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Algebraic K-theory had its origins in many places, and it is a matter of taste to
decide whether or not early papers were K-theory. We shall think of early results
as pre-history, and only mention a few typical examples. One early example is
the introduction in 1845 of Grassmann varieties by Cayley and Grassmann. This
formed the core of the classifying space notions in K-theory.

Another example was the development (1870-1882) of the ideal class group of
a Dedekind ring by Dedekind and Weber [DW], and its cousin the Picard group of
an algebraic variety in the late 19th century [PS]. The Brauer group, introduced in
the 1928 paper [Br28], and the Witt group, introduced in the 1937 paper [Wi37],
also belong to this pre-historical era.

For various reasons, we will primarily limit ourselves to the period before 1980.
In a few cases, we have followed tendrils which complete themes rooted firmly in
the 1970’s. Like all papers, this one has a finiteness obstruction: only finitely many
people and results can be included. We apologize in advance to the large number
of people whose important contributions we have skipped over.

The compendium Reviews in K -theory [Mag] was used frequently in preparing
this article. Various other survey articles were very useful to us, including [Mi66,
Sw70, Ba75, Lo76, Va76, O88]. We encourage interested readers to check those
sources for more information, and textbooks like [Rosen] for technical information.

The pre-algebraic period

Algebraic K-theory had two beginnings, one in geometric topology and one
in algebraic geometry. The first was Whitehead’s construction of the Whitehead
group Wh(n) of a group = as an obstruction in homotopy theory. The second,
from which the subject got its name, was Grothendieck’s construction of the class
group K(X) of vector bundles on an algebraic variety X as a way to reformulate
the Riemann-Roch theorem.

The work of J.H.C. Whitehead on simple homotopy theory [Wh39] [Wh41]
[Wh50] formed one beginning of algebraic K-theory. Suppose given a homotopy
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equivalence f between two complexes (simplicial in 1939 and 1941, cellular in 1950).
Whitehead found an obstruction, called the torsion 7(f), for f to be built up
out of “simple” moves (expansions and contractions). Unlike the Reidemeister
torsion of f, which is a real number, Whitehead constructed 7(f) as an element
of a universal group, now called the Whitehead group Wh(r), which depends only
upon the fundamental group w. The thesis of Whitehead’s student G. Higman
[H40] contained some calculations of elements of Wh(r) coming from units in Z.
However, the group Wh(w) proved to be intractable, and the subject was put aside
until 1961.

In 1961, Milnor used Reidemeister torsion in [Mi61] to disprove the Hauptver-
mutung, the conjecture that two polyhedral decompositions of a space always have
a common subdivision. The Hauptvermutung dated back to Poincaré’s attempts
(in 1895 and 1898) to prove that the Betti numbers (i.e., the homology groups)
of a polyhedron are independent of the polyhedral decomposition used to compute
them. If the Hauptvermutung were true, one could easily fix the geometric gap
(found by Heegard) in Poincaré’s proof. J. W. Alexander had found a way around
this gap in 1915, but the Hauptvermutung had remained open for over 50 years.

In [Mi61] Milnor coined the term Whitehead group for the quotient GL(R)/E(R)
of the general linear group GL(R) by the subgroup E(R) generated by the elemen-
tary matrices — the group we now call K;(R). Milnor also clarified that White-
head’s torsion invariant lies in the quotient of this group by +n. This quotient
would not be called the Whitehead group Wh(w) until [Mi66], but let us get back
to the story.

The second origin of K-theory came from algebraic geometry, and was imme-
diately influential. It was the key ingredient in Grothendieck’s 1957 reformulation
of the Riemann-Roch theorem [BoSe] [Gr57]. Here Grothendieck introduced a
group K (A) associated to a subcategory A of an abelian category. This was the
real beginning of K-theory; Grothendieck chose the letter ‘K’ for “Klassen” (the
German word for classes); today we write Ko(A) for this group and call it the
Grothendieck group of A.

Grothendieck was interested in the abelian category M(X) of coherent sheaves
on an algebraic variety X, together with its subcategory P(X) of locally free sheaves
on X. He defined what we now call Ko(X) and Go(X) as KoP(X) and KoM(X),
respectively, and showed that these groups agree for nonsingular varieties. Then he
showed that if Y is closed in X there is an exact localization sequence

Go(Y) — Go(X) — Go(X — Y) — 0.

Grothendieck also defined the ~-filtration on Ko(X), and showed that the as-
sociated graded ring is isomorphic (up to torsion) to the Chow group A*(X), via
Chern classes ¢;: Ko(X) — A*(X) [Gr58]. Moreover, the total Chern character
induces a ring isomorphism chx: Ko(X)®Q = A*(X)®Q. If f: Y — X is proper
he showed that the formula

Fle Y (S [Rfu(F)]

defines a covariant map f.: Go(Y) — Go(X), and used this to formulate the
Grothendieck Riemann-Roch theorem: if X and Y are nonsingular and T'x is the
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Todd class of X then in A*(X) ® Q

chx(f«(y)) - Tx = fu(chy(y) - Tyv), y€ Ko(Y).

The formula Go(X) =2 Go(X|[t]) was discovered by Serre in Fall 1957, and
included in [BoSe, p. 116]. Here X[t] denotes the product of X with the affine line
Spec(Z[t]). For nonsingular X this meant that Ko(X) 2 Ko(X[t]). In particular,
for X = Spec(k) this implies that Ko(k[z1,...,25]) = Ko(k) =2 Z. In other words,
every projective module P over R = k[z1,...,z,] satisfies P & R™ = R™ for some
m and n.

The rise of topological K-theory (1959-1963)

In 1959, Michael Atiyah and Friedrich Hirzebruch had the idea of mimicking
Grothendieck’s construction for topological vector bundles on a compact Hausdorff
space X. In [AHB59a], they observed that the tensor product of vector bundles
makes the Grothendieck group K(X) into a commutative ring, and observed that
Chern’s original 1948 construction of Chern classes ¢; (combined into the Chern
character ch) defines a ring homomorphism ch: K(X) — H*(X;Q), much as in
Grothendieck’s setting. They defined relative groups K(X,Y) for closed subspaces
Y, which are modules over K(X). Using this module structure, they were able to
prove a Riemann-Roch theorem for differentiable manifolds, also in [AH59a].

A systematic study of this method led Atiyah and Hirzebruch to write their
foundational paper [AH®61], in which they defined the higher groups K ~"(X,Y) =
K(S™(X/Y)), n > 0. Observing that Bott’s results on the periodicity of homotopy
groups of the unitary group U could be expressed by an explicit “Bott period-
icity” isomorphism K"(X) = K"t2(X), they extended K"(X,Y) to all n using
periodicity. Then they showed that the functors K™ (X,Y) form an extraordinary
cohomology theory, satisfying all the Eilenberg-Steenrod axioms except the dimen-
sion axiom. They were able to calculate the K-theory of certain homogeneous
spaces using what we now call the Atiyah-Hirzebruch spectral sequence:

EP! = HP(X, K9(point)) = KP+9(X).

What made these new constructions so appealing was the power they brought
to applications. We have already mentioned the Riemann-Roch theorem for dif-
ferentiable manifolds above [AH59a]. In [AH59b] they were able to show that
complex projective space CP™ cannot be embedded in RN for N = 4n — 2a(n),
where a(n) is the number of terms in the dyadic expansion of n. In [AH62] they
showed that if X is a complex manifold then any cohomology class u € H2*¥(X;7Z)
which is represented by a complex analytic subvariety must satisfy Sq>u = 0. This
allowed them to disprove an overoptimistic conjecture of Hodge.

Ring homomorphisms ¢*: K(X) — K(X), which we now call Adams opera-
tions, were constructed by J. Frank Adams in his paper [A62] (written in 1961).
Using them, he was able to determine exactly how many linearly independent vector
fields there are on S™, which had been a famous outstanding problem. By further
analyzing the effect of the 1)* on the rings K (X), Adams was able to describe the
image of the Hopf-Whitehead J-homomorphism J: 7;(SO,,) = 7, 4:(S™) in terms
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of the denominator of the Bernoulli numbers By /4k. His ideas were based upon
[AH59a), and discovered in 1961/1962, but his proof was not completely published
until 1966 [A63].

At this point, the subject was off and running. But after 1962, the development
of topological K-theory diverged somewhat from the development of algebraic K-
theory. So let us put it aside and return to the algebraic side of things.

