Some research papers

by Charles Weibel

  • K-theory of line bundles and smooth varieties
       (by C. Haesemayer and C. Weibel), 11pp. preprint, 2017.
  • The K-theory of toric schemes over regular rings of mixed characteristic
       (by G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), 21pp. preprint, 2017.
  • On the covering type of a space (M. Karoubi and C. Weibel), L'Enseignement Math. (2017), to appear. 16pp.
  • Relative Cartier divisors and K-theory, (V. Sadhu and C. Weibel),
    Proc. Int. Coll., to appear. 18pp. preprint, 2016.
  • Relative Cartier divisors and Laurent polynomial extensions,    (V. Sadhu and C. Weibel), Math. Zeit. 285 (2017), 353-366.
  • The Witt group of real algebraic varieties    (M. Karoubi, M. Schlichting and C. Weibel), J. Topology 9 (2016), 1257-1302.
  • Twisted K-theory, Real A-bundles and Grothendieck-Witt groups   (M. Karoubi and C. Weibel), J. Pure Appl. Alg. (221), 1629-1640.
  • Principal ideals in mod-l Milnor K-theory,    (Charles Weibel and Inna Zakharevich), J. Homotopy Rel. Str. (2017), to appear. 14pp. preprint, 2015.
  • Slices of co-operations for KGL,   (P. Pelaez and C. Weibel), Bull. LMS 46 (2014), 665-684.
  • Some surfaces of general type for which Bloch's conjecture holds,  (C. Pedrini and C. Weibel), pp. 308-329 in Recent Advances in Hodge Theory, Cambridge Univ. Press, 2016.
  • Severi's results on correspondences,   (C. Pedrini and C. Weibel), Rend. Sem. Mat. Torino 71 (2013), 493-504.
  • Unstable operations in étale and motivic cohomology,  (Bert Guillou and Chuck Weibel), 26pp. preprint, revised 2017.
  • K-theory of toric varieties in positive characteristic
       (by G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), J. Topology 7 (2014), 247-263,
  • Toric Varieties, Monoid Schemes and cdh descent
       (by G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), J. reine angew. Math. 698 (2015), 1-54.

    Milnor-Bloch-Kato papers

  • The norm residue isomorphism theorem,   J. Topology 2 (2009), 346-372.
  • Norm Varieties and the Chain Lemma (after Markus Rost),
       (C. Haesemeyer and C. Weibel), Abel Symposia 4 (2009), Springer-Verlag, 95--130.
  • Axioms for the Norm Residue Isomorphism,
       pp. 427-435 in K-theory and Noncommutative Geometry, European Math. Soc. Pub. House, 2008.
  • 2007 Trieste Lectures on The Proof of the Bloch-Kato Conjecture,   pp. 277-305 in ICTP Lecture Notes Series 23 (2008).

  • Algebraic K-theory of rings of integers in local and global fields,
    pp.139--184 in Handbook of K-theory, Springer-Verlag, 2005.
  • Two-primary algebraic K-theory of rings of integers in number fields
    (by J. Rognes and C. Weibel), J. AMS 13 (1999), 1-54.
  • Etale descent for two-primary algebraic K-theory of totally imaginary number fields
       (by Rognes and Weibel), K-theory 16 (1999), 101-104
  • The 2-torsion in the K-theory of the Integers, CR Acad. Sci. Paris 324 (1997), 615-620.

    Papers using cdh techniques

  • K-theory of cones of smooth varieties
       (by G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), J. Alg. Geom. 22 (2012), 13-34.
  • Bass' NK groups and cdh-fibrant Hochschild homology
       (by G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), Inventiones Math. 181 (2010), 421-448.
      
  • A negative answer to a question of Bass
       (by G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), Proc. AMS 139 (2011), 1187-1200.
       This is the second half of the 2008 preprint
  • The K-theory of toric varieties
       (by G. Cortiñas, C. Haesemayer, M.E. Walker and C. Weibel), Trans. AMS 361 (2009), 3325-3341.
  • Infinitesimal cohomology and the Chern character to negative cyclic homology
       (by G. Cortiñas, C. Haesemayer and C. Weibel), Math. Annalen 344 (2009), 891-922.
  • K-regularity, cdh-fibrant Hochschild homology and a conjecture of Vorst
       (by G. Cortiñas, C. Haesemayer and C. Weibel), J. AMS 21 (2008), 547-561.
  • Cyclic homology, cdh-cohomology and negative K-theory
       (by G. Cortiñas, C. Haesemayer, M. Schlichting and C. Weibel), Annals of Math. 167 (2008), 549-563.

