homology papers

  • Étale descent for Hochschild and cyclic homology (by C. Weibel and S. Geller), Comm. Math. Helv. 66 (1991), 368--388.
  • Relative Chern characters for nilpotent ideals,   (by G. Cortiñas and C. Weibel), Abel Symposia 4 (2009), Springer-Verlag, 61--82.
  • Cotensor products of modules (by L. Abrams and C. Weibel), Trans. AMS 354 (2002), 2173--2185.
  • The Artinian Berger Conjecture (by G. Cortinas, S. Geller and C. Weibel), Math Zeit. 228 (1998), 569--588.
  • Cyclic Homology of Schemes (by C. Weibel), Proc. AMS 124 (1996), 1655--1662. Appendix on Hypercohomology of unbounded complexes.
  • The Hodge filtration and cyclic homology, K-theory 12 (1997), 145--164.
  • Hodge decompositions of Loday symbols in K-Theory and cyclic homology (by S. Geller and C Weibel), K-theory 8 (1994), 587--632.
  • Hochschild and cyclic homology are far from being homotopy functors (by S. Geller and C Weibel), Proc. AMS 106 (1989), 49--57.
  • Nil K-theory maps to Cyclic Homology, Trans. AMS 303 (1987), 541--558. (pdf)
  • K(A,B,I):II (by Susan Geller and Charles Weibel)    K-Theory 2 (1989), 753--760.
  • K1(A,B,I) (by S. Geller and C. Weibel), J. reine angew. Math., 342 (1983), 12--34.
  • The cyclic homology and K--theory of curves (by S. Geller, L. Reid and C. Weibel), J. reine angew. Math., 393, (1989), 39--90.

    Module Structure papers (on K-theory and cyclic homology)

  • Module structures on the Hochschild and cyclic homology of graded rings (by Barry Dayton and Charles Weibel),
    pp.63--90 in Algebraic K-theory and algebraic topology, NATO ASI Series C, no.407, Kluwer Press, 1993.
  • On the naturality of Pic, SK0 and SK1 (by B. Dayton and C. Weibel), pp.1--28 in NATO ASI Series C, vol. 279, Kluwer Press, 1989.
  • Module Structures on the K-theory of Graded Rings J. Algebra 105 (1987), 465--483.
  • Mayer-Vietoris Sequences and mod p K-theory, pp.390--407 in Lecture Notes in Math. 966, Springer-Verlag, 1983.
  • Mayer-Vietoris Sequences and module structures on NK*, pp.466--493 in Lecture Notes in Math. 854, Springer-Verlag, 1981.

    More papers

  • Review of Cycles, transfers and motivic homology theories Bull.~AMS 39 (2002), 137--143.
  • Relative Cartier divisors and K-theory, (V. Sadhu and C. Weibel), pp. 1--19 in Proc. Int. Coll. in K-theory, 2018.
  • Relative Cartier divisors and Laurent polynomial extensions,    (V. Sadhu and C. Weibel), Math. Zeit. 285 (2017), 353--366.
  • Slices of co-operations for KGL,   (P. Pelaez and C. Weibel), Bull. London Math Soc 46 (2014), 665--684.
  • Some surfaces of general type for which Bloch's conjecture holds,  (C. Pedrini and C. Weibel),
        pp. 308--329 in Recent Advances in Hodge Theory, Cambridge Univ. Press, 2016.
  • Severi's results on correspondences,   (C. Pedrini and C. Weibel), Rend. Sem. Mat. Torino 71 (2013), 493--504.
  • Schur-finiteness in λ-rings,   (Carlo Mazza and Charles Weibel), J. Algebra 374 (2013), 66--78.
  • Survey of non-Desarguesian Planes,   Notices AMS 54 (Nov. 2007), 1294--1303.
  • Transfer Functors on k-Algebras   J. Pure Applied Algebra 201 (2005), 340--366.
  • A Road Map of Motivic Homotopy and Homology Theory   pp. 385--392 in
       New Contexts for Stable Homotopy Theory, NATO ASI Series II, no.131, Kluwer Press, 2004.
  • Homotopy Ends and Thomason model categories, Selecta Math. 7 (2001), 533--564.
  • The Development of Algebraic K-theory before 1980, AMS Contemp. Math. 243 (1999), 211--238.

    Other older papers (before 1995)

  • Homology of Azumaya algebras (G. Cortinas and C. Weibel), Proc. AMS 121 (1994), 53--55.
  • K-theory homology of spaces (by Erik Pedersen and Charles Weibel),
    pp.346--361 in Algebraic Topology, Springer Lecture Notes in Math, no.1370, Springer, 1989.
  • A nonconnective delooping of algebraic K-theory (by Erik Pedersen and Charles Weibel),
    pp.166--181 in Algebraic and Geometric Topology, Lecture Notes in Math, no.1126, Springer-Verlag, 1985.
  • Zero cycles and complete intersections on singular varieties (Marc Levine and Chuck Weibel), J. Reine Angew. Math. 159 (1985), 106-120.
  • On the Cohen-Macaulay and Buchsbaum property for unions of planes in affine space,
         (A. Geramita and C. Weibel), J. Alg. 92 (1985), 413--445.
  • Complete intersection points on affine varieties, Comm. Alg. 12 (1984), 3011--3051.
          Here is the 1981 preprint Complete intersection points on affine surfaces.
  • K-theory of Hyperplanes (B. Dayton and C. Weibel) Trans. AMS 257 (1980), 119--141.
  • K_2 and K_3 of the circle (L. Roberts and C. Weibel) J. Pure Appl. Alg. 23 (1980), 67--95.
  • K2 measures excision for K1 (S. Geller and C. Weibel), Proc. AMS 80 (1980), 1--9. Available on JSTOR
  • Nilpotence and K-theory J. Algebra 61 (1979), 298--307.
  • The homotopy exact sequence in algebraic K-theory Comm. Alg. 6(16) (1978), 1635--1646.

    Here are some other papers of mine (written after 1994) which are archived with the K-theory preprint server (pdf, dvi and ps format):

  • Products in Higher Chow groups and Motivic Cohomology, Proc. Symp. Pure Math (1999)
  • Voevodsky's Seattle Lectures K-theory and Motivic Cohomology, Proc. Symp. Pure Math (1999)
  • Thomason Obituary Material - Photos and articles about R.W. Thomason (1952-1995)

    Popup window of 50 College Avenue (home of the Rutgers Math Dept. from 1945 until 1959)


    Charles Weibel / weibel @ math.rutgers.edu / April 1, 2024