The structure of Projective Modules (1955-1962)

The notion of projective module was invented by Cartan and Eilenberg circa1953,
and first appeared on p. 6 of their 1956 book [CE], as a tool for working with derived
functors. This set off to a search for nontrivial examples of projective modules, and
an investigation into their structure. Some results were contained in [CE]. On p. 11
we find the characterization of semisimple rings as rings for which every module
is projective; later in the book (p. 111), this was viewed as the characterization of
rings of global dimension 0.

For some rings, Cartan and Eilenberg could classify all (finitely generated)
projective modules. If R is Dedekind (or more generally a Prifer domain), it was
pointed out (p. 14 and 134) that every projective module is a direct sum of ideals;
this result was proven in Kaplansky’s 1952 paper [K52], but in the language of
torsionfree modules. This implied (p. 13) that all projective R-modules are free
when R is a principal ideal domain (or more generally a Bezéut domain). Since the
ring of integers in a number field is a Dedekind domain, this gave a classical source
of non-free projective modules, discovered in the late 19th century.

On p. 157 we find the statement that if R is a local ring then all finitely
generated projective R-modules are free. Kaplansky later showed [K58] that all
projective modules over a local ring are free, as a consequence of the general re-
sult that any infinitely generated projective module is a direct sum of countably
generated projective modules.

For other rings, the classification was much harder. In Serre’s classic 1955 paper
[Se55, p.243], he stated that it was unknown whether or not every projective R-
module is free when R = k[zi,...,2n] is a polynomial ring over a field. This
became known as the “Serre problem.” Serre’s 1957 result that Ko(R) = Z meant
that every projective R-module P is stably free: P @ R™ = R™ for some m and
n. Using this, Seshadri [Ssh58] immediately solved the problem for k[z,y], but for
n > 2 this proved to be a notoriously hard problem. It was not completely solved
(affirmatively) until 1976, by Quillen [Q76] and Suslin [Su76].

Serre’s 1955 paper [Seb55] had a more long-reaching effect: it set up a dic-
tionary between projective modules and topological vector bundles. The analogy
was strengthened by his 1958 paper [Se58], which showed that every projective
R-module has the form P & R"™, where the rank of P is at most the dimension of
the maximal ideal spectrum of R. This dictionary gave rise to a flurry of examples
of non-free projective modules in the period 1958-1962. These came from algebraic
geometry [BoSe, Se58], algebra [Ba61, Ba62], group rings [R59, Sw59, Sw60,
R61] and topological vector bundles [Sw62]. Two later papers also fit into in this
trend: [Fo69] and [Sw77] constructed many examples of projective modules based
upon known examples of topological vector bundles.



THE DEVELOPMENT OF ALGEBRAIC K-THEORY 5

After 1962 people searched for projective R[t]-modules which were not extended,
i.e., of the form P[t]. Schanuel’s example [Ba62] of a rank one projective R][t]-
module that was not extended led to Horrock’s criterion [H64], clarified in Murthy’s
papers [Mu65] [Mu66], and formed the basis of the notion of seminormality [Tr70].
Noticing that the rings involved were always singular, Bass conjectured in 1972
(problem IX of [Ba72]) that if R is a commutative regular ring then every projective
RJ[t]-module is extended; Bass’ conjecture is still open when dim(R) > 3.

The rise of algebraic K-theory (1957-1964)

We have seen that Grothendieck’s projective class group was immediately useful
in geometric settings, for studying vector bundles in algebraic geometry and in
topology. We now turn to the development of the Grothendieck group construction
in a completely algebraic setting.

For now, let us write K(R) for the Grothendieck group of finitely generated
projective modules over a ring R. If R is a commutative ring, a good description
of K(R) could be read off from the results in [BoSe] for the scheme X = Spec(R):
K(R) is a commutative ring equipped with operations A¥, and its associated -
filtration is related to the Krull dimension of R.

The group K (R) next appeared in the 1958 paper [R59] by Dock Rim. Writing
T'[R] for the reduced group K(R)/Z, Rim first restated an old result of Chevalley
[Ch36] as saying that if R is Dedekind then I'[R] is the ideal class group of R. Then
he considered the group ring Zmx of a finite cyclic group « of order p. Combining
his results on projective Zm-modules with those of Reiner [R57], Rim then showed
that K(Zm) =2 K(Z[(]), where ( is a primitive p-th root of unity.

Next came Swan’s 1959 paper [Sw59], whose details appeared in [Sw60]. Here
Grothendieck’s methods were used in a deep way. In order to classify the (fin. gen.)
projective modules over the group ring Zm of a finite group w, Swan considered the
Grothendieck group K(Rm) of projective Rr-modules (which he called P(Rw)).
Noting the analogy between this and the representation ring of 7, Swan used in-
duction techniques to prove that the group K (Rw) injects into the sum of the
groups K(Rx') as 7' ranges over all hyperelementary subgroups of 7. To do this,
he introduced the Grothendieck groups G(Rw) and G'(Rw), corresponding respec-
tively to the classes of all (finitely generated) Rm-modules, and all those which are
torsionfree. If R is Dedekind, these Grothendieck groups are isomorphic.

Rim’s second paper [R61] contained the germ of the Mayer-Vietoris sequence.
Let B be a finite ring extension of a ring A, and consider the conductor ideal
I = ann(B/A). In the special case when A is an order in a semisimple algebra
(such as a group ring), and B is a maximal order, Rim showed that there is an
exact sequence

TA] - T'[B]eTI[A/I] - T[B/I] - 0.
In retrospect, Rim was unable to extend this result on the left (this was done in
[BaMur]) because K; was not yet available; Rim had no extension on the right
because A was one-dimensional. (The extension to the right uses K_; and was
done in [Bass, p. 677].)

Up to this point the Grothendieck group K (R) had not become Ko(R), because
there was no analogue K;(R) of the topologist’s K~1(X). This changed with the
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short 1962 announcement [BaSch] by Bass and Schanuel; the details appeared in
the expanded version, published by Bass in [Ba64]. Motivated by Serre’s dictionary
with vector bundles, and the observation that the topologist’s formula K'(X) =
[X,U] has an algebraic sense, they wrote K°(R) for K(R) and defined the group
K'(R) to be the quotient GL(R)/E(R). Like Milnor in [Mi61], they called K' the
Whitehead group, explaining that they were “using notions visibly borrowed from
Whitehead’s theory of simple homotopy types” [Wh50]; these “notions” included
Whitehead’s theorem that E(R) is the commutator subgroup of GL(R).

They also introduced the stability problem: for which n are GL,(R)/E,(R)
isomorphic to K;(R)? Dieudonné’s theory [D43] of noncommutative determinants
implied that n = 1 suffices for a division ring D: K(D) = D*/[D*,D*]. Bass
introduced his stable range conditions in [Ba64, p. 14] in order to solve this prob-
lem. Looking forward, Bass’ stable range results were improved in [Bass] and again
in Vaserstein’s work [Va69] [Va71]. A later milepost in the stability problem was
Suslin’s result [Su77] that SL3(F[z1, ..., x,)) is generated by elementary matrices.

If f: R — S is aring homomorphism, Bass and Schanuel also defined a relative
group K°(f) fitting into an exact sequence

K'(R) = K'(S) = K°(f) = K°(R) — K°(9).

Bass also defined the relative group K'(R,I) = GL(R,I)/E(R,I) of an ideal I in
[Ba64], showing that it extended the above sequence for f: R — R/I by one term.
This paper also defined products such as K°(R;) ® K'(R;) = K'(R; ® R»).

One important application of these results was given in [Ba64] (and announced
in [BaSch)]): if R is finitely generated as a module over Z then both K°(R) and
K*'(R) are finitely generated abelian groups. Consequently GL,(R) and GL,(R,I)
are finitely generated groups for all n.

Bass, Heller and Swan published the companion paper [BaHS] in the same
issue as [Ba64]. In it, they systematically studied the behavior of the new func-
tor K'(R) under polynomial and related extensions. If R is left regular, they
proved that K'(R) = K'(R[t]) and K'(R[t,t"!]) = K'(R) ® K°(R). The map
KY(R[t,t71]) — K°(R) was constructed for any ring R; its inverse is multiplication
by t € KY(R[t,t71]).

A key step in their proof [BaHS, p. 551] was the introduction of a group K (A)
for any subcategory A of an abelian category, along with a devissage theorem for
K. Alex Heller abstracted this in [H65] to introduce groups K;(S) and Ko(S) for
any symmetric monoidal category S. Bass then systematically developed Heller’s
ideas in his Tata Lecture notes [BaRoy].