    K-theory of rings and varieties (pre-cdh techniques)

  • NK0 and NK1 of the groups C4 and D4 Commentarii Math. Helvetici 84 (2009), 339-349.
         (addendum to Lower algebraic K-theory of reflection groups, by J. Lafont and I. Ortiz),  
  • Bott Periodicity for group rings, J. of K-theory 7 (2011), 495-498.
         (an appendix to Periodicity of Hermitian K-groups, by Berrick, Karoubi and Ostvær)
  • Higher wild kernels and divisibility in the K-theory of number fields   J. Pure Applied Algebra 206 (2006), 222-244.
  • Algebraic and Real K-theory of Real Varieties   (M. Karoubi and C. Weibel), Topology 42 (2003), 715-742
  • The higher K-theory of real curves   (by Claudio Pedrini and Charles Weibel), K-theory 27 (2002), 1--31.      Note the correction on page 2, line 4: the exponent should read ν+1
  • Invariants of Real Curves (by Claudio Pedrini and Charles Weibel)
       Rend. Sem Mat. Univ. Politec Torino 49 (1991), no. 2, 139-173.  (dvi)
  • The Higher K-Theory of Complex Varieties (by Claudio Pedrini and Charles Weibel), K-theory 21 (2000), 367-385.
  • The Higher K-Theory of a Complex Surface (by Claudio Pedrini and Charles Weibel)
       Compositio Mat. 129 (2001), 239-271.
  • Divisibility in the Chow group of zero-cycles on a singular surface
    (by Claudio Pedrini and Charles Weibel), Astérisque 226 (1994), 371--409.
  • Etale Chern classes at the prime 2, pp.249-286 in Algebraic K-theory and Algebraic Topology,
       NATO ASI Series C, no. 407, Kluwer Press, 1993. (dvi)
  • Localization for the K-theory of noncommutative rings (by Charles Weibel and Dongyuan Yao),
    AMS Contemp. Math. 126 (1992), 219-230. (pdf)
  • Pic is a contracted functor, Inventiones Math. 103 (1991), 351--377.
  • Homotopy algebraic K-theory, AMS Contemp. Math. 83 (1989), 461-488. (pdf)
  • Bloch's Formula for varieties with isolated singularities (by Claudio Pedrini and Charles Weibel)
       Comm. in Algebra 14 (1986), 1895-1907. (pdf, rotated)
  • A Spectral Sequence for the K-theory of affine glued schemes (by Barry Dayton and Charles Weibel), pp.24-92 in Algebraic K-theory and algebraic topology, Springer Lecture Notes in Math, no.854, Springer, 1981.  This is a 2MB TIF file!
  • KV-theory of Categories, Trans. AMS 267 (1981), 621-635.
  • K2, K3 and nilpotent ideals, J. Pure Appl. Alg. 18 (1980), 333-345. (pdf)   Please note that Lemma 1.2(b) is false.

    Cyclic homology papers

  • Étale descent for Hochschild and cyclic homology (by C. Weibel and S. Geller), Comm. Math. Helv. 66 (1991), 368-388.
  • Relative Chern characters for nilpotent ideals,   (by G. Cortiñas and C. Weibel), Abel Symposia 4 (2009), Springer-Verlag, 61--82.
  • Cotensor products of modules (by L. Abrams and C. Weibel), Trans. AMS 354 (2002)
  • The Artinian Berger Conjecture, Math Zeit. 228 (1998), 569-588.
  • Cyclic Homology of Schemes, Proc. AMS 124 (1996), 1655-1662. Appendix on Hypercohomology of unbounded complexes.
  • The Hodge filtration and cyclic homology, K-theory 12 (1997), 145-164.
  • Hochschild and cyclic homology are far from being homotopy functors, Proc. AMS 106 (1989), 49-57.
  • Nil K-theory maps to Cyclic Homology, Trans. AMS 303 (1987), 541-558. (pdf)
  • K(A,B,I):II (by Susan Geller and Charles Weibel)    K-Theory 2 (1989), 753-760.
  • K1(A,B,I) (by Susan Geller and Charles Weibel), J. Reine und Angewandte Mathematik, 342 (1983), 12-34.

