,
(C. Haesemeyer and C. Weibel),
Abel Symposia 4 (2009), Springer-Verlag, 95--130.
Axioms for the Norm Residue Isomorphism,
pp. 427--435 in K-theory and Noncommutative Geometry,
European Math. Soc. Pub. House, 2008.
2007 Trieste Lectures on
The Proof of the Bloch-Kato Conjecture, pp. 277--305 in
ICTP Lecture Notes Series 23 (2008).
Algebraic K-theory of rings of integers in local and global fields,
pp.139--184 in Handbook of K-theory, Springer-Verlag, 2005.
Two-primary algebraic K-theory of rings of integers in number fields
(J. Rognes and C. Weibel), J. AMS 13 (1999), 1--54.
Etale descent for two-primary algebraic K-theory of totally
imaginary number fields
(J. Rognes and C. Weibel),
K-theory 16 (1999), 101--104
The 2-torsion in the K-theory of the Integers,
CR Acad. Sci. Paris 324 (1997), 615--620.
Papers using cdh techniques
K-theory of toric varieties in positive characteristic
(G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel),
J. Topology 7 (2014), 247--263 arXiv:1207.2891
K-theory of cones of smooth varieties
(G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel),
J. Alg. Geom. 22 (2012), 13--34.
Bass' NK groups and cdh-fibrant Hochschild homology
(G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel),
Inventiones Math. 181 (2010), 421--448.
A negative answer to a question of Bass
(G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel),
Proc. AMS 139 (2011), 1187--1200.
This is the second half of the
2008 preprint
The K-theory of toric varieties
(G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel),
Trans. AMS 361 (2009), 3325--3341.
Infinitesimal cohomology and the Chern character to negative cyclic homology
(G. Cortiñas, C. Haesemayer and C. Weibel),
Math. Annalen 344 (2009), 891--922.
K-regularity, cdh-fibrant Hochschild homology and a conjecture of Vorst
(G. Cortiñas, C. Haesemayer and C. Weibel),
J. AMS 21 (2008), 547--561.
Cyclic homology, cdh-cohomology and negative K-theory
(G. Cortiñas, C. Haesemayer, M. Schlichting and C. Weibel),
Annals of Math. 167 (2008), 549--563.
The negative K-theory of normal surfaces,
Duke Math J 108 (2001), 1--35.
Real vector bundles and Hermitian K-theory
On the covering type of a space (M. Karoubi and C. Weibel),
L'Enseignement Math. 62 (2016), 457--474.
Twisted K-theory, Real A-bundles and
Grothendieck-Witt groups
(M. Karoubi and C. Weibel),
J. Pure Appl. Alg. 221 (2017), 1629--1640.
The Witt group of real algebraic varieties
(M. Karoubi, M. Schlichting and C. Weibel),
J. Topology 9 (2016), 1257--1302.
K-theory of rings and varieties (pre-cdh techniques)
NK0 and NK1 of the
groups C4 and D4 (C. Weibel),
Commentarii Math. Helvetici 84 (2009), 339--349.
(addendum to Lower algebraic K-theory of reflection groups,
by J. Lafont and I. Ortiz),
Bott Periodicity for group rings,
J. of K-theory 7 (2011), 495--498.
(an appendix to Periodicity of Hermitian K-groups,
by Berrick, Karoubi and Ostvær)
Higher wild kernels and divisibility in the K-theory of number fields
J. Pure Appl. Alg. 206 (2006), 222--244.
Algebraic and Real K-theory of Real Varieties
(M. Karoubi and C. Weibel),
Topology 42 (2003), 715--742
The higher K-theory of real curves
(by Claudio Pedrini and Charles Weibel),
K-theory 27 (2002), 1--31.
Note the correction on page 2, line 4: the exponent should read ν+1
Invariants of Real Curves (by Claudio Pedrini and Charles Weibel)
Rend. Sem Mat. Univ. Politec Torino 49 (1991), no. 2, 139--173.
(dvi)
The Higher K-Theory of Complex Varieties
(by Claudio Pedrini and Charles Weibel),
K-theory 21 (2000), 367--385.
The Higher K-Theory of a Complex Surface
(by Claudio Pedrini and Charles Weibel)
Compositio Mat. 129 (2001), 239--271.