In 1964, a consensus arose that one should write Ko(R) and K;(R) instead of
K°(R) and K'(R), to indicate that these new functors were covariant in the ring
R. 1 believe that the first uses of this new notation were in two papers written
in 1964: Heller’s paper [H65] and Milnor’s survey paper [Mi66] on Whitehead
Torsion. Milnor’s paper also introduced the notation Ko(R) for Rim’s group T[R].

Motivated by the classical unit/ideal class group sequences for Dedekind rings,
Alex Heller turned to the construction of a localization sequence for K;(Z7w) —
K;(Qn). His paper [HR64] with Reiner had partial success, using the group KoB
of torsion Zm-modules. In [H65], Heller extended Grothendieck’s Ky localization
sequence [Gr57] for a Serre subcategory B of an abelian category A to an exact
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sequence (at least when A and A/B are semisimple)
KiA— K1 A/B — KoB = KgA - KoA/B — 0.

It became apparent that the Bass-Heller-Swan group K1.4 was not the appropriate
group when A is abelian but not semisimple. This was confirmed by Leslie Roberts,
whose 1968 thesis ([Rob76] [Ger72, 5.2]) showed that Bass’ group K'(.A) doesn’t
fit into a localization sequence with K*(B) when A is the category of vector bundles
over an elliptic curve. But the way to repair K;.4 did not become clear until 1972.

The foundations for Ko and K; were now in place.

Applications to Topology (1963-1966)

The next few years were marked by a veritable explosion of applications of
the new K-theory. We have already pointed out the use of the Whitehead group
Wh(w) = K1(Z7)/+m as an obstruction in simple homotopy theory since 1950, and
its subsequent use by Milnor [Mi61] in disproving the Hauptvermutung in 1961.

Cobordisms also formed an important family of applications of Wh(n). Recall
that an h-cobordism (W, M, M') is a smooth closed manifold W whose boundary is
the disjoint sum of two pieces, M and M’, each of which are deformation retracts
of W. If M is simply connected and dim(M) > 5, Smale proved the h-cobordism
theorem in 1962: W is diffeomorphic to the product M x I (in a way preserving
M), so that M’ is diffeomorphic to M. The first part of the following generalization
was proven in 1963 by Barden, Mazur and Stallings; see [Mi66]. The second part
was proven by J. Stallings [St65].

THE s-COBORDISM THEOREM. Ifdim(M) > 5, then an h-cobordism (W, M, M)
is diffeomorphic to the product M % I if and only if the Whitehead torsion 7(W, M) €
Wh(m M) vanishes.

Moreover, Whitehead torsion gives a 1-1 correspondence between the elements
of Wh(mi M) and diffeomorphism classes of h-cobordisms (W, M, M') of M.

If 7 is finite, Bass had proven in [Ba64] that Wh(r) is finitely generated, and
computed its rank. It was implicit in Higman’s paper [H40] that the torsion in
Wh(n) comes from SLy(Zm). (Higman worked with abelian 7; the general result
came much later [W74].) In spite of a heroic effort by several people in the mid-
1960’s, examples of nonzero torsion proved to be elusive (see [Mi66, p. 416]), and
not actually confirmed until the 1973 paper [ADS] by Alperin, Dennis and Stein.
We refer the reader to Oliver’s book [O88] for the rest of this intricate story.

An important application of Ky was found by C. T. C. Wall in 1963, and
published in [W65]. If X is a space dominated by a finite complex, he defined a
generalized Euler characteristic x(X) in Ko(Zm). Wall showed that X is homotopy
equivalent to a finite complex if and only if x(X) = 0. Naturally, we now call x(X)
Wall’s finiteness obstruction.

L. Siebenmann [Sie66] and V. Golo [Golo] soon showed that similar obstruc-
tions exist in Ko(Zm) to the problem of putting a boundary on an open manifold.

One of the most important K-theory problems in this era was to compute
the group Ko(Zw) containing these obstructions. When 7 is abelian, this was
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accomplished by Bass and Murthy in [BaMur]. Their idea was to decompose 7
as the product of a finite group 7o and a free abelian group T and then write
Zmw = A[T] with A = Zm. If B is the normalization of A, this could then be
analyzed by extending Rim’s conductor square sequence to K; and studying the
units of B/I[T].

When 7 = w9 % Z is a semidirect product with Z, Farrell and Hsiang [FH70]
found a general formula for K;Zm and Wh(w), generalizing the Bass-Murthy for-
mula.

The Congruence Subgroup Problem

The other important application of K-theory in the mid-1960’s was the con-
gruence subgroup problem. Let R be the ring of integers in a global field F. If I is
an ideal of R, let SL,(I) denote the kernel of SL,(R) — SL,(R/I). Since R/I is
a finite ring, SL,(I) has finite index in SL,(R). The congruence subgroup problem
asks if every subgroup I of finite index contains a subgroup SL,(I) for some I, so
that it corresponds to a subgroup of the finite group SL,(R/I). One restricts to
n > 3 because it is classical, and known to Klein in the last century, that there are
many other subgroups of finite index in SLy(Z).

If n > 3, we see K-theory appearing: the answer to the congruence subgroup
problem for SL,(R) is ‘yes’ if and only if SK;(R,I) = 0 for every nonzero ideal I
of R. Indeed, for any nonzero I the group E, (R, I) also has finite index, and Bass’
stability theorems in [Ba64] show that the quotient SL,(I)/E, (R, I) is isomorphic
to the subgroup SK;(R,I) of K;(R,I). Conversely, if I' C SL,(R) is normal, has
finite index and n > 3, Bass used stable range conditions for R to observe in [Ba64]
that there is a unique ideal I such that E,(R,I) CT C SL,(I).

For R = Z, Mennicke [Me65] and Bass-Lazard-Serre [BaLS] proved that the
congruence subgroup problem has an affirmative answer. Gradually the general
problem was brought into focus. First Mennicke considered the coset classes of the
subgroup SL»(R) of SLs(R), modulo E3(R). The class of a 2 x 2 matrix (Z Z)
only depends upon the first row (a b) of the matrix, and Mennicke showed that
this class is multiplicative in a and b. This led Milnor to introduce the universal
Mennicke group generated by symbols [°], where b € I and a € 1+ I are relatively
prime, subject to Mennicke’s two relations; this universal group maps to SK; (R, I)
by sending the Mennicke symbol [Z] to the class of a 2 X 2 matrix with first row
(a b). Milnor observed that this could be used to bound SK;(R) when R is a ring
of algebraic integers. Then Kubota used power residue symbols to produce charac-
ters on congruence subgroups (in the totally imaginary setting). Bass generalized
Kubota’s arguments, using stability theorems for Kj, to prove that the universal
Mennicke group is isomorphic to SK;(R, I) for every Dedekind ring R.

The congruence problem was finally settled for all global fields in the 1967
paper [BaMS] by Bass, Milnor and Serre. The answer is ‘yes’ if and only if F has
an embedding into R. If there is no such embedding, then for each ideal I they give
a formula for a number m so that the group p,, of mth roots of unity lie in ' and
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SK1(R,I) = . Under this isomorphism, the Mennicke symbol [?] corresponds
to Hasse’s classical power residue symbol (%)

The solution revealed an unexpected interaction between the relative groups
K1 (R, I) and explicit power reciprocity laws in F. This was to attract the attention
of many people to K-theory, including H. Matsumoto [Mat68] and John Tate
[Ta70].

Classical consolidation (1966-1968)

During the next few years, the theory was reorganized, consolidating many
ideas into a few structural results. This would set the stage for the discovery of K,
and form the backdrop for the appearance of the higher K-theory in the next few
years.

The first book to appear was based on Bass’ Tata lectures [BaRoy], written
in 1966. Starting with a symmetrical monoidal category S, the relationship between
Ko(S) and K (S) was systematically exposed. On the next page, we shall say more
about the applications to S = Az and S = Quad in [BaRoy].

Bass and Murthy’s paper [BaMur] also upgraded a lot of machinery into a
form suitable for calculations. For example, they clarified the Heller-Reiner inter-
pretation of the localization sequence for A — S~1A using the category Mg (A)
of S-torsion A-modules. For an integral extension A — B with conductor ideal
I, they showed that excision holds for Ky in the sense that Ko(A,I) = Ko(B,I).
This allowed them to extend Rim’s Mayer-Vietoris sequence back as far as K7 (A4).
They also proved that K;(A4,I) = K;(B,I) when B is a finite product, each factor
of which is a quotient of A.