    Module Structure papers (on K-theory and cyclic homology)

  • Module structures on the Hochschild and cyclic homology of graded rings (by Barry Dayton and Charles Weibel),
    pp.63-90 in Algebraic K-theory and algebraic topology, NATO ASI Series C, no.407, Kluwer Press, 1993.
  • On the naturality of Pic, SK_0 and SK1 (by Barry Dayton and Charles Weibel), pp.1-28 in NATO ASI Series C, vol. 279, Kluwer Press, 1989.
  • Module Structures on the K-theory of Graded Rings J. Algebra 105 (1987), 465-483.
  • Mayer-Vietoris Sequences and mod p K-theory, pp.390-407 in Lecture Notes in Math. 966, Springer-Verlag, 1983.
  • Mayer-Vietoris Sequences and module structures on NK*, pp.466-493 in Lecture Notes in Math. 854, Springer-Verlag, 1981.

    More papers

  • Picard groups and class groups of monoid schemes,
    (by Jaret Flores and Charles Weibel),   J. Algebra 415 (2014), 247-263. 
  • Schur-finiteness in λ-rings,   (Carlo Mazza and Charles Weibel), J. Algebra 374 (2013), 66-78.
  • Survey of non-Desarguesian Planes,   Notices AMS 54 (Nov. 2007), 1294--1303.
  • Transfer Functors on k-Algebras   J. Pure Applied Algebra 201 (2005), 340-366.
  • A Road Map of Motivic Homotopy and Homology Theory   pp. 385-392 in
       New Contexts for Stable Homotopy Theory, NATO ASI Series II, no.131, Kluwer Press, 2004.
  • Review of Cycles, Motives and Motivic Homology Theories, Bull. AMS 39 (2002), 137-143.
  • Homotopy Ends and Thomason model categories, Selecta Math 7 (2001), 533-564. (dvi)
  • The Development of Algebraic K-theory before 1980, AMS Contemp. Math. 243 (1999), 211-238. (pdf)

    Other older papers (before 1995)

  • K-theory homology of spaces (by Erik Pedersen and Charles Weibel),
    pp.346--361 in Algebraic Topology, Springer Lecture Notes in Math, no.1370, Springer, 1989.
  • A nonconnective delooping of algebraic K-theory (by Erik Pedersen and Charles Weibel),
    pp.~166--181 in Algebraic and Geometric Topology, Lecture Notes in Math, no.1126, Springer-Verlag, 1985.
  • Complete intersection points on affine varieties, Comm. Alg. 12 (1984), 3011-3051.
          Here is the 1981 preprint Complete intersection points on affine surfaces.
  • K2, K3 and nilpotent ideals, JPAA 18 (1980), 333-345.

    Here are some other papers of mine (written after 1994) which are archived with the K-theory preprint server (pdf, dvi and ps format):

  • Roitman's theorem for singular complex projective surfaces (by L. Barbieri-Viale, C. Pedrini, and C. Weibel), Duke Math J 84 (1996)
  • Products in Higher Chow groups and Motivic Cohomology, Proc. Symp. Pure Math (1999)
  • Voevodsky's Seattle Lectures K-theory and Motivic Cohomology, Proc. Symp. Pure Math (1999)
  • The negative K-theory of normal surfaces, Duke Math J 108 (2001)
  • The higher K-theory of a complex surface (by Claudio Pedrini and Charles A. Weibel), Compositio Math 129 (2001)
  • The higher K-theory of complex varieties (by Claudio Pedrini and Charles Weibel), K-theory 21 (2001)
  • The higher K-theory of real curves (by Claudio Pedrini and Charles Weibel), K-theory 27 (2002)
  • Thomason Obituary Material - Photos and articles about R.W. Thomason (1952-1995)

    Here are some papers of mine (written after 1994) which are archived with the LANL XXX Mathematics Archive (dvi, ps and pdf format):

  • Roitman's theorem for singular complex projective surfaces (by L. Barbieri-Viale, C. Pedrini and C. Weibel), Duke MJ 84 (1996)
    RWT

    Popup window of 50 College Avenue (home of the Rutgers Math Dept. from 1945 until 1959)


    Charles Weibel / weibel @ math.rutgers.edu / April 1, 2017