Roitman's theorem for singular complex projective surfaces
(by L. Barbieri-Viale, C. Pedrini, and C. Weibel),
Duke Math J. 84 (1996), 155--190.
Divisibility in the Chow group of zero-cycles on a singular surface
(by Claudio Pedrini and Charles Weibel),
Astérisque 226 (1994), 371--409.
Etale Chern classes at the prime 2, pp.249--286 in
Algebraic K-theory and Algebraic Topology,
NATO ASI Series C, no. 407, Kluwer Press, 1993.
Localization for the K-theory of noncommutative rings (by
Charles Weibel and Dongyuan Yao),
AMS Contemp. Math. 126 (1992), 219--230. (pdf)
Pic is a contracted functor, Inventiones Math. 103 (1991), 351--377.
Homotopy algebraic K-theory,
AMS Contemp. Math. 83 (1989), 461--488. (pdf)
A Brown-Gersten spectral sequence for the K-theory of
varieties with isolated singularities
Advances in Math. 73 (1989), 192--203.
Bloch's Formula for varieties with isolated singularities
(by C. Pedrini and C. Weibel)
Comm. in Algebra 14 (1986), 1895--1907. (pdf, rotated)
Subgroups of the elementary and Steinberg groups of congruence level I2
(S. Geller and C. Weibel), J. Pure Appl. Alg. 35 (1985), 123--132.
A survey of products in algebraic K-theory,
pp.494--517 in Algebraic K-theory and algebraic topology,
Springer Lecture Notes in Math, no.854, Springer, 1981.
A Spectral Sequence for the K-theory of affine glued schemes
(B. Dayton and C. Weibel),
pp.24--92 in Algebraic K-theory and algebraic topology,
Springer Lecture Notes in Math, no.854, Springer, 1981.
This is a 2MB TIF file!
KV-theory of Categories, Trans. AMS 267 (1981), 621--635.
K2, K3 and nilpotent ideals,
J. Pure Appl. Alg. 18 (1980), 333--345. (pdf)
Please note that Lemma 1.2(b) is false.
K-theory and Analytic Isomorphisms,
Inventiones Math. 61 (1980), 177--197.
Cyclic homology papers
Étale descent for Hochschild and cyclic homology
(by C. Weibel and S. Geller),
Comm. Math. Helv. 66 (1991), 368--388.
Relative Chern characters for nilpotent ideals,
(by G. Cortiñas and C. Weibel),
Abel Symposia 4 (2009), Springer-Verlag, 61--82.
Cotensor products of modules (by L. Abrams and C. Weibel),
Trans. AMS 354 (2002), 2173--2185.
The Artinian Berger Conjecture (by G. Cortinas, S. Geller and C. Weibel),
Math Zeit. 228 (1998), 569--588.
Cyclic Homology of Schemes (by C. Weibel),
Proc. AMS 124 (1996), 1655--1662.
Appendix on Hypercohomology of unbounded complexes.
The Hodge filtration and cyclic homology, K-theory 12 (1997),
145--164.
Hodge decompositions of Loday symbols in K-Theory and cyclic homology
(by S. Geller and C Weibel), K-theory 8 (1994), 587--632.
Hochschild and cyclic homology are far from being homotopy functors
(by S. Geller and C Weibel), Proc. AMS 106 (1989), 49--57.
Nil K-theory maps to Cyclic Homology,
Trans. AMS 303 (1987), 541--558. (pdf)
K(A,B,I):II
(by Susan Geller and Charles Weibel)
K-Theory 2 (1989), 753--760.
K1(A,B,I) (by S. Geller and C. Weibel),
J. reine angew. Math., 342 (1983), 12--34.
The cyclic homology and K--theory of curves
(by S. Geller, L. Reid and C. Weibel),
J. reine angew. Math., 393, (1989), 39--90.
Module Structure papers (on K-theory and cyclic homology)
Module structures on the Hochschild and cyclic homology of graded rings
(by Barry Dayton and Charles Weibel),
pp.63--90 in Algebraic K-theory and algebraic topology,
NATO ASI Series C, no.407, Kluwer Press, 1993.
On the naturality of Pic, SK0 and SK1
(by B. Dayton and C. Weibel), pp.1--28 in
NATO ASI Series C, vol. 279, Kluwer Press, 1989.