Swan’s 1968 book [Swan], based on a Fall 1967 Chicago course, gave a very
readable account of the theory, focussing on Ky and K; of abelian categories and
their additive subcategories. The lecture notes of Milnor’s 1967 Princeton course
were distributed widely, although they were not published until 1971 as [Mi71].
They contained a clear account of the Mayer-Vietoris sequence based upon Milnor’s
notion of patching projective modules.

Swan’s book [SwEv] was also written in this period, and appeared in 1970. This
book summarized the practical applications of algebraic K-theory to the represen-
tation theory of finite groups and orders, including the new induction techniques
from Lam’s thesis [L68].

However, the focal point of this era was the appearance of Bass’ comprehensive
book [Bass]. Based upon a 1966/1967 Columbia University course, and largely
written in the summer of 1967, it provided a unified exposition of the subject. It
also included Lam’s induction techniques [L68] as well as an extended discussion
of the relation between K; of a Dedekind ring and reciprocity laws. But most
importantly, it contained a proof of the “fundamental theorem” for K;: the Bass-
Heller-Swan map 9 and its splitting fit into a split exact sequence:

0 = K1(A) —» K1 (A[t]) ® K1 (At 1)) — Ki(Alt,t 1)) 2 Ko(4) — 0.

This sequence first appeared in [BaMur, 10.2], except that exactness at the sec-
ond term was not established there. Bass and Murthy gave a similar formula for
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Ko(A) = Pic(A) when A is 1-dimensional. It was further analyzed in [Swan], but
the entire theorem was not made precise until [Bass].

In fact, the fundamental theorem gives a definition of the functor Ky as a
function LF' of the functor F' = K;. Bass recognized that this process could be
iterated to define negative K-groups K_,(R) as L"Ky(R) [Bass, p. 677]. To
axiomatize the process, Bass introduced the notion of a contracted functor; the fact
that K; is contracted implies that K is also contracted. Independently, Karoubi
[Ka68] gave a definition of K-groups K" A (n > 0) for any (idempotent complete)
additive category A, and proved that his K"P(R) agree with Bass’ K_,(R).

Quadratic Forms and L-theory

The study of quadratic forms has a long and venerable history, going back to
Gauss, and focussed on the Witt group W (k) of a field k, introduced by E. Witt in
[Wi37]. Classical invariants include the discriminant (in k* /k*2) and the Hasse
invariant, lying in the Brauer group Br(k). In the mid 1960’s, the idea of replacing
GL,, by the orthogonal and unitary groups led to the “hermitian” K-theory of
hermitian forms (and/or quadratic forms), and this evolved into L-theory.

The algebraic part of the story begins in 1964, when Wall [W64] generalized
the Hasse invariant to one lying in a larger group we now call the Brauer-Wall group
BW (k). This was generalized to any commutative ring R in Bass’ Tata lectures
[BaRoy]. Bass first formalized the notion of the category Quad(R) of quadratic
forms over R and their isometries, and considered the groups K;Quad(R). He
observed that the Witt ring W (R) of quadratic forms is the quotient of KoQuad(R)
by the image of a hyperbolic map K¢(R) — KoQuad(R). Bass also showed that
K;Quad(R) is related to the stable structure of the orthogonal groups Oa,, (R).

Next, Bass introduced the category Az(R) of Azumaya algebras over a commu-
tative ring R, and studied K;Az(R). The Brauer group Br(R), defined by M. Aus-
lander and O. Goldman in 1960, is a natural quotient of KqAz(R). Bass defined
the Brauer-Wall group BW (R) as the corresponding quotient of KoAzz(R), where
Az, is the graded analogue of Az. Finally, he showed that the Clifford algebra
functor Quad(R) — Azs induces Wall’s invariant W(R) — BW(R).

The topological part of the story comes from surgery theory. Suppose M is
a closed manifold with fundamental group 7. The surgery problem asks when a
map ¥: M — X can be made cobordant to a homotopy equivalence. For simply
connected M, this problem was solved by Milnor, Kervaire, Browder and Novikov;
one needs to lift the class of the normal bundle of M from K°(M) to K°(X).

In order to solve this problem when 7 is non-trivial (and X is nice), C. T. C. Wall
[W66] observed that the middle homotopy group of ¢ is a projective Zm-module,
equipped with a hermitian form (). Wall then defined a 4-periodic sequence of
Grothendieck groups of such forms; these groups were quickly christened L, (),
or L, (Zx). Wall then proved that the obstruction to the surgery problem for v is
the class of @ in L,,(7), where m = dim(M).

Motivated by the topological applications, the subject rapidly evolved. Stability
theorems were given by Bak [B69] and Bass’ foundational paper [Ba73], which
discussed KoQuad®(R) and K;Quad®(R) for a ring with involution R and € € R
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such that €€ = 1. It turned out, however, that Wall’s 4-periodic obstruction groups
L¢, (R) are subquotients of these groups [W73, p. 286], with L{, , ,(R) = L, (R).
Much of the development of this subject was due to topologists, including Wall,
Novikov, Hsiang, Cappell-Shaneson, Bak, Browder, and Ranicki.

In 1970, when Quillen’s plus construction for higher K-theory was discovered,
it was natural to consider the homotopy groups of the space BO¢(R)* as the
Hermitian K-theory of R; see [Ka73]. However, it soon became apparent [Lo76]
that for m > 2 these groups are less well related to the Wall groups L€, (R). At this
point these two approaches became disconnected from each other, and also from
the development of algebraic K-theory. So let us return to our story.

K, arrives (1967-1971)

Steinberg [St62] gave a presentation of a universal central extension A of a
Chevalley group G over a field k, noting that the center of A was a “multiplier”
in the sense of Schur. When G = SL,,, we now write St, (k) for A and call it the
Steinberg group. Steinberg also introduced 2-cocycles k* ® k* — St,(k) (p- 121);
we now write these cocycles as {z,y} and call them Steinberg symbols. It was
gradually realized that Steinberg’s presentation gave a universal central extension
Stn(R) of the subgroup E,(R) of GL,(R) for any associative ring R (if n > 5).

As we have mentioned, the Bass-Milnor-Serre paper [BaMS] revealed an un-
expected connection between the relative groups K; (R, I) and explicit power reci-
procity laws in the field of fractions for R. For example, if R is a ring of integers
in a number field, they observed that there is a central extension

1—- Ki(R,I)— % — En(R/I) — 1.

In Spring 1967, Milnor gave a course at Princeton University, in which he
defined K of a ring and developed several of its basic properties. Writing St(R) for
the direct limit of the groups St,(R), Milnor defined K»(R) to be the kernel of the
homomorphism St(R) — E(R). Milnor also wrote a letter to Steinberg explaining
his results on K5(R). The contents of his letter were included in Steinberg’s Yale
course notes on Chevalley Groups [St67, pp. 92ff.], distributed in Fall 1967.

Milnor’s course notes themselves were not published for several years, because
of the unprecedented explosion in mathematics that they produced. When the
book [Mi71] finally appeared, it incorporated many of the results found during
1967-1970.

First came the work of C. Moore [Mor68] (written in 1967). If F' is a local field
then the norm residue symbol maps K2(F) onto the finite group pu = p, of roots
of unity in F'; Moore showed that its kernel V' is divisible, so Ko(F) = up @ V.
In fact, V' is uniquely divisible; this was proven much later by Tate [Ta77] when
char(F) = p, and by Merkurjev [Me83] when char(F) = 0.

Next, Matsumoto’s 1968 thesis [Mat68] gave a presentation of K, (F) when F
is a field: it is generated by the Steinberg symbols {z,y}, which are subject only
to bilinearity and the relation {z,1 — z} = 1 (which was discovered by Steinberg).
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Let R be a Dedekind domain with field of fractions F. For each prime ideal p
of R, Bass had constructed transfer maps K1 (R/p) = SK1(R) in [Bass, p. 451].
In 1969, Bass and Tate constructed the tame symbols A,: Ko(F) — K1 (R/p) and
used reciprocity laws for A = @A, similar to those in [BaMS] to construct the
exact sequence

Ky(R) = K2 (F) 2 @,K1(R/p) = SKi(R) = 0

[Mi71, p. 123] [BaT)]. Their proof of exactness at K5(F') required R to have only
countably many prime ideals, but that suffices for integers in global fields.

When R is the ring of integers in a number field F, the kernel of A was called
the tame kernel until 1972, when Quillen discovered [Q73] that the tame kernel was
just Ko (R). In 1971, Garland [Gar71] proved that the tame kernel K»(R) is finite.
Since Tate was able to calculate the tame kernel for F' = Q as well as the first six
imaginary quadratic number fields [BaT], K»(F) was known for these fields.

In 1970/71, J. Tate [Ta70] discovered the norm residue symbols on Ky(F)
(one for each n with 1/n € F). If F has primitive n-th roots of unity, they give
maps K»(F) — Br(F); in general they take values in the étale cohomology group
H2,(F,u®?). Tate proved that Ky(F)/n — HZ(F,u®?) is an isomorphism for
all global fields F', but the details were not published until several years later, in
[Ta76]. The proof that this map is an isomorphism for all fields was discovered
in 1981/82, by Merkurjev and Suslin [Me81] [MS82].

Birch [Bir69] and Tate [Ta70] conjectured that if R is the ring of integers in
a totally real number field F' then the order of the finite group K2(R) should be a
certain number wq (F) times the value (r(—1) of the Riemann Zeta function of F.
The odd part of this conjecture was settled by A. Wiles in [Wi90]; the 2-primary
part of this conjecture is still open, and is equivalent to part of the (2-adic) Main
Conjecture of Iwasawa Theory; see  RW97, A.1].

In the 1970 paper [Mi70], Milnor observed that the Hasse invariant of qua-
dratic forms over a field F' could be factored through Tate’s norm residue symbol
K>(F)/2 — Br(F). More precisely, if I denotes the kernel of W (F) — Z/2 then
the Hasse invariant maps I? to Br(F), and Milnor proved that it factors through
an isomorphism I? /I3 = K,(F)/2. This led him to introduce what we now call the
Milnor K-groups of a field F, viz., a graded ring KM (F) which agrees with K, (F)
for x = 0,1,2. Milnor constructed a canonical map from KM (F)/2 onto I"/I"+1
for each n, proved that it is an isomorphism for local and global fields, and asked
(p- 332) if it is an isomorphism for every field F. If char(F) = 2, this was solved
positively by K. Kato in 1981 [K82].

The Milnor ring KM (F) of a field was systematically studied by Bass and Tate
in [BaT]. For global fields, they were able to compute KM (F) = (Z/2)™ for alln >
3, where r; is the number of embeddings (if any) of F into R. They also constructed
transfer maps KM (E) — KM (F) for certain finite field extensions F' C E; the proof
that transfer maps exist for all finite extensions was given in 1980 by Kato [K80].
After Kato distributed his 4-page proof at the 1980 Oberwolfach conference, Suslin
immediately used Kato’s transfer maps to construct a map K,(F) — KM(F),
and prove that the natural map KM (F) — K,(F) is an injection modulo torsion
[Su80].
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Milnor also constructed higher norm residue symbols KM (F)/2 2=y H"(F,7Z/2)
in [Mi70], and used Tate’s results to prove that h, is always an isomorphism for
local and global fields. Milnor then stated (p. 340) that he did not know of any
examples where it fails to be an isomorphism; this became known as the “Milnor
conjecture” after the case n = 2 was settled in 1981 by Merkurjev [Me81]. Jump-
ing ahead, the case n = 3 was solved in 1986 by Merkurjev-Suslin [MS90] and
M. Rost. A proof that h,, is an isomorphism for all n was only discovered recently
by V. Voevodsky [Voe96].

For rings other than fields, progress was slower. First, the group K2(R[e])/K2(R)
was computed by Wilberd van der Kallen [vdK71]. Then Dennis and Stein [DS73]
[DS75] constructed symbols (a, b) in K2(R) and showed that they form a complete
set of generators for K, of a semilocal ring. If I is a radical ideal, they also showed
that K5 (R, I) is generated by the Dennis-Stein symbols (a, b) with @ or bin I. A full
set of relations for the Dennis-Stein symbols, and hence a presentation for K5 (R, I)
was later given by Maazen and Stienstra in [MaSt].

Higher K-theory arrives (1968-1972)

The search for higher K-groups had dominated much of the 1960’s, as we
have seen. It was clear that Milnor’s definition of K5 should form the basis of
this search. In fact, Swan proposed the definition K3(R) = H3(St(R);Z) in 1967
[Swan, p.207].

In 1968, Swan [Sw68] proposed a definition of higher groups K,(R), based
upon the idea that free rings should have no higher K-theory. In 1969, Steve
Gersten [Ger69] used the free ring functor F' to produce a functorial “cotriple”
resolution F*R of any ring R; applying the functor R — E(R) gives a simplicial
group, and Gersten defined K, (R) = m,_2E(F*R) for n > 2. Swan [Sw70, Sw72]
showed in 1970 that his definition agrees with Gersten’s.

In 1968, Nobile and Villamayor [N'V68] gave a definition of higher K-theory,
essentially by defining the “loop space” of a ring. These ideas led Karoubi and Vil-
lamayor to define groups K ~"(R) in [KV69] (whose details appeared in [KV71]).
The drawback is that their group K ~!(R) is the quotient of K;(R) = GL(R)/E(R)
by the subgroup generated by the unipotent matrices, but it has the advantages
that K~™(R) = K ~"(R]t]) for every n > 1, and that long exact sequences (such as
Mayer-Vietoris sequences) exist in many situations. Nowadays, we write KV,,(R)
for K~™(R) and call it the Karoubi- Villamayor K-theory of R.

Gersten [Ger70] gave a simpler version of Karoubi-Villamayor theory in 1969,
using the notion of a homology theory associated to the functor GL from rings to
groups. Then Rector remarked [Glet] [R71, 2.6] that to every ring R one could
associate a simplicial ring AR with AR, = R[to,...,ts]/(D_ti = 1), and showed
that the homotopy groups of the simplicial group GL(AR) also give the Karoubi-
Villamayor groups. Rector’s remark has formed the basis of all subsequent work in
the subject.

Historically, the most important construction of higher K-theory was the plus
construction, given by Quillen in 1969/70. In his work [Q¥] [Q70] on the Adams
Conjecture, Quillen constructed a map from BGL(F;) to the fiber F¥Y of the
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Adams operation BU E) BU for each finite field F;, and observed that the map
is acyclic (induces isomorphisms on homology). Quillen observed more generally
that if one started with any CW complex X then there is an acyclic map X — X,
unique up to homotopy, such that w1 (X) — 71 (X ™T) is the quotient by the largest
perfect subgroup. In particular, BGL(F, )" has the homotopy type of F¥9.

Motivated by this, Quillen defined K,,(R) as the homotopy group 7, BGL(R)*
[Q71, p. 50]. Since the homotopy groups of F'¥? could be read off from the known
action of ¥? on BU, this gave the calculation of K,(IF,) for every finite field F,.
Moreover, in light of the Kahn-Priddy theorem that BET ~ QS the inclusion
of the symmetric groups ¥, in GL,(Z) induces maps 5 — K, (Z). Quillen showed
in [Qlet] that these maps induced an injection of the cyclic groups J(m,0) C 78
into K,,(Z) when n = 3 (mod 4).

Also in 1970, G. Segal was developing his infinite loop space machine which
starts with a symmetric monoidal category S (or more generally a I'-space) and
produced an Q-spectrum. (His paper [Seg74] only appeared in 1974.) Quillen
showed in the 1971 preprint (now published as [Q94]) that if one takes S to be
the category of fin. gen. projective R-modules and their isomorphisms then Segal’s
infinite loop space is Ko(R) x BGL(R)*. Of course, the same could be done with
other infinite loop space machines, such as May’s [May72]. This choice caused
some confusion until 1977, when May and Thomason showed in [MaTh] that all
reasonable infinite loop space machines agree.

Several other constructions of K, (R) appeared in 1971. One which was based
upon the theory of buildings and upper triangular subgroups was given by I. Volodin
[Vo71]. In an attempt to understand Volodin’s construction, J. Wagoner [Wag73]
came up with a similar construction. A construction along the lines of Swan’s was
given by F. Keune [Keu71].

In 1972, Quillen [Q72, Q73] defined the higher K-theory of an ezact cat-
egory, viz., a full subcategory A of an abelian category which is closed under
extensions. To do so, he first constructed an auxiliary category QA and de-
fined K,(A) = m, 1BQA. Theorem 1 of the announcement [Q72] stated that
the loop space QBQP(R) is homotopy equivalent to Ko(R) x BGL(R)*, so that
K,(R) = K,P(R). Awkwardly, the proof of this “+ = @” theorem was not pub-
lished until 1976 [GQT76].