Module Structures on the K-theory of Graded Rings
J. Algebra 105 (1987), 465--483.
Mayer-Vietoris Sequences and mod p K-theory,
pp.390--407 in Lecture Notes in Math. 966, Springer-Verlag, 1983.
Mayer-Vietoris Sequences and module structures on NK*,
pp.466--493 in Lecture Notes in Math. 854, Springer-Verlag, 1981.
More papers
Review of Cycles, transfers and motivic homology theories
Bull.~AMS 39 (2002), 137--143.
Relative Cartier divisors and K-theory,
(V. Sadhu and C. Weibel), pp. 1--19 in
Proc. Int. Coll. in K-theory, 2018.
Relative Cartier divisors and Laurent polynomial extensions,
(V. Sadhu and C. Weibel),
Math. Zeit. 285 (2017), 353--366.
Slices of co-operations for KGL,
(P. Pelaez and C. Weibel), Bull. London Math Soc 46 (2014), 665--684.
Some surfaces of general type for which Bloch's
conjecture holds, (C. Pedrini and C. Weibel),
pp. 308--329 in Recent Advances in Hodge Theory,
Cambridge Univ. Press, 2016.
Severi's results on correspondences,
(C. Pedrini and C. Weibel),
Rend. Sem. Mat. Torino 71 (2013), 493--504.
Schur-finiteness in λ-rings,
(Carlo Mazza and Charles Weibel),
J. Algebra 374 (2013), 66--78.
Survey of non-Desarguesian Planes,
Notices AMS 54 (Nov. 2007), 1294--1303.
Transfer Functors on k-Algebras
J. Pure Applied Algebra 201 (2005), 340--366.
A Road Map of Motivic Homotopy and Homology Theory
pp. 385--392 in
New Contexts for Stable Homotopy Theory,
NATO ASI Series II, no.131, Kluwer Press, 2004.
Homotopy Ends and Thomason model categories,
Selecta Math. 7 (2001), 533--564.
The Development of Algebraic K-theory before 1980,
AMS Contemp. Math. 243 (1999), 211--238.
Other older papers (before 1995)
Homology of Azumaya algebras (G. Cortinas and C. Weibel),
Proc. AMS 121 (1994), 53--55.
K-theory homology of spaces (by Erik Pedersen and Charles Weibel),
pp.346--361 in Algebraic Topology,
Springer Lecture Notes in Math, no.1370, Springer, 1989.
A nonconnective delooping of algebraic K-theory
(by Erik Pedersen and Charles Weibel),
pp.166--181 in Algebraic and Geometric Topology,
Lecture Notes in Math, no.1126, Springer-Verlag, 1985.
Zero cycles and complete intersections on singular varieties
(Marc Levine and Chuck Weibel),
J. Reine Angew. Math. 159 (1985), 106-120.
On the Cohen-Macaulay and Buchsbaum property for unions of planes
in affine space,
(A. Geramita and C. Weibel), J. Alg. 92 (1985), 413--445.
Complete intersection points on affine varieties,
Comm. Alg. 12 (1984), 3011--3051.
Here is the 1981 preprint
Complete intersection points on affine surfaces.
K-theory of Hyperplanes
(B. Dayton and C. Weibel) Trans. AMS 257 (1980), 119--141.
K_2 and K_3 of the circle
(L. Roberts and C. Weibel) J. Pure Appl. Alg. 23 (1980), 67--95.
K2 measures excision for K1 (S. Geller and C. Weibel),
Proc. AMS 80 (1980), 1--9. Available on JSTOR
Nilpotence and K-theory
J. Algebra 61 (1979), 298--307.
The homotopy exact sequence in algebraic K-theory
Comm. Alg. 6(16) (1978), 1635--1646.
Here are some other papers of mine (written after 1994)
which are archived with the
K-theory preprint server (pdf, dvi and ps format):
Products in Higher Chow groups and Motivic Cohomology,
Proc. Symp. Pure Math (1999)
Voevodsky's Seattle Lectures K-theory and Motivic Cohomology,
Proc. Symp. Pure Math (1999)
Thomason Obituary Material -
Photos and articles about R.W. Thomason (1952-1995)
Popup window of 50 College Avenue
(home of the Rutgers Math Dept. from 1945 until 1959)
Charles Weibel / weibel @
math.rutgers.edu /
April 1, 2024