Theorems 2-4 of [Q72] extended the fundamental structure theorems from
classical K-theory (K, for n < 2) to higher K-theory: devissage, resolution and
localization. Theorem 5 stated that if R is regular then K.(R) = G.(R), where
G«(R) is the K-theory of the abelian category of finitely generated R-modules.
Theorem 8 was the localization sequence for a Dedekind domain, and theorem 11
was the Fundamental Theorem:

Gn(R[t]) = Gn(R) and Gn(R[t,t™]) = Gp(R) ® Gno1(R).

Now Gersten had given a spectral sequence [Glet] from K, (AR) to the Karoubi-
Villamayor groups KV, (R). If R is regular, Quillen’s Fundamental Theorem im-
plies [Q72, p. 101] that Gersten’s spectral sequence degenerates, giving K, (R) =
KV,(R). Quillen concluded by defining the groups G.(X) of a quasi-projective
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scheme X, and giving a spectral sequence converging to G, (X), starting from the
K-groups of the residue fields of X.

At this point in the rapid-fire sequence of events, Bass organized a two-week
conference on algebraic K-theory. Held at the Battelle Memorial Institute in Seattle
during August 28-September 8 of 1972, the relationship between the various K-
theories became one of the focal points of the conference. As we have seen, things
had been greatly clarified by Quillen’s announcement [Q72]. Gersten used Roberts’
thesis [Rob76] to show [Ger72] that the Bass-Heller-Swan group K'(A) differs
from Quillen’s K;(A) when A is the category of vector bundles over an elliptic
curve.

The consensus at the Battelle Conference was that Quillen’s K-theory of a
free ring Z{X} measures the difference between the different constructions. A few
months afterward, Gersten proved [Ger74] that K,(Z{X}) is trivial. Using this,
Don Anderson proved in [A73] that Quillen’s groups agree with the Gersten-Swan
groups, and Wagoner showed that they also agree with his. A proof that Volodin’s
construction agrees with these was not given until much later, by Suslin [Su81].

Encouraged by Bass, Quillen wrote the foundational paper [Q73] during the
first two months of 1973. It was a masterful piece of exposition, providing tools for
calculations and elegant proofs of the structure results announced in [Q72]. (We
will not elaborate on the details in order to focus on the flow of events.) At that
time, Quillen discovered proofs of Gersten’s conjecture and Bloch’s Formula; we
will discuss these results below.

Applications to Algebraic Geometry

The interaction of higher K-theory and algebraic geometry begins with Ken
Brown’s 1971 MIT thesis [Br73], which developed the cohomology theory of sheaves
of spectra on a noetherian scheme X. Brown was motivated by Quillen’s sug-
gestion that such a theory might apply to K-theory. Gersten had recently con-
structed a functorial spectrum K(R) associated to a ring R; sheafifying gives such
a sheaf spectra. Seizing upon this, Gersten announced in [Ger73] that if we set
K,(X) = H"(X,K) for regular separated schemes X then for X = Spec(R) we re-
cover K,,(X) = KV,,(R). (Quillen had already announced that KV,,(R) = K,(R)
[Q72], but Gersten was unaware of this at the time.) Moreover, there is a spec-
tral sequence converging to K,(X) whose Es-terms are the Zariski cohomology
HP(X, ;) of the sheaves associated to the presheaves sending Spec(R) to K, (R).
The details were worked out by Brown and Gersten at the Battelle Conference, and
appeared in [BGT3].

Jouanolou [J73] also extended the functors KV, from rings to quasi-projective
schemes using what we now call “Jouanolou’s device:” for each such X there is
a ring R and a map Spec(R) — X which is locally a vector bundle; one defines
KV,.(X) = KV,.(R). At the Battelle Conference it became clear that Quillen’s def-
inition K, (X) = K, P(X) agreed, at least for regular X, with the groups obtained
using Jouanalou’s device, as well as the Brown-Gersten definition [BG73, Q73].

In the other direction, the application of higher K-theory to the study of cycles
in algebraic geometry was initiated by Spencer Bloch in [B174]. Bloch’s preprint
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appeared just before the 1972 Battelle Conference, and was influenced by Gersten’s
results in [Ger73]. His main theorem, that the cohomology group H2(X,K>) is
isomorphic to the Chow group C H?(X) on any regular surface, is now called Bloch’s
formula. One interesting conjecture made in [B174] was that if R is a (regular) local
domain with quotient field F', then the following sequence is exact:

0= Ky(R) = Kao(F) 2 @pyp1k(p) = Co — 0,

where k(p) denotes the residue field of R,,, and C, is closely related (see p. 360) to
the free abelian group on the height two prime ideals of R.

Gersten seized upon Bloch’s formula, and made a series of striking conjectures
about the higher K-theory of regular local rings, including what we now call Ger-
sten’s conjecture: K,(R) injects into K, (F) for every regular local ring R. These
conjectures were presented at the Battelle Conference in 1972.

When writing up his foundational paper [Q73] in early 1973, Quillen discovered
a proof of Gersten’s Conjecture for the local rings of a nonsingular variety X over a
field. His proof implied that Bloch’s formula generalized to H?(X,K,) = CH?(X)
for all p. Quillen included this material in [Q73].

Looking ahead, Gersten’s conjecture was proven for equicharacteristic DVR’s by
C. Sherman in [Sh78]. The general mixed characteristic case of Gersten’s conjecture
is still open today, in spite of some progress in the 1980’s by Bloch, Gabber, Gillet,
Levine, and Sherman.

Bloch-Ogus [BlOgs] soon showed that Quillen’s trick for solving Gersten’s
conjecture could be used in other settings, such as de Rham cohomology. Gillet
[Gi80] later used the ideas in the Bloch-Ogus paper to define Chern classes for
higher K-theory, and to prove a very general Riemann-Roch theorem.

In 1978, Bloch [B179] used the cohomology of the sheaves K,, to describe the
Abel-Jacobi map CH™(X) — Alb(X) of a smooth projective n-dimensional variety,
and to give a different proof of Roitman’s theorem that the Abel-Jacobi map induces
an isomorphism between their torsion subgroups. In the 1980’s, the use of K-
cohomology to study cycles exploded, starting with [CSS82], but that is beyond
the scope of this paper. The state-of-the-art as of 1979 is nicely described in Bloch’s
book [B180].

Homological methods

Most attempts to compute the groups K, (R) in the 1970’s used homological
methods. The idea was to use geometric methods to calculate either the homology
of the groups SL,(R) or the homology of BQ,, for small subcategories @, of QP (R).
If R is the ring of integers in a number field, Quillen [Q73Z] used these methods
to show that the K,(R) are finitely generated, and Borel [Bo72] used them to
compute the rank of the K, (R).

Motivated by these calculations, and also by his calculations in [Ba64], Bass
posed this question at the Battelle conference: are the groups K, (R) finitely gen-
erated whenever R is either finitely generated as an abelian group, or regular and
finitely generated as a ring? This question has become known as Bass’ “finite
generation conjecture,” and is still open.
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Here are two of the strongest results in this direction. If R is regular, finitely
generated as a ring, and dim(R) < 1, Quillen proved that the K, (R) are finitely
generated in 1974; his proof was published in [GQ82]. If R is finite, or R is an
order in a semi-simple Q-algebra, Remi Kuku [Ku86] proved that each K,(R) is
finite.

Several people used homological methods to prove stability theorems for higher
K-groups, including Charney, Maazen, Vogtman, van der Kallen and Suslin.

It was sometimes possible to use homological methods to calculate K3 and
even K. In 1975, Lee and Szczarba [LeeSz] were able to calculate the homology
of SL3(Z) and prove that K3(Z) is isomorphic to the cyclic group Z/48. Evens and
Friedlander computed K3 and K, for rings of order p? in [EF80]. However, the dif-
ficulty of using this method quickly became overwhelming, as Staffeldt’s 1977 thesis
[St79] shows. After a ten year effort by Vic Snaith and his students culminated in
the book [ALS85], the effort to use these techniques was effectively abandoned.

The Lichtenbaum Conjectures

Let F be a totally real number field F, and R its ring of integers. In 1972,
S. Lichtenbaum [Li73] conjectured that the K-theory of R is related to the values
of the zeta function (r(s). More precisely, for each ¢ > 1 he conjectured that
the rational number |(#(1 — 27)| equals the ratio of the orders of the finite groups
Kyi—2(R) and Kq;-1(R).

The first test of this conjecture was R = Z and ¢ = 1. Since (g(—1) = —1/12
and K,(Z) = 7Z/2, Lichtenbaum’s conjecture predicted that K3(Z) has 24 ele-
ments. After Lee and Szczarba [LeeSz] showed that it has 48 elements, Lichten-
baum amended his conjecture to say that equality holds “up to a power of 2.”

With hindsight, we know that the connection between the K-theory of R and
the zeta function of F' goes through the étale cohomology of R. To explain this
connection, note that the Galois group G of F'/F acts on the roots of unity px and
its twists 4%, For each i there is an integer w;(F) such that the groups HY (F, u%)
are cyclic of order w;(F) for all large N. We have already seen that the number
wy appears in the Birch-Tate conjecture that #Ks(R) is wy(F)|(r(—1)|. Another
connection was found by Bruno Harris and Graeme Segal, who proved in [HS75]
that K2;_1(R) contains a cyclic summand whose order is w2 (F') up to a factor of 2.

Lichtenbaum had already made several conjectures in number theory, including
a conjecture that for all ¢ and all primes ¢, the £-part of the integer w;(F)(r(i — 1)
equals the order of HY(R[1/€], u$")iors for all large v. In 1990, Wiles [Wi90]
proved the Main Conjecture of Iwasawa Theory for odd primes £, which implies
this conjecture up to powers of two. The 2-part of this conjecture would follow
from the Main Conjecture for the prime 2, which is still open.

Comparing these two circles of ideas, we may rephrase the second half of Licht-
enbaum’s conjectures as saying that for v large, we have

o) #E2i—2(R) _ I #HZ(R[1/€); pg)
#Ezi1(R) L #HL (R pg))
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We now know [RW97] that “(?)” is the number r; of real embeddings of F. In
fact, thanks to the work of Voevodsky in [Voe96], Rognes and Weibel [RW97] have
recently affirmed the 2-primary part of the second half of Lichtenbaum’s conjectures.

Quillen [Q75] generalized this second half, suggesting that for any regular ring
R there should be a spectral sequence for each prime £ invertible in R, analogous to
the Atiyah-Hirzebruch spectral sequence, but starting from the étale cohomology
groups HY,(R,Z(q/2)), whose abutment would coincide with the f-adic completion
of K, (R) at least in degrees n > 1+ dim(R). If R is the ring of integers in a
number field (and £ is odd), such a spectral sequence would degenerate, yielding
the cohomological formulas for K,,(R) conjectured by Lichtenbaum.

Quillen made this conjecture explicit when F' is an algebraically closed field of
characteristic p: the groups Ks,(F) should be uniquely divisible, and Ka, 1(F)
should be a divisible group whose torsion subgroup is Q/Z[1/p]. This was affirmed
by Suslin in 1983 paper [Su83]; the case p = 0 was given in the sequel [Su84].

During the late 1970’s, it gradually became clear that Quillen’s conjectures
should be attacked using K-theory with finite coefficients. The groups K,.(R;Z/{)
were first introduced by W. Browder [Br76], who constructed products on them
and showed that the Bott element § € K2(R;Z /£) plays a central role. For example,
if a finite field F; has ¢ = 1 (mod ¢) then K. (F,;Z/{) is the graded commutative
ring Z/{[x, B]/(x* = 0), where x € K is the class of a unit generating Fy .

Soulé [Sou79] constructed étale chern classes K, (R;Z/€") — HZ (R, u%),
and showed that they are onto in many cases. To do this, he established a product
formula, and applied it to elements in K. (R;Z/¢) of the form 8'Uz with z € K;(R).
Soulé showed that the orders of these elements are related to the numerator of the
Bernoulli numbers By, /4k, as predicted by Lichtenbaum’s conjectures. For example,
Soulé produced an element of order 691 in K33(Z).

Inspired by Soulé’s calculations, Eric Friedlander invented an approximation
to K-theory he dubbed “étale K-theory.” Dwyer and Friedlander [DF82] con-
structed a spectral sequence of the kind described by Quillen, converging to étale
K-theory. Later on, it was proven that étale K-theory of X is obtained from the
ring K, (X;Z/¢") by inverting the Bott element, and that K,,(X;Z/¢") agrees with
étale K -theory for large n. The proof of these assertions was published in [DFST]
and also in Thomason’s masterpiece [Th85].

Backing up somewhat, we turn to the question of regulators. Let R be the ring
of integers in a number field F. Borel had observed in [Bo72] that the rank d;
of the group K2;—1(R) equals the order of the zero of the zeta function (r(s) at
s = 1 —14 for each i. Indeed, the Hurewicz map K,(R) — H.(GL(R);R) induces
amap 7;: Ko;_1(R) = R%, which we now call the Borel regulator. In 1976, Borel
showed [Bo77] that the image of r; is a lattice whose covolume is a rational number
times

w% lim Cp(s)(s +i— 1% = 7~ UVDEr (i),
Here d; is the order of the pole of the zeta function (r(s) at s = 1 —4, and is either
r9 or r1 + 19 depending on ¢ (mod 2).

Next, Bloch gave an intense series of lectures on Borel’s regulator at the Uni-
versity of California at Irvine, followed by some conjectures about possible general-
izations to regulators for an elliptic curve E over a number field. Writing up these
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ideas led him to discover a regulator K»(E) — R?, which was included in the 1977
preprint [B177]; Bloch gave a talk on this at the 1978 Helsinki ICM.

In September 1979, Manin asked an undergraduate student in Moscow to give
a report on Bloch’s Irvine notes [B177]. That student was A. Beilinson, who was
then 22 years old. Instead of giving Bloch’s construction, he improved on it in
[Bei80] by constructing what we now call Beilinson’s regulator. This led Beilinson
to make a series of conjectures in 1982 [Bei82, Bei84]; these are now called the
Beilinson conjectures, and they have been a driving force in the development of
algebraic K-theory in the 1980’s and 1990’s.

While the Beilinson conjectures are extremely interesting, they take us well
beyond 1980 in our historical account. So we restrain ourselves from continuing
past this point, and turn back to other developments which took place in the 1970’s.

Symbol Calculations

From the beginning, there was an interest in constructing and detecting el-
ements of higher K-theory. It was implicit from the start [Ger72, p. 17] that
Quillen’s theory should have products K;(A) ® K;(B) = K;y;(A® B). Such prod-
ucts were independently constructed by Loday [Lo75], using the space BGL(R)™",
and by Waldhausen [Wa73], who used an iterated @-construction in the context of
pairings of exact categories. In the published version of [Wa73], Waldhausen gave
a proof that his products agree with Loday’s; see [We80] for more details.

Products allowed one to form higher Steinberg symbols {z1,...,z,} in K,(R),
yielding the ring homomorphism KM(F) — K,(F) discussed above. Products
were used to construct other elements in K, (R), such as the generalized Dennis-
Stein symbols (ri,...,7,), which are defined whenever 1 — [][7; is a unit in R
[Lo81]. Applying cohomology to these products gives a bigraded ring H* (X, K.).
Grayson [Gr77] used Waldhausen’s product formalism to show that Bloch’s for-
mula H?(X,K,) & CH?(X) is actually a ring isomorphism. Products were also
used very effectively by Gillet [Gi80] in proving a version of the Riemann-Roch
theorem for higher K-theory.

To show that these new elements were nonzero, people turned to Chern classes.
Gersten had constructed Chern classes with values in Kahler differentials Q% as
early as 1970 [Glet] [Ger72, p. 238]. These methods were used by Bloch in
[B178] to construct Chern classes in crystalline cohomology, as part of an effort to
relate K-theory to the slope spectral sequence in crystalline cohomology. Product
formulas for the étale chern classes [Sou79] and for the classes in H*(X, K,) [Su80]
showed that Chern classes on K, typically could not detect elements of exponent
(n—1)L

In 1976, Keith Dennis [D76] discovered trace maps from K, (R) to the Hochschild
homology group H H,,(R), but never published the details. These Dennis trace maps
were to play a major role in calculations during the 1980’s.

Another aspect of the attempt to find generators and relations for K,,(R) was
the search for a Mayer-Vietoris sequence for higher K-theory associated to an “exci-
sion situation” where one had a ring map R — S sending an ideal I of R isomorphi-
cally onto an ideal of S. Around 1970, Swan [Sw71] had made the discovery that
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the relative groups K (R, I) really depend upon R, so that there was no general ex-
tension of the Mayer-Vietoris sequence to K5. Swan also gave a description for the
kernel of the surjection K;(R,I) — K;(S,I). After his description was improved
by Vorst [Vo79], S. Geller and C. Weibel [GW83] gave a complete description of
the doubly relative term K;(R,S,I), i.e., the preceding term in the appropriate
long exact sequence.

The description of the relative group K»>(R,I) followed a parallel path. In
his 1970 thesis [St71], M. Stein gave one candidate for K,(R,I), the definition
used in Milnor’s book [Mi71]. Swan pointed out in [Sw71] that one should re-
ally define K5(R,I) to be the third group fitting into the natural long exact se-
quence for K,(R) — K,.(R/I), and this relative group was a proper quotient of
Stein’s candidate. Keune and Loday independently found a description of K5 (R, I)
in 1977 [Keu78, Lo78]. Then in 1980, a description of the doubly relative group
K>(R,R/J,I) was given by Keune [Keu80] and, again independently, by Guin-
Waléry and Loday [GWL].

Computing the K-theory of nilpotent ideals, a problem posed by Swan at the
Battelle Conference, was also an active topic in the 1970’s. The calculation of
K>(R,I) was mentioned above [MaSt]. Homological methods had limited success
in characteristic p, highlighted by [EF80]. If R contains Q, then each K,(R,I)
is uniquely divisible, and rational homology methods had more success, including
Soulé’s calculation [Sou80] when R = Q[e] and climaxing in Goodwillie’s theorem
[Gw86] that K,,(R,I) is isomorphic to the cyclic homology group HCy,—1(R,I). If
R has residual characteristic p, Randy McCarthy [Mc97] has recently shown that
K, (R,I) is isomorphic to the topological cyclic homology group THC),_1(R, I).

Pseudo-isotopies and A(X)

Having settled the h-cobordism question, topologists turned to the question of
uniqueness of product structures on M x I, and studied the topological group P (M)
of pseudo-isotopies on M, i.e., diffeomorphisms of M x I which are the identity on
M x {0}; a pseudo-isotopy which preserves each level M x {t} is an isotopy.

Cerf proved that if dim(M) > 5 and M is simply connected then every pseudo-
isotopy is homotopic to an isotopy. Hatcher and Wagoner [HW73] computed
moP(M) when © = w1 (M) is nontrivial; it is a sum of two terms, one of which is
a quotient of Ko(Zm) they named Why(w). Hatcher also discovered a connection
between m;P(M) and K,. This led him to construct a stable space WhFL(M)
as the direct limit of the spaces Q2P(M x I*) and prove that if dim(M) > n
one has m,P(M) = m, WhYL(M). (Unfortunately Hatcher stated the stable range
incorrectly, but that is not part of this story.)

In 1975, Doug Anderson and W.-C. Hsiang [AH75] studied pseudo-isotopies of
polyhedra, and showed that negative K-groups appear. For example, they showed
that moP(S™2M) = K_p,(Zm M) if m > 4.

Loday [Lo75] introduced the assembly map H,(BG;KZ) — K,(Z7), where
the domain is the generalized homology of BG with coefficients in the spectrum
KZ for K.(Z), and observed that when n = 2 the cokernel is the Hatcher-Wagoner
group Who(m). This led Loday and Waldhausen [Wa78, p. 228] to define the
higher Whitehead groups Why, (), not in terms of WhFY(X) but as the third term
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in the natural long exact sequence
--—= H,(BG;KZ) = K,(Z7) — Why(n) = H,—1(BG;KZ) — ---

The study of pseudo-isotopies was revolutionized in 1976, when F. Waldhausen
[Wa78] constructed an infinite loop space A(X), functorial in X, and a natural
map A(X) — WhPL(X) which was later proven [Wa87] to give a decomposition:

A(X) ~Q%°8%°(X,) x WhPL(X).

In addition, Waldhausen proved in [Wa78] that m. A(B7) ® Q = K. (Z7) ® Q.

To do this, Waldhausen first defined the algebraic K-theory of a “ring up
to homotopy,” R, using a variation Béf(R)+ of Quillen’s +-construction. For
example, if Q'X is Kan’s simplicial loop group for X, one can form the ring up to
homotopy Q['X] = Q®°S*°(Q'X ). Waldhausen defined A(X) as the K-theory
space of Q[QY'X] [Wa78, p. 42].

Waldhausen also gave a K-theoretic construction of A(X) in [Wa78, p. 58],
a construction now called Waldhausen K -theory which we will describe shortly.

Here is one nice application that came out of Waldhausen’s construction, show-
ing one way that PL manifold theory is simpler than smooth manifold theory.
Consider the two topological groups Homeopr,(D™,0D™) and Diff(D™,0D™) of PL-
homeomorphisms, resp. diffeomorphisms, of the disk which fix the boundary. It
is a well-known consequence of the “Alexander Trick” that Homeopr,(D",0D") is
contractible. In contrast, Farrell and Hsiang [FH76] used Waldhausen’s results and
Borel’s computation of K, (Z)® Q, together with an analysis of the assembly map,
to compute the rational homotopy groups of Diff(D™, 8D™); they are nonzero.

In 1978-1980, Dwyer, Hsiang and Staffeldt [DHS80, HS82] used rational
homotopy theory to compute 7, A(X) ® Q when 71(X) = 0. They stated their
answer
in terms of classical invariant theory. Later on, it would be recognized as a harbinger
of cyclic homology: m, A(X)®Q = K,(Z)®HC,_1(R.), where R, is the differential
graded algebra of singular chains on 2X. The integral version of this result is given
in [CCGH].

Also in [Wa78], Waldhausen described a stabilization process, using the K-
theory of a simplicial ring, to construct groups K2 (R, M), called the stable K-
theory of R with coefficients in a bimodule M. Waldhausen constructed a natural
map from K2 (R, M) to the Hochschild homology group HH,,_; (R, M) and showed
that it is an isomorphism for n = 1,2; Kassel [Kas80] showed that they differ for
n = 3. Later, Dennis and Igusa showed in [DI82] that Hatcher’s obstruction for
mP(X) is K5 (Zm, M), where 7 = m (X) and M = m9(X)[x].

Looking ahead, Goodwillie conjectured that there existed a construction for
rings like that used to construct Hochschild homology, and that it would be homo-
topy equivalent to stable K-theory for any ring. Bokstedt gave such a construction
in [B685], calling it the topological Hochschild Homology T H H (R) of a ring. This
played a key role in later computations such as [BHM)]. Finally, Dundas and Mc-
Carthy showed in [DM94] that THH(R; M) ~ K°(R, M) for any simplicial ring
R and bimodule M.
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Waldhausen K-theory

Waldhausen also gave a second construction of A(X) in 1976. A preliminary
version appeared in [Wa73, p. 181ff], and the announcement was published in
[Wa78, p. 58]. However, Waldhausen’s foundational paper [Wa85] containing the
full details only appeared much later. For this construction, he introduced what
we now call a Waldhausen category, i.e., a category A with appropriate notions of
cofibrations and weak equivalences w. Given A, Waldhausen defined a simplicial
category wS A and studied the space K (A, w) = QwS A|. (The S in the notation
is for G. Segal, who had earlier considered a similar construction; see [Wa73,
p. 181].)

Waldhausen proved that A(X) ~ K(Rf(X),h), where R¢(X) is the category
of finite split retractions Y — X and h denotes homotopy equivalence over X. See
[Wa78, 5.7]. This of course was the original point of the construction, and many
of Waldhausen’s structure theorems were based on the existence of a construction
like the formation of the standard mapping cylinder, satisfying a “cylinder axiom.”

Any exact category A is a Waldhausen category, where cofibration sequences
are exact sequences and w is the class of isomorphisms. Waldhausen observed that
BQA ~ |wS. A, so that K,(A,w) = 7. K (A, w) agrees with Quillen’s K, (A).

A third important application of Waldhausen’s construction is to the category
Cy(A) of bounded chain complexes in an exact category A, where w is quasi-
isomorphism; the classical mapping cylinder of chain complexes satisfies Wald-
hausen’s cylinder axiom. In fact, Waldhausen’s group Ko(Cp(A),w) recovers the
definition of Ko(A) given by Grothendieck in [SGAS6].

Waldhausen realized early on that if A is the category of projective R-modules
then K(Cy(A),w) ~ K(A); Gillet proved more generally [Gi80, p. 256] that
this formula holds for any (idempotent complete) exact category A. (Cf. [TT90,
p. 279].) Gillet applied this to the category A of vector bundles on a scheme X,
showing that the Chern classes in [Gi80] are local Chern classes in the sense of
[SGAS6].
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